Skip to main content

Advertisement

Log in

Temporal variation of optical coherence tomography biomarkers as predictors of anti-VEGF treatment outcomes in diabetic macular edema

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To report a longitudinal analysis of specific optical coherence tomography (OCT) features in eyes with diabetic macular edema (DME) treated with anti-VEGF.

Methods

A total of 133 eyes of 103 consecutive patients with center-involving DME were included in the study. The eyes were treated between August 2008 and April 2019 with three monthly intravitreal anti-VEGF injections, either with or without prompt or deferred laser, followed by pro re nata (PRN) re-treatment. The following OCT biomarkers were evaluated: subfoveal neuroretinal detachment (SND) (defined as present (SND+) or absent (SND-)), hyperreflective retinal foci (HRF) number (defined as: absent/few(HRF-) or moderate/many (HRF+)), external limiting membrane (ELM) integrity, central macular thickness (CMT), and central retinal thickness (CRT). Changes in SND status and in the number of HRF were evaluated at each DME recurrence throughout the follow-up(FU) period. Mutual correlation among OCT biomarkers and their relationship with visual and anatomic outcomes were assessed both at baseline and over the FU period.

Results

The mean FU was 71.2 months (SD 28.4; min. 12–max. 111). At baseline, the prevalence of SRD+ was 27.8% and a high number of HRF were detected in 41.4% of the eyes. A significant reduction in the number of HRF, CMT, CRT, and in the prevalence of SND was recorded in the post-loading phase (p-value <0.0001). In DME recurrences, the presence of SND+ and HRF+ was significantly more frequent in eyes with baseline SND+ and HRF+ compared to eyes presenting baseline SND- and HRF- (p-value <0.0001). No role of SND (p-value: 0.926) and HRF (p-value: 0.281) as baseline predictors of visual and anatomic outcomes was demonstrated, while a worse visual outcome was significantly correlated with a higher incidence of relapsing SND+ (p-value <0.0001) and HRF+ (p-value <0.0028) throughout the FU period.

Conclusion

In this study, SND and HRF were frequently present in DME recurrences with the same pattern exhibited at baseline, suggesting that these OCT biomarkers may characterize a specific pattern of DME that repeats over time. Moreover, the results suggested that the persistence and recurrence of SND and HRF may account for a decrease in visual function more than the baseline prevalence of these biomarkers. Further studies are required to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Lee R, Wong TY, Sabanayagam C (2015) Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond) 2:17. https://doi.org/10.1186/s40662-015-0026-2

    Article  Google Scholar 

  2. Vujosevic S, Simo R (2017) Local and systemic inflammatory biomarkers of diabetic retinopathy: an integrative approach. Invest Ophthalmol Vis Sci 58:BIO68–BIO75. https://doi.org/10.1167/iovs.17-21769

    Article  CAS  PubMed  Google Scholar 

  3. Abramoff MD, Fort PE, Han IC, Jayasundera KT, Sohn EH, Gardner TW (2018) Approach for a clinically useful comprehensive classification of vascular and neural aspects of diabetic retinal disease. Invest Ophthalmol Vis Sci 59:519–527. https://doi.org/10.1167/iovs.17-21873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hillier RJ, Ojaimi E, Wong DT, Mak MYK, Berger AR, Kohly RP, Kertes PJ, Forooghian F, Boyd SR, Eng K, Altomare F, Giavedoni LR, Nisenbaum R, Muni RH (2018) Aqueous humor cytokine levels and anatomic response to intravitreal ranibizumab in diabetic macular edema. JAMA Ophthalmol 136:382–388. https://doi.org/10.1001/jamaophthalmol.2018.0179

    Article  PubMed  PubMed Central  Google Scholar 

  5. Figueras-Roca M, Molins B, Sala-Puigdollers A, Matas J, Vinagre I, Rios J, Adan A (2017) Peripheral blood metabolic and inflammatory factors as biomarkers to ocular findings in diabetic macular edema. PLoS One 12:e0173865. https://doi.org/10.1371/journal.pone.0173865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vujosevic S, Torresin T, Berton M, Bini S, Convento E, Midena E (2017) Diabetic macular edema with and without subfoveal neuroretinal detachment: two different morphologic and functional entities. Am J Ophthalmol 181:149–155. https://doi.org/10.1016/j.ajo.2017.06.026

    Article  PubMed  Google Scholar 

  7. Gaucher D, Sebah C, Erginay A, Haouchine B, Tadayoni R, Gaudric A, Massin P (2008) Optical coherence tomography features during the evolution of serous retinal detachment in patients with diabetic macular edema. Am J Ophthalmol 145:289–296. https://doi.org/10.1016/j.ajo.2007.09.029

    Article  PubMed  Google Scholar 

  8. Ozdemir H, Karacorlu M, Karacorlu S (2005) Serous macular detachment in diabetic cystoid macular oedema. Acta Ophthalmol Scand 83:63–66. https://doi.org/10.1111/j.1600-0420.2005.00387.x

    Article  PubMed  Google Scholar 

  9. Giocanti-Auregan A, Hrarat L, Qu LM, Sarda V, Boubaya M, Levy V, Chaine G, Fajnkuchen F (2017) Functional and anatomical outcomes in patients with serous retinal detachment in diabetic macular edema treated with ranibizumab. Invest Ophthalmol Vis Sci 58:797–800. https://doi.org/10.1167/iovs.16-20855

    Article  CAS  PubMed  Google Scholar 

  10. Kang SW, Park CY, Ham DI (2004) The correlation between fluorescein angiographic and optical coherence tomographic features in clinically significant diabetic macular edema. Am J Ophthalmol 137:313–322. https://doi.org/10.1016/j.ajo.2003.09.016

    Article  PubMed  Google Scholar 

  11. Vujosevic S, Torresin T, Bini S, Convento E, Pilotto E, Parrozzani R, Midena E (2017) Imaging retinal inflammatory biomarkers after intravitreal steroid and anti-VEGF treatment in diabetic macular oedema. Acta Ophthalmol 95:464–471. https://doi.org/10.1111/aos.13294

    Article  CAS  PubMed  Google Scholar 

  12. Zur D, Iglicki M, Busch C, Invernizzi A, Mariussi M, Loewenstein A, International Retina G (2018) OCT biomarkers as functional outcome predictors in diabetic macular edema treated with dexamethasone implant. Ophthalmology 125:267–275. https://doi.org/10.1016/j.ophtha.2017.08.031

    Article  Google Scholar 

  13. Vujosevic S, Bini S, Torresin T, Berton M, Midena G, Parrozzani R, Martini F, Pucci P, Daniele AR, Cavarzeran F, Midena E (2017) Hyperreflective retinal spots in normal and diabetic eyes: B-scan and en face spectral domain optical coherence tomography evaluation. Retina 37:1092–1103. https://doi.org/10.1097/IAE.0000000000001304

    Article  PubMed  Google Scholar 

  14. Sophie R, Lu N, Campochiaro PA (2015) Predictors of functional and anatomic outcomes in patients with diabetic macular edema treated with ranibizumab. Ophthalmology 122:1395–1401. https://doi.org/10.1016/j.ophtha.2015.02.036

    Article  PubMed  Google Scholar 

  15. Fickweiler W, AME S, Schlingemann RO, Maria Hooymans JM, Los LI, Verbraak FD, Group BR (2018) Predictive value of optical coherence tomographic features in the bevacizumab and ranibizumab in patients with diabetic macular edema (Brdme) study. Retina 38:812–819. https://doi.org/10.1097/IAE.0000000000001626

    Article  CAS  PubMed  Google Scholar 

  16. Seo KH, Yu SY, Kim M, Kwak HW (2016) Visual and morphologic outcomes of intravitreal ranibizumab for diabetic macular edema based on optical coherence tomography patterns. Retina 36:588–595. https://doi.org/10.1097/IAE.0000000000000770

    Article  CAS  PubMed  Google Scholar 

  17. Shimura M, Yasuda K, Yasuda M, Nakazawa T (2013) Visual outcome after intravitreal bevacizumab depends on the optical coherence tomographic patterns of patients with diffuse diabetic macular edema. Retina 33:740–747. https://doi.org/10.1097/IAE.0b013e31826b6763

    Article  CAS  PubMed  Google Scholar 

  18. Framme C, Schweizer P, Imesch M, Wolf S, Wolf-Schnurrbusch U (2012) Behavior of SD-OCT-detected hyperreflective foci in the retina of anti-VEGF-treated patients with diabetic macular edema. Invest Ophthalmol Vis Sci 53:5814–5818. https://doi.org/10.1167/iovs.12-9950

    Article  CAS  PubMed  Google Scholar 

  19. Kang JW, Chung H, Chan Kim H (2016) Correlation of optical coherence tomographic hyperreflective foci with visual outcomes in different patterns of diabetic macular edema. Retina 36:1630–1639. https://doi.org/10.1097/IAE.0000000000000995

    Article  PubMed  Google Scholar 

  20. Sonoda S, Sakamoto T, Yamashita T, Shirasawa M, Otsuka H, Sonoda Y (2014) Retinal morphologic changes and concentrations of cytokines in eyes with diabetic macular edema. Retina 34:741–748. https://doi.org/10.1097/IAE.0b013e3182a48917

    Article  CAS  PubMed  Google Scholar 

  21. Funatsu H, Yamashita H, Noma H, Mimura T, Yamashita T, Hori S (2002) Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. Am J Ophthalmol 133:70–77. https://doi.org/10.1016/s0002-9394(01)01269-7

    Article  CAS  PubMed  Google Scholar 

  22. Funatsu H, Yamashita H, Sakata K, Noma H, Mimura T, Suzuki M, Eguchi S, Hori S (2005) Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema. Ophthalmology 112:806–816. https://doi.org/10.1016/j.ophtha.2004.11.045

    Article  PubMed  Google Scholar 

  23. Funatsu H, Noma H, Mimura T, Eguchi S, Hori S (2009) Association of vitreous inflammatory factors with diabetic macular edema. Ophthalmology 116:73–79. https://doi.org/10.1016/j.ophtha.2008.09.037

    Article  PubMed  Google Scholar 

  24. Sohn HJ, Han DH, Kim IT, Oh IK, Kim KH, Lee DY, Nam DH (2011) Changes in aqueous concentrations of various cytokines after intravitreal triamcinolone versus bevacizumab for diabetic macular edema. Am J Ophthalmol 152:686–694. https://doi.org/10.1016/j.ajo.2011.03.033

    Article  CAS  PubMed  Google Scholar 

  25. Coscas G, De Benedetto U, Coscas F, Li Calzi CI, Vismara S, Roudot-Thoraval F, Bandello F, Souied E (2013) Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. Ophthalmologica 229:32–37. https://doi.org/10.1159/000342159

    Article  PubMed  Google Scholar 

  26. Vujosevic S, Bini S, Midena G, Berton M, Pilotto E, Midena E (2013) Hyperreflective intraretinal spots in diabetics without and with nonproliferative diabetic retinopathy: an in vivo study using spectral domain OCT. J Diabetes Res 2013:491835. https://doi.org/10.1155/2013/491835

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bolz M, Schmidt-Erfurth U, Deak G, Mylonas G, Kriechbaum K, Scholda C, Diabetic Retinopathy Research Group V (2009) Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology 116:914–920. https://doi.org/10.1016/j.ophtha.2008.12.039

    Article  PubMed  Google Scholar 

  28. Ogino K, Murakami T, Tsujikawa A, Miyamoto K, Sakamoto A, Ota M, Yoshimura N (2012) Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion. Retina 32:77–85. https://doi.org/10.1097/IAE.0b013e318217ffc7

    Article  PubMed  Google Scholar 

  29. Uji A, Murakami T, Nishijima K, Akagi T, Horii T, Arakawa N, Muraoka Y, Ellabban AA, Yoshimura N (2012) Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema. Am J Ophthalmol 153: 710-717, 717 e711. https://doi.org/10.1016/j.ajo.2011.08.041

Download references

Acknowledgements

The authors thank Brian Hawkins for his linguistic revision.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Maggio.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate/consent for publication

Patients gave informed consent for the treatment and the inclusion in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting information

ESM 1

Fig. 1 of the Supporting Information. A. Improvement in visual acuity in SND- and SND+ eyes after the loading phase and up to the 6-year time point. B. Improvement in visual acuity in HRF- and HRF+ eyes after the loading phase and up to the 6-year time point. C. Improvement in central macula thickness in SND- and SND+ eyes after the loading phase and up to the 6-year time point. D. Improvement in central macula thickness in HRF- and HRF+ eyes after the loading phase and up to the 6-year time point. (PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maggio, E., Mete, M., Sartore, M. et al. Temporal variation of optical coherence tomography biomarkers as predictors of anti-VEGF treatment outcomes in diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 260, 807–815 (2022). https://doi.org/10.1007/s00417-021-05387-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05387-7

Keywords

Navigation