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Abstract
Purpose  This article aims to review the impact of detecting and quantifying intraocular biomarkers (liquid biopsy) in both 
aqueous and vitreous humor in eyes of people affected by diabetes mellitus.
Methods  This is a detailed review about aqueous and/or vitreous humor sampling in human diabetic eyes for proteomic 
and/or metabolomic analysis contributing to the understanding of the pathophysiology and treatment effects of diabetic 
retinopathy.
Results  Aqueous and vitreous humor molecular biomarkers proved to be directly correlated to each other and valuable to 
study retinal conditions. Moreover, proteomic and metabolomic analysis showed that the biomarkers of neuroinflammation, 
neurodegeneration, and vasculopathy are detectable in intraocular fluids and that their concentration changes in different 
stages of disease, and in response to treatment of all diabetic retinopathy aspects, mainly diabetic macular edema and pro-
liferative retinopathy.
Conclusions  Liquid biopsy offers the possibility to improve our knowledge of intraocular eye disease induced by diabetes 
mellitus. The exact quantification of intraocular biomarkers contributes to the precision medicine approach even in the 
diabetic retinopathy scenario. The diffusion of this approach should be encouraged to have quantifiable information directly 
from the human model, which may be coupled with imaging data.

Key messages

The future perspectives in the management of diabetic retinal involvement are strictly linked to the concept of 
precision medicine: a tailored approach to patients, according to their phenotypic characteristics is currently 
desirable.

Aqueous and vitreous humor sampling both provide reliable and quantifiable markers of disease, with aqueous 
biopsy being a safer approach.

Liquid biopsy provides a direct aqueous or vitreous sample to study, in vivo, the presence and changes of specific 
molecules concentration defining phenotypic profiles of diabetic non proliferative and proliferative retinopathy and 
diabetic macular edema.

The correlation between imaging features and biochemical changes provides biochemically-proven structural 
biomarkers able to define the main pathophysiologic mechanisms of the diabetic retinal manifestations, and 
prognostic and treatment response perspectives.
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Introduction

Diabetic retinopathy (DR) represents one of the leading 
causes of visual impairment and preventable blindness 
worldwide [1]. It is estimated that around 425 million 
people are affected by diabetes and around 212 million 
are undiagnosed subjects. It has also been estimated that 
approximately 93 million people worldwide have DR and 
that one-third of the global diabetic population is expected 
to develop some degree of retinopathy during lifetime [1, 
2]. A detailed analysis of these data highlights that the 
main sight-threatening complications of diabetes, namely, 
diabetic macular edema (DME) and proliferative DR 
(PDR), will represent an increasing burden for the diabetic 
population in the near future and a serious socio-economic 
health problem [3–5].

The high impact of ocular diabetic complications 
increases the importance of searching new approaches to 
better understand the exact pathophysiology of human DR 
since its very early phases. It seems essential to be able to 
quantitatively delineate the fine intraocular mechanisms 
inducing the development and step-by-step progression 
of DR. In the past, DR was identified by ophthalmoscopy 
and then documented by fundus photography. Fundus 
fluorescein angiography helped to understand the micro-
vasculature component of this disorder, confirming pre-
vious histopathologic studies performed both in diabetic 
animals and enucleated human eyes. Optical coherence 
tomography (OCT) allowed to visualize and understand 
the intraretinal—layer-by-layer—alterations (not only 
microvascular) induced by diabetes mellitus in the human 
retina and choroid. Using these diagnostic approaches, it 
has been possible to better identify different retinal (and 
choroidal) parameters (i.e., location and extent of macu-
lar edema, sub-retinal fluid, disorganization up to atrophy 
of single or multiple retinal layers, location and exten-
sion of both macular, and peripheral ischemia) useful to 
address therapy. One of the main biochemical pathway 
implicated in the development and progression of DR is 
related to the vascular endothelial growth factor (VEGF) 
family, mainly VEGF-A [6–8]. The inhibition of VEGF 
has been considered the best approach to treat pharma-
cologically both DME and PDR and to prevent progres-
sion (or induce regression) of DR. Unfortunately, clinical 
evidence has shown that intravitreal anti-VEGF therapy is 
able to reduce DME in about 60% of cases and, on a long-
term perspective, panretinal photocoagulation remains 
the gold standard in the treatment of PDR [9, 10]. This 
probably means that even current sophisticated imaging 
technologies are unable to detect and differentiate the 
hypothesized human phenotypes of DR [11, 12]. This fact 
has recently induced clinical researchers to try to quantify 

the exact intraocular molecular changes induced by dia-
betes into the retina. This approach has opened the way to 
“liquid biopsy” to enter in the retina scenario of diabetes 
research. The concept of “liquid biopsy” has emerged as 
a general approach in medicine and was introduced by the 
medical oncology disciplines. This diagnostic approach 
in oncology aims at integrating information from liquid 
samples, namely, blood, to provide precise and detailed 
information about tumor progression [13]. Liquid biopsy 
appears to be a crucial complement to the more invasive 
tissue biopsy, both for diagnosis and management of can-
cer [14]. This approach is also relevant to provide “pheno-
typic” information of a specific disease. Therefore, liquid 
biopsy has become a routinely approach performed not 
only in oncology, but also in other medical branches, such 
as neurology and rheumatology [15–17]. This diagnos-
tic approach, which has dramatically changed the clinical 
practice in other medical specialties, should be applied in 
ophthalmology too. This may be obtained by sampling and 
analyzing ocular fluids, in particular aqueous or vitreous 
humor, because proteomic and metabolomic analysis of 
these ocular fluids has the potential to add new informa-
tion about the pathophysiology and monitoring of ocular 
disorders, even at the retinal level [14].

In humans, the most readily accessible ocular tissues are 
tears and ocular surface components such as the cornea and 
conjunctiva. These ocular matrices may provide valuable 
information regarding anterior segment disorders and have 
also been studied in DR. However, it is the aqueous humor 
(AH) and vitreous which are more suitable matrices for the 
evaluation of relevant biomarkers for posterior segment dis-
orders [18].

This article reviews current results and promising per-
spectives opened by liquid biopsy on intraocular fluids, 
namely, aqueous and vitreous humor, in DR.

Methods

To identify potentially relevant articles in the medical litera-
ture, we searched MEDLINE for English language articles 
published from January 1980 to December 2020. MEDLINE 
was queried using the following search terms (used both 
individually and in combination for advanced research): pro-
teome, proteomics, metabolome, metabolomics, biomarker, 
eye, retina, diabetic macular edema, and diabetic retinopa-
thy. Additional articles were identified by reviewing the ref-
erences of examined publications. To identify potentially 
relevant articles to be included in this review, two investi-
gators reviewed each paper. Case series were preferred to 
single-case reports. Articles included in the reference list 
were fully examined by the authors.
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Intraocular sampling

The foundations for understanding the pathophysiology of 
ocular, and particularly retinal, diseases have been built 
up in animal studies, because of the intrinsic limitations 
of a direct histological and molecular human eye exami-
nation [19]. However, it is mandatory to confirm animal 
experimental data in humans, for example, searching eye 
disease biomarkers into the accessible human compart-
ments [15]. At present, liquid biopsy may be applied to the 
eye compartments, in particular vitreous and aqueous, for 
a more direct comprehension and phenotyping of intraocu-
lar disorders, including the retinal ones [15, 16]. It may 
be questioned if AH analysis may reliably reflect a retinal 
condition, as vitreous humor does. However, some authors 
have demonstrated a full correlation of the molecular con-
tent in simultaneous aqueous and vitreous samples, from 
the same eye [20–22]. Funatsu et al. specifically planned 
a study where aqueous and vitreous of the same eye were 
contemporarily sampled to quantify specific intraocular 
cytokine levels [20]. VEGF and IL-6 levels in aqueous 
and vitreous humors were significantly higher than the 
plasma levels and significantly correlated with each other 
and with the severity of diabetic retinopathy [20]. There-
fore, AH proteins concentration may be clinically useful 
as the vitreous one [20, 23]. This data, confirmed by other 
authors in different posterior segment disorders, represents 
a milestone in the “liquid biopsy approach” to retinal dis-
orders [21, 22].

Biodynamic of ocular fluids: posterior to anterior 
route

Juneman et al. proved the passage from the retina to the 
vitreous of a retinal glial activation–related protein: the 
glial fibrillary acidic protein (GFAP). GFAP is typically 
produced by astrocytes in healthy conditions and by other 
retinal cells, such as activated Müller cells, in diabetes 
[24]. In diabetic retinopathy, Müller cells show morpho-
logic changes, such as hypertrophy, associated with GFAP 
production [25]. This is a remarkably ubiquitous response 
that can be observed in some forms of retinal stress, dam-
age, and degeneration, including retinal detachment and 
retinal photocoagulation [26, 27]. Moreover, the presence 
of GFAP in body fluids has already been reported and 
proposed as a biomarker of glial activation and pathology 
in neurological diseases [27, 28]. It has been reported that 
the modifications and alteration of Müller cell triggers cel-
lular proteolysis. With proteolytic break-up of the GFAP 
polymer, soluble fragments of GFAP are released to the 
adjacent fluid compartments. Therefore, GFAP might be 

used as an indirect marker for Müller cell activation, pro-
tease activation, and eventually secondary degenerative 
processes in the retina [24]. Other experimental studies 
on the biodynamic of ocular fluids were instrumental to 
elucidate the mechanism through which GFAP—or any 
other molecule produced and released by the retina—may 
reach, through the vitreous, the anterior chamber [29, 30]. 
Maurice et al. reported in detail about the flow of intraocu-
lar fluids from vitreous to aqueous, in animal models [30]. 
They demonstrated, using a thermal diffusional analogue, 
that the passage of molecules out of the vitreous is entirely 
through the anterior chamber and that it is characterized by 
a slow diffusion within the anterior vitreous humor [30]. A 
vitreous-to-aqueous gradient has also been demonstrated 
in humans, promoting the anterior diffusion of VEGF and 
other angiogenic factors, potentially accounting for the 
occurrence of anterior segment neovascularization in asso-
ciation with wide retinal ischemia. This gradient may be 
due to the rapid clearance of proteins from the anterior 
chamber or their more rapid degradation in the same loca-
tion [19, 31]. The molecular weight of GFAP (around 50 
kDA) is very similar to the proteins quantified by Maurice 
et al.: thus, the passage of GFAP, from the retina through 
the vitreous into the anterior chamber, is clearly possible 
[30]. More recently, studies about intraocular fluid dynam-
ics aimed at clarifying the pharmacokinetic of drug deliv-
ery systems have shown that, after an intravitreal injection, 
the drug is eliminated from the eye, either via the anterior 
route (anterior chamber) or through the retina [29, 32]. 
The anterior route is free for all drugs which enters the 
anterior chamber and then are eliminated via the aque-
ous compartment outflow [29]. It is exactly the settling of 
molecules in the anterior chamber that justifies sampling 
AH to make a proteomic and/or metabolomic analysis in 
retinal disorders. Therefore, intraocular fluid biodynamic 
supports the concept that sampling and analyzing the pro-
tein content in the AH represent another safer, reason-
able way to study a posterior segment condition, mainly 
because vitreous sampling is a more invasive procedure.

Safety

The use of AH paracentesis as diagnostic procedure in sev-
eral ocular diseases, such as uveitis, but also as therapeutic 
option, for example, in acute primary angle-closure glau-
coma, has proved to be a safe and effective technique in sev-
eral reports. In acute pathologic conditions, different factors 
may complicate this procedure, such as corneal edema, high 
intraocular pressure, flare, and acute eye inflammation. How-
ever, even in these conditions, no safety issues have been 
reported, even if AH sampling is performed at the slit lamp 
[33, 34]. In our literature research, no significant adverse 
event was reported following AH biopsy, even in phakic 
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patients, regardless of patients’ age. However, the recom-
mendations for a safe procedure include the use of adequate 
topical anesthesia and disinfection (povidone iodine), of eye-
lid speculum and drape, preferably performed in an operat-
ing room, before or separately from any other surgical pro-
cedure, including intravitreal injection [33, 35]. Conversely, 
vitreous biopsy may raise some greater concerns in terms 
of safety, compared to AH biopsy, because of the intrinsic 
greater invasiveness of the procedure. Therefore, it is quite 
exclusively performed before or during a surgical procedure 
for a different clinical indication, such as vitrectomy for PDR 
or epiretinal membrane (as later discussed). However, both 
these procedures, when correctly performed, have proved 
to be safe also in eyes affected by tumoral lesions with risk 
of metastases, such as uveal melanoma. As already men-
tioned, one of the most important field of application of 
liquid biopsy is oncology. A growing amount of studies are 
showing the relevance of this approach also in ocular oncol-
ogy, not only to directly study the tumoral lesions but also 
to analyze the tumor-related microenvironment changes, 
detectable in ocular fluids [36–38].

Finally, another critical point when discussing about 
intraocular sampling to quantify molecular biomarkers of 
retinal and choroidal disorders is the control group. It is 
commonly agreed that healthy controls are represented by a 
group of age-matched subjects, unaffected by concomitant 
relevant systemic or ocular disorders, which may act as con-
founders of biomarker quantification. The invasiveness of 
vitreous sampling may raise ethical concerns, thus restrict-
ing the possible control group to organ donors or patients 
undergoing vitrectomy for non-DR-related diseases, such as 
macular hole, epiretinal membrane, or retinal detachment 
[24, 39]. For intraocular AH biomarkers studies, the con-
trol subjects are commonly chosen among healthy people 
undergoing an already planned cataract surgery, and the AH 
sample is obtained as first step of the surgical procedure. Yao 
J et al. confirmed the reliability of these controls, and this 
approach is now widely accepted in studies of intraocular 
proteomics [40–46].

Proteomics and metabolomics in diabetic 
retina

Proteomics

Human fluids are represented by a complex mixture of 
cells, electrolytes, organic solutes, and proteins of differ-
ent molecular weight, such as growth factors, cytokines, 
and additional proteins whose main function is to provide 
the metabolic requirements to the ocular tissues. The iden-
tification and quantification of proteins, including their 
isoforms, variants, and posttranslational modifications, in 

the compartments of the eye in both health and disease 
are addressed as “proteomics” of intraocular fluids [47].

The National Institutes of Health Biomarkers Defini-
tions Working Group has defined a biomarker as “a char-
acteristic that is objectively measured and evaluated as 
an indicator of normal biological processes, pathogenic 
processes, or pharmacologic responses to a therapeutic 
intervention” [48]. Regarding the eye, both imaging and 
biochemical biomarkers may be considered. Circulating 
(serum) biochemical biomarkers have poorly contributed 
to the comprehension and management of DR and diabetic 
maculopathy and are not applied in clinical practice. This 
is mainly because of the limited number of correlations 
found between serum parameters (mainly inflammatory 
cytokines, such as interleukins and VEGF) and diabetic-
related retinal complications (such as DME, PDR, or 
foveal avascular zone enlargement) [15, 49]. As regards 
imaging biomarkers, the use of structural OCT has cer-
tainly contributed to quantify some retinal parameters, 
such as central retinal thickness and the presence and char-
acteristics of intra-retinal or sub-retinal fluid. A new prom-
ising diagnostic technology is OCT angiography, but its 
full validation in DR is still under debate [50]. Conversely, 
direct ocular sampling—vitreous and/or aqueous—has the 
potential to offer more detailed information, which may 
be defined more “quantitative” than “qualitative,” through 
the detection of biochemical local biomarkers. In fact, the 
quantification of specific protein concentration and its var-
iation in different disease phases (compared to controls) 
provide a precise tool to define each eye condition. Several 
proteomic studies have been published about posterior seg-
ment disorders, such as DR and DME [29, 32, 41, 42].

Metabolomics

In the very recent years, a newest approach, the metab-
olomics, has also been developed both in vitreous and 
aqueous humor samples to evaluate retinal disorders, DR 
in particular [51]. The “metabolome” represents a set of 
metabolites in a biological tissue, in this case the eye, 
which are the end-products of a specific cellular process 
[18, 51, 52]. Metabolomics specifically seek to measure 
those metabolites which change in response to a stimulus 
of one sort or another, providing a dynamic picture of the 
processes occurring into the eye. For example, the recent 
AH metabolomic studies on diabetic patients showed a 
possible alteration of mitochondrial function in long-dura-
tion diabetics and oxidative stress and endothelial damage. 
This new approach may add novel insights in the altered 
biological processes of the retina, coupling biochemical 
information to clinical ones [18, 51–55].
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Liquid biopsy results in diabetic retinopathy

In the last decades, the rapid advancement in biotechnol-
ogy, engineering, and equipment has led to the possibility 
to dose, even in small amounts of ocular samples (vitreous 
and aqueous), a high number of molecules, which might be 
related to the presence of DR, PDR, and DME, and their 
progression. The main studies on vitreous and aqueous 
samples are summarized hereafter.

Proliferative diabetic retinopathy

Studies on vitreous samples of DR eyes have primarily 
been performed on the proliferative stage of DR (PDR), 
during a planned vitrectomy, for therapeutic aims [39]. 
These studies have confirmed the role, in the pathogen-
esis of new vessel growth and proliferation, not only of 
VEGF, but also of several inflammatory factors [56–70]. 
The vitreous levels of VEGF and IL-6 were positively cor-
related with the clinical grade of PDR, particularly in its 
active stage, defined by a significant amount of perfused 
preretinal new capillaries [20]. Moreover, a systematic 
meta-analysis of biomarkers investigated in the vitreous 
of diabetic patients has shown the presence of around 11 
molecules as possible new targets for potential treatment, 
beyond the already known anti-VEGF drugs. Four of them 
have been deemed viable targets for PDR: eritropoietin 
A and B receptors, anti-platelet-derived growth factor-
BB, and pigment epithelium-derived factor [39]. Some 
authors have recently identified other potential biomarkers 
of PDR, such as macrophage migration inhibitory factor 
(MIF), previously found to be upregulated in animal mod-
els of corneal neovascularization. It has been detected in 
endothelial cells, leukocytes, and myofibroblasts in epireti-
nal fibrovascular membranes from patients with PDR, as 
well as in their vitreous fluid. It causes the upregulation 
of VEGF in Müller cells, leading to angiogenesis and thus 
representing a new possible target for treatment [71]. Bal-
aiya et al. studied patients with PDR, by sampling both 
aqueous and vitreous, and showed an increase of several 
molecules, representing the different mechanisms involved 
in DR progression. The detection of fibrinogen molecules, 
as well as alpha-2 macroglobulin in PDR vitreous, con-
firmed the relevance of a hypercoagulable state in the 
pathogenesis of diabetes-related severe damage [72–74]. 
Moreover, they suggested that different vitreous levels 
of antithrombin III, an inhibitor of coagulation, may be 
related to different clinical stages of PDR (vasoprolifera-
tive vs fibrotic). The increase, in PDR vitreous, of factors 
belonging to complement and kallikrein–kinin systems, 
responsible for severe ocular inflammation, and involved 

into the progression to proliferative forms of DR, con-
firmed the inflammatory mediators as therapeutic targets 
for the advanced stages of PDR [72, 75, 76]. The dys-
regulation of vitreous levels of the proinflammatory and 
proangiogenic factor osteoprotegerin and its ligands was 
also detected in PDR eyes [77]. Inflammation, hypoxia, 
and oxidative stress also stimulate the production, activa-
tion, and signaling functions of matrix metalloproteinases, 
which are increased in the vitreous humor of PDR patients. 
They are involved in angiogenesis, loss of photoreceptors, 
and blood–retina barrier breakdown, thus appearing as 
disease biomarkers and targets for therapeutic inhibitors 
[78, 79]. Furthermore, other studies have compared the 
concentration of VEGF before and after vitrectomy, show-
ing that, in the majority of patients, the level of VEGF 
was significantly and successfully reduced and suggesting 
that those with a high permanence of VEGF levels after 
vitrectomy are more prone to ocular complications such as 
neovascular glaucoma and that the ratio of remnant VEGF 
and pre-operative VEGF concentration may represent a 
predictor of late complications [80–84].

Preclinical and clinical non‑proliferative diabetic 
retinopathy

In diabetic patients with early or preclinical stages of DR, 
who do not need vitrectomy, vitreous sampling may repre-
sent an unjustified procedure, while AH sampling proved to 
be more applicable, equally reliable, and meaningful.

Preclinical stages of DR have been investigated, in order 
to detect the very early drivers of retinopathy [85–93]. 
Chiang SY et al., for example, compared diabetic patients 
without and with clinical signs of DR and demonstrated 
increased levels of total protein in the AH but also a differ-
ent AH protein profile in DR patients [85]. Factors involved 
in nutrition transport (apolipoprotein A-I, serotransferrin), 
microstructure reorganization [keratin type I cytoskeletal 9 
(KRT9), keratin type I cytoskeletal 10 (KRT10), podocan 
(PODN)], and neuroprotection [cystathionine beta-synthase 
(CBS)] were hyperexpressed in DR eyes, and angiogene-
sis-related factors [growth factor receptor-bound protein 
10 (GRB10), brain-specific angiogenesis inhibitor 1-asso-
ciated protein 2 (BAIAP2)] were detected only in AH of 
DR patients [85]. Moreover, a significant difference in the 
concentration of several cytokines and chemokines involved 
in inflammation and angiogenesis was detected in the AH 
of diabetic patients compared to controls, increasing with 
DR severity [higher levels of interleukin (IL)-1β, Il-6, and 
Il-8, monocyte chemo-attractant protein (MCP)-1, interferon 
gamma-induced protein-10, VEGF, and reduced levels of 
IL-10 and Il-12] [94]. The critical role of inflammation in 
the development of DR has been firstly described in vitro 
and in animal models: glutamate, proteases, leukotrienes, 
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IL-1β, IL-6, TNF-α, VEGF, lymphotoxin MMPs, and ROS 
were linked to DR [95]. Moreover, glial cells, particularly 
microglia and Müller cells, have proven to have an initial 
role in the inflammation pathway [95]. Other in vivo stud-
ies have confirmed the early activation of the inflammatory 
processes secondary to chronic hyperglycemia, using AH 
samples [42, 96]. Moreover, they demonstrated, in vivo, 
retinal macroglial cell activation, by the detection of spe-
cific cellular biomarkers. GFAP, aquaporin (AQP)1, and 
AQP4—biomarkers of Müller cell activity—showed to be 
significantly increased in human eyes with diabetes, con-
firming that glial cells are precociously affected by diabetes 
mellitus. In particular, GFAP and AQP4 levels were higher 
also in diabetic eyes without clinical signs of DR, and they 
have been suggested as early biomarkers of diabetes-induced 
retinal stress [42].

Diabetic macular edema and response to treatment

Diabetic macular edema is one of the most important reti-
nal complications of diabetes, requiring early and adequate 
intervention to limit a rapid functional deterioration. It 
results from the dysregulation of the complex interactions 
between neuronal degeneration, retinal inflammation, mac-
roglial dysfunction, and microvascular damage, leading 
to chronic intraretinal fluid accumulation [97, 98]. As for 
non-proliferative DR, DME eyes, not requiring vitrectomy, 
were mainly studied by sampling AH. In these eyes, a fur-
ther increase of some factors/cytokines [VEGF, IL-6, IL-8, 
interferon inducible protein (IP)-10, leukemia inhibitor 
factor (LIF), HGF hepatocyte growth factor, VEGF vascu-
lar, intercellular adhesion molecule-1 (ICAM-1), platelet-
derived growth factor (PDGF)] was found, compared not 
only to non-DR eyes but also to DR eyes without DME 
[99–102]. In particular, ICAM-1, which is known to poten-
tiate retinal vascular leukocyte adhesion, increase vascular 
permeability, and promote capillary closure in response to 
elevated ambient VEGF levels, was identified as a biomarker 
for disease severity [101]. The interest for inflammation as 
main driver of DR progression and DME onset has led to 
the dramatic rise of studies demonstrating an increase of 
inflammation-related factors in the AH samples of diabetic 
subjects with DR and/or DME [29, 32, 99–101, 103–108]. 
A higher concentration of specific Müller cell–related fac-
tors has been reported, namely, GFAP and inwardly rectify-
ing potassium channel (Kir) 4.1, which in vitro and animal 
studies have already demonstrated to be overexpressed and 
altered in distribution, secondary to Müller cell activation 
[96]. Inflammatory factors were also found in the AH of 
patients affected by macular edema of different origin [109, 
110]. Chu et al. found that the concentration of some inflam-
matory cytokines, such as IL-1β, IL-6, MCP-1, IL-10, and 
VEGF, was correlated to macular thickness in post-cataract 

surgery patients, thus suggesting them as potential predictors 
of postoperative macular thickening [109].

Prognosis and response to treatment are two of the main 
points potentially addressed by the liquid biopsy approach. 
Recently, different studies have reported the response to 
DME treatment, by means of aqueous and vitreous samples 
[32, 104, 105, 111–116]. Sohn et al. compared the AH con-
centration of VEGF and inflammatory molecules after the 
administration of triamcinolone and bevacizumab, showing 
that the first one was able to reduce several inflammatory 
molecules (IL-6, IP-10, MCP-1, PDGF-AA) and VEGF 
concentration, while bevacizumab just reduced VEGF con-
centration [32]. These data confirm the multifactorial patho-
physiology of DME, not only related to VEGF, but also to a 
wider inflammatory activation [32].

The use of serial AH sampling has also elucidated the 
effects and mechanisms of action of other DME treatments, 
such as subthreshold micropulse laser (SMPL). At 1-year 
follow-up, repeated successful SMPL treatments (in terms 
of reduced central retinal thickness and improved visual acu-
ity), caused a reduction of several retinal molecules, includ-
ing VEGF and other inflammatory ones [117]. Moreover, 
the biomarkers of Müller cell activation—GFAP and Kir 
4.1—were significantly reduced after SMPL, showing a sort 
of de-activation and normalization of the retinal environ-
ment, and especially a restoration of Müller cell function 
[90]. No significant changes of the retinal pigment epithe-
lium (RPE)–related biomarkers were found after SMPL 
treatment, suggesting that RPE might not represent the main 
target of this laser technology [118]. These data may repre-
sent a new perspective in the comprehension of the mecha-
nisms of DME therapies, such as SMPL, and a new way for 
its possible application, even in different retinal disorders.

Future perspectives

Liquid biopsy has dramatically renewed the approach to 
patients in oncology, introducing the concept of patient-
tailored medicine, thus significantly improving not only our 
knowledge about neoplastic diseases, but also the individual 
management of cancer patients [119]. In ophthalmology, 
this approach has proved to be able to detect repeatable and 
quantifiable biomarkers involved in fluid homeostasis and 
its changes secondary to eye diseases, as DR. And the con-
cept of disease “phenotype” has assumed a greater role in 
the definition of retinal diseases [16, 120, 121]. The detec-
tion of different structural profiles, particularly as concerns 
macular edema, opened the possibility to identify patients 
with different patterns and timing of disease onset and evo-
lution, as well as response to therapy. The development of 
high-technology retinal imaging techniques has allowed the 
identification of a series of structural biomarkers which are 
still extensively under study to find a reliable correlation 
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with the pathophysiological and functional aspects [122]. 
Some imaging biomarkers, such as sub-retinal fluid and 
hyperreflective intraretinal foci, have proved to be highly 
related to visual acuity and retinal sensitivity as well as to 
the morphologic and functional response to therapy, not only 
in DME but also in other retinal diseases, such as age-related 
macular degeneration and retinal vein occlusion [121, 123]. 
However, the main limitation of these imaging biomarkers 
is their indirect nature, allowing only for a statistics- and 
experience-related interpretation. Therefore, the possibil-
ity to correlate imaging and biochemical biomarkers may 
provide a direct link between a specific imaging biomarker 
to a pathophysiologic mechanism, identified by a proteomic 
and metabolomic profile. Noma et al., for example, detected 
a higher concentration of IL-6 and VEGF in aqueous and 
vitreous samples of patients affected by retinal vein occlu-
sion with serous retinal detachment, directly correlating the 
increased vascular permeability related to these factors to 
the presence of the imaging biomarker “sub-retinal fluid” 
[124]. In the future, the possibility to correlate imaging and 
biochemical biomarkers will overcome the current limita-
tions of imaging, providing biochemically proven structural 
biomarkers able to easily and non-invasively detect specific 
pathophysiologic retinal processes. Changes in intraocular 
fluids proteomics and metabolomics have already proved to 
correlate with the prognosis of eye disorders [16]. The appli-
cation of liquid biopsy to the structural retinal analysis may 
allow a broad application to a wide range of settings, from 
diagnosis (including screening) prognosis and the prediction 
of response or resistance to treatments. Moreover, it would 
allow a personalized approach to each patient, both in terms 
of therapeutic choice and follow-up timing.

Conclusions

The future management of chronic eye disorders will be 
strictly linked to the concept of precision medicine, requir-
ing a tailored approach to patients, according to their pheno-
typic characteristics. In this perspective, sampling directly 
the eye, by means of liquid biopsy, including either aque-
ous or vitreous sampling, allows to obtain a direct bio-
logic sample to study, in vivo, the presence and changes of 
specific molecules concentration. This approach seems to 
overcome the limitations of imaging biomarkers, even the 
most advanced, such as OCT angiography. This is due to the 
possibility, offered by liquid biopsy, to analyze a specimen 
obtained in vivo, which may clarify which process is respon-
sible for a specific phenotype. Therefore, the liquid biopsy 
approach, as already proven in other medical specialties, 
represents, to date, the most reasonable and accurate way 
to offer, also in ophthalmology, a completely new insight in 
retinal disorders, as DR.

DR still represents one of the retinal disorders with the 
most severe socio-economic impact, increasing even in the 
young population. Considering the relevance of this disease, 
it’s not surprising that it represents the main field of applica-
tion of liquid biopsy in ophthalmology. In fact, liquid biopsy 
has the potential to dramatically modify the knowledge of 
this retinal disorder and also provide new and innovative 
hypothesis for treatment strategies, opening the way to an 
individualized approach, based on the detection of specific 
biomarkers related to biochemically proven pathogenetic ret-
inal processes. In the future, liquid biopsy may be extended 
to study other retinal disorders, such as age-related macular 
degeneration and those retinal diseases whose pathophysiol-
ogy remains mostly unknown.
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