Skip to main content

Advertisement

Log in

Exudative non-neovascular age-related macular degeneration

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To describe the clinical and multimodal imaging (MMI) features of age-related macular degeneration (AMD) eyes presenting with intraretinal exudation and no evidence of neovascularization or structural alterations of native retinal vessels.

Methods

This was a retrospective review of the MMI and electronic health records for 3 consecutive patients presenting with unilateral exudative non-neovascular age-related macular degeneration. MMI included confocal color fundus photography (CFP), fundus autofluorescence (FAF), fluorescein angiography (FA), spectral domain optical coherence tomography (SD-OCT), swept-source optical coherence tomography angiography (SS-OCTA), and spectral domain optical coherence tomography angiography (SD-OCTA). Dense B-scan OCTA (DB-OCTA) patterns and implemented image post-processing were used to improve spatial resolution in the OCTA analysis and remove projection artifacts.

Results

Three eyes of 3 patients (1 male and 2 females, ages 72–87) developed intraretinal fluid (IRF) producing retinal edema during regular follow-up for non-neovascular AMD. FA, SS-OCTA, and DB-OCTA demonstrated no evidence of macular neovascularization or discrete retinal vascular abnormalities that could explain the IRF accumulation. Two eyes received intravitreal anti-VEGF therapy and demonstrated prompt resolution of IRF with periodic recurrences over time.

Conclusion

Exudative non-neovascular AMD is a novel clinical phenotype characterized by the presence of non-neovascular intraretinal exudation producing macular edema. Differentiating this condition from other manifestations of AMD requires appropriate use of MMI. Further study is needed to assess the clinical impact and optimal management of exudative non-neovascular AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Daruich A, Matet A, Moulin A et al (2018) Mechanisms of macular edema: beyond the surface. Prog Retin Eye Res 63:20–68. https://doi.org/10.1016/j.preteyeres.2017.10.006

    Article  PubMed  Google Scholar 

  2. Schmidt-Erfurth U, Waldstein SM (2016) A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Prog Retin Eye Res 50:1–24. https://doi.org/10.1016/j.preteyeres.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  3. Spaide RF, Jaffe GJ, Sarraf D et al (2020) Consensus nomenclature for reporting neovascular age-related macular degeneration data: consensus on neovascular age-related macular degeneration nomenclature study group. Ophthalmology 127:616–636. https://doi.org/10.1016/j.ophtha.2019.11.004

    Article  PubMed  Google Scholar 

  4. Nagiel A, Sarraf D, Sadda SR et al (2015) Type 3 neovascularization: evolution, association with pigment epithelial detachment, and treatment response as revealed by spectral domain optical coherence tomography. Retina (Philadelphia, PA) 35:638–647. https://doi.org/10.1097/IAE.0000000000000488

    Article  Google Scholar 

  5. Querques G, Kuhn D, Massamba N et al (2011) Perifoveal exudative vascular anomalous complex. J Fr Ophtalmol 34:559.e1–559.e4. https://doi.org/10.1016/j.jfo.2011.03.002

    Article  CAS  Google Scholar 

  6. Sacconi R, Freund KB, Yannuzzi LA et al (2017) The expanded spectrum of perifoveal exudative vascular anomalous complex. Am J Ophthalmol 184:137–146. https://doi.org/10.1016/j.ajo.2017.10.009

    Article  PubMed  Google Scholar 

  7. Dansingani KK, Naysan J, Freund KB (2015) En face OCT angiography demonstrates flow in early type 3 neovascularization (retinal angiomatous proliferation). Eye (Lond) 29:703–706. https://doi.org/10.1038/eye.2015.27

    Article  CAS  Google Scholar 

  8. Miere A, Querques G, Semoun O et al (2015) Optical coherence tomography angiography in early type 3 neovascularization. Retina (Philadelphia, Pa) 35:2236–2241. https://doi.org/10.1097/IAE.0000000000000834

    Article  Google Scholar 

  9. Miere A, Querques G, Semoun O et al (2017) Optical coherence tomography angiography changes in early type 3 neovascularization after anti-vascular endothelial growth factor treatment. Retina (Philadelphia, PA) 37:1873–1879. https://doi.org/10.1097/IAE.0000000000001447

    Article  CAS  Google Scholar 

  10. Sacconi R, Sarraf D, Garrity S et al (2018) Nascent type 3 neovascularization in age-related macular degeneration. Ophthalmol Retina 2:1097–1106. https://doi.org/10.1016/j.oret.2018.04.016

    Article  PubMed  Google Scholar 

  11. Spaide RF (2019) New proposal for the pathophysiology of type 3 neovascularization as based on multimodal imaging findings. Retina (Philadelphia, PA) 39:1451–1464. https://doi.org/10.1097/IAE.0000000000002412

    Article  CAS  Google Scholar 

  12. Bacci T, Freund KB (2020) High-resolution OCT angiography features of an early type 3 neovascularization. Ophthalmology 127:887. https://doi.org/10.1016/j.ophtha.2020.03.036

    Article  PubMed  Google Scholar 

  13. Breazzano MP, Bacci T, Curcio CA, Freund KB (2020) Novel multimodal imaging and volume rendering of type 3 macular neovascularization. Retina (Philadelphia, Pa). https://doi.org/10.1097/IAE.0000000000002892

  14. Sacconi R, Borrelli E, Sadda S et al (2020) Nonexudative perifoveal vascular anomalous complex: the subclinical stage of perifoveal exudative vascular anomalous complex? Am J Ophthalmol 218:59–67. https://doi.org/10.1016/j.ajo.2020.04.025

    Article  PubMed  Google Scholar 

  15. Freund KB, Gattoussi S, Leong BCS (2018) Dense B-scan optical coherence tomography angiography. Am J Ophthalmol 190:78–88. https://doi.org/10.1016/j.ajo.2018.03.029

    Article  PubMed  Google Scholar 

  16. Cohen SY, Dubois L, Nghiem-Buffet S et al (2010) Retinal pseudocysts in age-related geographic atrophy. Am J Ophthalmol 150:211–217.e1. https://doi.org/10.1016/j.ajo.2010.02.019

    Article  PubMed  Google Scholar 

  17. Abegg M, Dysli M, Wolf S et al (2014) Microcystic macular edema: retrograde maculopathy caused by optic neuropathy. Ophthalmology 121:142–149. https://doi.org/10.1016/j.ophtha.2013.08.045

    Article  PubMed  Google Scholar 

  18. Gelfand JM, Nolan R, Schwartz DM et al (2012) Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain 135:1786–1793. https://doi.org/10.1093/brain/aws098

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hilely A, Au A, Freund KB et al (2020) Non-neovascular age-related macular degeneration with subretinal fluid. Br J Ophthalmol bjophthalmol-2020-317326. https://doi.org/10.1136/bjophthalmol-2020-317326

  20. Linsenmeier RA, Zhang HF (2017) Retinal oxygen: from animals to humans. Prog Retin Eye Res 58:115–151. https://doi.org/10.1016/j.preteyeres.2017.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Borrelli E, Shi Y, Uji A et al (2018) Topographic analysis of the choriocapillaris in intermediate age-related macular degeneration. Am J Ophthalmol 196:34–43. https://doi.org/10.1016/j.ajo.2018.08.014

    Article  PubMed  Google Scholar 

  22. Jackson TL, Danis RP, Goldbaum M et al (2014) Retinal vascular abnormalities in neovascular age-related macular degeneration. Retina (Philadelphia, PA) 34:568–575. https://doi.org/10.1097/IAE.0b013e3182a487be

    Article  Google Scholar 

  23. Spaide RF, Armstrong D, Browne R (2003) Continuing medical education review: choroidal neovascularization in age-related macular degeneration--what is the cause? Retina (Philadelphia, PA) 23:595–614. https://doi.org/10.1097/00006982-200310000-00001

    Article  Google Scholar 

  24. Scharf J, Freund KB, Sadda S, Sarraf D (2020) Paracentral acute middle maculopathy and the organization of the retinal capillary plexuses. Prog Retin Eye Res 100884. https://doi.org/10.1016/j.preteyeres.2020.100884

  25. Fine BS, Zimmerman LE (1962) Muller’s cells and the “middle limiting membrane” of the human retina. An electron microscopic study. Investig Ophthalmol 1:304–326

    CAS  Google Scholar 

  26. Tolentino MJ, Miller JW, Gragoudas ES et al (1996) Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 103:1820–1828. https://doi.org/10.1016/s0161-6420(96)30420-x

    Article  CAS  PubMed  Google Scholar 

  27. Querques G, Querques L, Forte R et al (2013) Precursors of type 3 neovascularization: a multimodal imaging analysis. Retina (Philadelphia, PA) 33:1241–1248. https://doi.org/10.1097/IAE.0b013e31827b639e

    Article  Google Scholar 

  28. Dolz-Marco R, Balaratnasingam C, Messinger JD et al (2018) The border of macular atrophy in age-related macular degeneration: a clinicopathologic correlation. Am J Ophthalmol 193:166–177. https://doi.org/10.1016/j.ajo.2018.06.020

    Article  PubMed  Google Scholar 

  29. Li M, Huisingh C, Messinger J et al (2018) Histology of geographic atrophy secondary to age-related macular degeneration: a multilayer approach. Retina (Philadelphia, Pa) 38:1937–1953. https://doi.org/10.1097/IAE.0000000000002182

    Article  Google Scholar 

  30. Li M, Dolz-Marco R, Messinger JD et al (2018) Clinicopathologic correlation of anti-vascular endothelial growth factor-treated type 3 neovascularization in age-related macular degeneration. Ophthalmology 125:276–287. https://doi.org/10.1016/j.ophtha.2017.08.019

    Article  PubMed  Google Scholar 

  31. Eichler W, Yafai Y, Wiedemann P, Reichenbach A (2004) Angiogenesis-related factors derived from retinal glial (Müller) cells in hypoxia. Neuroreport 15:1633–1637. https://doi.org/10.1097/01.wnr.0000133071.00786.a4

    Article  CAS  PubMed  Google Scholar 

  32. Yafai Y, Lange J, Wiedemann P et al (2007) Pigment epithelium-derived factor acts as an opponent of growth-stimulatory factors in retinal glial-endothelial cell interactions. Glia 55:642–651. https://doi.org/10.1002/glia.20495

    Article  PubMed  Google Scholar 

  33. Ou K, Mertsch S, Theodoropoulou S et al (2019) Müller cells stabilize microvasculature through hypoxic preconditioning. Cell Physiol Biochem 52:668–680. https://doi.org/10.33594/000000047

    Article  CAS  PubMed  Google Scholar 

  34. Bringmann A, Wiedemann P (2012) Müller glial cells in retinal disease. Ophthalmologica 227:1–19. https://doi.org/10.1159/000328979

    Article  PubMed  Google Scholar 

  35. Querques G, Srour M, Massamba N et al (2013) Functional characterization and multimodal imaging of treatment-naive “quiescent” choroidal neovascularization. Invest Ophthalmol Vis Sci 54:6886–6892. https://doi.org/10.1167/iovs.13-11665

    Article  PubMed  Google Scholar 

  36. de Oliveira Dias JR, Zhang Q, Garcia JMB et al (2018) Natural history of subclinical neovascularization in nonexudative age-related macular degeneration using swept-source OCT angiography. Ophthalmology 125:255–266. https://doi.org/10.1016/j.ophtha.2017.08.030

    Article  PubMed  Google Scholar 

  37. Chen L, Messinger JD, Sloan KR et al (2020) Nonexudative macular neovascularization supporting outer retina in age-related macular degeneration: a clinicopathologic correlation. Ophthalmology 127:931–947. https://doi.org/10.1016/j.ophtha.2020.01.040

    Article  PubMed  Google Scholar 

Download references

Code availability

Not applicable.

Funding

This work was supported by The Macula Foundation Inc., New York, NY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bailey Freund.

Ethics declarations

Conflict of interest

K.B. Freund is a consultant for Heidelberg Engineering, Zeiss, Allergan, Regeneron, Bayer, and Novartis. He receives research support from Genentech/Roche. T. Bacci, J.O. Essilfie, and B.C.S. Leong have no disclosures.

Ethics approval

All procedures performed were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Disclaimer

The funders had no role in the study design, collection, analysis and interpretation of data, writing the report, or the decision to submit the report for publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacci, T., Essilfie, J.O., Leong, B.C.S. et al. Exudative non-neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 259, 1123–1134 (2021). https://doi.org/10.1007/s00417-020-05021-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-020-05021-y

Keywords

Navigation