Skip to main content

Advertisement

Log in

Carbon monoxide treatment reduces microglial activation in the ischemic rat retina

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Ischemia and reperfusion (I/R) injury damages retinal neurons. Retinal injury is accompanied by activation of microglia, which scavenge the dead or dying neurons, but increasing evidence now indicates that amoeboid-shaped microglia cells activated in the brain after ischemia have neurotoxic and damaging properties in their own right. A previous study showed that postconditioning with carbon monoxide (CO) protects retinal ganglion cells (RGCs) after I/R through anti-apoptotic and anti-inflammatory mechanisms. The present study was designed to investigate and quantify the activation of retinal microglia after I/R with and without CO postconditioning.

Methods

Adult Sprague–Dawley rats underwent retinal ischemia by increasing the ocular pressure to 120 mmHg for 1 h through a needle inserted into the anterior chamber. Reperfusion was induced by removing the needle. After I/R, one group of animals was kept in a CO (250 ppm) atmosphere for 1 h; the other group was kept in room air (Air). At 1, 2, 3, and 7 days after I/R, the eyes were enucleated and fixed. Intracardiac blood was analyzed for systemic effects of CO or I/R. Retinal cross sections were taken from the middle third of the eye and were stained with anti-Iba-1. Microglia cells were graded as amoeboid or ramified phenotypes according to morphologic criteria. Retinal thicknesses were determined.

Results

Evaluation of retinal tissue revealed a significant reduction of amoeboid microglia cells after I/R + CO when compared to the I/R + Air group. The peak number of amoeboid microglia was observed at day 2 post-I/R + Air. This rise was attenuated by CO postconditioning (815 versus 572 cells/mm2 for I/R + Air versus I/R + CO, respectively; p = 0.005). CO reduced and further postponed the peak in the numbers of amoeboid and ramified microglia cells in ischemic eyes and prevented microglial activation in the contralateral eyes. I/R-induced leucocytosis was inhibited by CO inhalation. The reduction of retinal thickness after I/R was more serious after Air inhalation when compared to the CO group.

Conclusions

Numerous activated microglia cells appear in the inner retina after I/R, and CO-treatment significantly attenuates this glial response. Antagonism of microglial activation may be a further neuroprotective effect of CO, apart from its direct anti-apoptotic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Biermann J, Grieshaber P, Goebel U, Martin G, Thanos S, Di Giovanni S, Lagreze WA (2010) Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. Invest Ophthalmol Vis Sci 51:526–534. doi:10.1167/iovs.09-3903

    Article  PubMed  Google Scholar 

  2. Guo X, Namekata K, Kimura A, Noro T, Azuchi Y, Semba K, Harada C, Yoshida H, Mitamura Y, Harada T (2015) Brimonidine suppresses loss of retinal neurons and visual function in a murine model of optic neuritis. Neurosci Lett 592:27–31. doi:10.1016/j.neulet.2015.02.059

    Article  CAS  PubMed  Google Scholar 

  3. Kimura A, Guo X, Noro T, Harada C, Tanaka K, Namekata K, Harada T (2015) Valproic acid prevents retinal degeneration in a murine model of normal tension glaucoma. Neurosci Lett 588:108–113. doi:10.1016/j.neulet.2014.12.054

    Article  CAS  PubMed  Google Scholar 

  4. Shen J, Wu Y, Xu JY, Zhang J, Sinclair SH, Yanoff M, Xu G, Li W, Xu GT ERK- and Akt-dependent neuroprotection by erythropoietin (EPO) against glyoxal-AGEs via modulation of Bcl-xL, Bax, and BAD. Invest Ophthalmol Vis Sci 51:35–46. doi:10.1167/iovs.09-3544

  5. Danesh-Meyer HV, Levin LA (2009) Neuroprotection: extrapolating from neurologic diseases to the eye. Am J Ophthalmol 148:186.e182–191.e182. doi:10.1016/j.ajo.2009.03.029

    Article  Google Scholar 

  6. Wilhelm B, Ludtke H, Wilhelm H (2006) Efficacy and tolerability of 0.2% brimonidine tartrate for the treatment of acute non-arteritic anterior ischemic optic neuropathy (NAION): a 3-month, double-masked, randomised, placebo-controlled trial. Graefes Arch Clin Exp Ophthalmol 244:551–558. doi:10.1007/s00417-005-0102-8

    Article  CAS  PubMed  Google Scholar 

  7. Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC (2015) Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res. doi:10.1016/j.preteyeres.2015.06.003

    PubMed  Google Scholar 

  8. Biermann J, Lagreze WA, Dimitriu C, Stoykow C, Goebel U (2010) Preconditioning with inhalative carbon monoxide protects rat retinal ganglion cells from ischemia/reperfusion injury. Invest Ophthalmol Vis Sci 51:3784–3791. doi:10.1167/iovs.09-4894

    Article  PubMed  Google Scholar 

  9. Jehle T, Wingert K, Dimitriu C, Meschede W, Lasseck J, Bach M, Lagreze WA (2008) Quantification of ischemic damage in the rat retina: a comparative study using evoked potentials, electroretinography, and histology. Invest Ophthalmol Vis Sci 49:1056–1064

    Article  PubMed  Google Scholar 

  10. Brown GC, Vilalta A (2015) How microglia kill neurons. Brain Res 1628:288–297. doi:10.1016/j.brainres.2015.08.031

    Article  CAS  PubMed  Google Scholar 

  11. Papageorgiou IE, Lewen A, Galow LV, Cesetti T, Scheffel J, Regen T, Hanisch UK, Kann O (2016) TLR4-activated microglia require IFN-gamma to induce severe neuronal dysfunction and death in situ. Proc Natl Acad Sci U S A 113:212–217. doi:10.1073/pnas.1513853113

    Article  CAS  PubMed  Google Scholar 

  12. Langmann T (2007) Microglia activation in retinal degeneration. J Leukoc Biol 81:1345–1351. doi:10.1189/jlb.0207114

    Article  CAS  PubMed  Google Scholar 

  13. Jonas RA, Yuan TF, Liang YX, Jonas JB, Tay DK, Ellis-Behnke RG (2012) The spider effect: morphological and orienting classification of microglia in response to stimuli in vivo. PLoS ONE 7:e30763. doi:10.1371/journal.pone.0030763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schallner N, Fuchs M, Schwer CI, Loop T, Buerkle H, Lagreze WA, van Oterendorp C, Biermann J, Goebel U (2012) Postconditioning with inhaled carbon monoxide counteracts apoptosis and neuroinflammation in the ischemic rat retina. PLoS ONE 7:e46479. doi:10.1371/journal.pone.0046479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ulbrich F, Schallner N, Coburn M, Loop T, Lagreze WA, Biermann J, Goebel U (2014) Argon inhalation attenuates retinal apoptosis after ischemia/reperfusion injury in a time- and dose-dependent manner in rats. PLoS ONE 9, e115984. doi:10.1371/journal.pone.0115984

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fischer D, Pavlidis M, Thanos S (2000) Cataractogenic lens injury prevents traumatic ganglion cell death and promotes axonal regeneration both in vivo and in culture. Invest Ophthalmol Vis Sci 41:3943–3954

    CAS  PubMed  Google Scholar 

  17. Gallego BI, Salazar JJ, de Hoz R, Rojas B, Ramirez AI, Salinas-Navarro M, Ortin-Martinez A, Valiente-Soriano FJ, Aviles-Trigueros M, Villegas-Perez MP, Vidal-Sanz M, Trivino A, Ramirez JM (2012) IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma. J Neuroinflammation 9:92. doi:10.1186/1742-2094-9-92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cen LP, Han M, Zhou L, Tan L, Liang JJ, Pang CP, Zhang M (2015) Bilateral retinal microglial response to unilateral optic nerve transection in rats. Neuroscience. doi:10.1016/j.neuroscience.2015.09.067

    Google Scholar 

  19. Liu S, Li ZW, Weinreb RN, Xu G, Lindsey JD, Ye C, Yung WH, Pang CP, Lam DS, Leung CK (2012) Tracking retinal microgliosis in models of retinal ganglion cell damage. Invest Ophthalmol Vis Sci 53:6254–6262. doi:10.1167/iovs.12-9450

    Article  PubMed  Google Scholar 

  20. Trost A, Motloch K, Bruckner D, Schroedl F, Bogner B, Kaser-Eichberger A, Runge C, Strohmaier C, Klein B, Aigner L, Reitsamer HA (2015) Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension. Exp Eye Res 136:59–71. doi:10.1016/j.exer.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  21. Motterlini R, Otterbein LE (2010) The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 9:728–743. doi:10.1038/nrd3228

    Article  CAS  PubMed  Google Scholar 

  22. Schmidt R, Ryan H, Hoetzel A (2012) Carbon monoxide--toxicity of low-dose application. Curr Pharm Biotechnol 13:837–850

    Article  CAS  PubMed  Google Scholar 

  23. Mayr FB, Spiel A, Leitner J, Marsik C, Germann P, Ullrich R, Wagner O, Jilma B (2005) Effects of carbon monoxide inhalation during experimental endotoxemia in humans. Am J Respir Crit Care Med 171:354–360. doi:10.1164/rccm.200404-446OC

    Article  PubMed  Google Scholar 

  24. Han Y, Yi W, Qin J, Zhao Y, Zhang J, Chang X (2015) Carbon monoxide offers neuroprotection from hippocampal cell damage induced by recurrent febrile seizures through the PERK-activated ER stress pathway. Neurosci Lett 585:126–131. doi:10.1016/j.neulet.2014.11.040

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Li Z, Shi X, Li W, Duan G, Li H, Yang X, Zhang C, Zou L (2014) Neuroprotection of up-regulated carbon monoxide by electrical acupuncture on perinatal hypoxic-ischemic brain damage in rats. Neurochem Res 39:1724–1732. doi:10.1007/s11064-014-1366-3

    Article  CAS  PubMed  Google Scholar 

  26. Wang B, Cao W, Biswal S, Dore S (2011) Carbon monoxide-activated Nrf2 pathway leads to protection against permanent focal cerebral ischemia. Stroke 42:2605–2610. doi:10.1161/STROKEAHA.110.607101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schallner N, Romao CC, Biermann J, Lagreze WA, Otterbein LE, Buerkle H, Loop T, Goebel U (2013) Carbon monoxide abrogates ischemic insult to neuronal cells via the soluble guanylate cyclase-cGMP pathway. PLoS ONE 8:e60672. doi:10.1371/journal.pone.0060672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69. doi:10.1038/nrn2038

    Article  CAS  PubMed  Google Scholar 

  29. Scheiblich H, Bicker G (2015) Regulation of microglial migration, phagocytosis, and neurite outgrowth by HO-1/CO signaling. Dev Neurobiol 75:854–876. doi:10.1002/dneu.22253

    Article  CAS  PubMed  Google Scholar 

  30. Schallner N, Pandit R, LeBlanc R 3rd, Thomas AJ, Ogilvy CS, Zuckerbraun BS, Gallo D, Otterbein LE, Hanafy KA (2015) Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1. J Clin Invest 125:2609–2625. doi:10.1172/JCI78443

    Article  PubMed  PubMed Central  Google Scholar 

  31. Baptiste DC, Powell KJ, Jollimore CA, Hamilton C, LeVatte TL, Archibald ML, Chauhan BC, Robertson GS, Kelly ME (2005) Effects of minocycline and tetracycline on retinal ganglion cell survival after axotomy. Neuroscience 134:575–582. doi:10.1016/j.neuroscience.2005.04.011

    Article  CAS  PubMed  Google Scholar 

  32. Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, Hubbard WC, Calkins DJ, Horner PJ, Vetter ML (2008) Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 49:1437–1446. doi:10.1167/iovs.07-1337

    Article  PubMed  Google Scholar 

  33. Roh M, Zhang Y, Murakami Y, Thanos A, Lee SC, Vavvas DG, Benowitz LI, Miller JW (2012) Etanercept, a widely used inhibitor of tumor necrosis factor-alpha (TNF-alpha), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS ONE 7, e40065. doi:10.1371/journal.pone.0040065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun C, Li XX, He XJ, Zhang Q, Tao Y (2013) Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion. Exp Eye Res 113:105–116. doi:10.1016/j.exer.2013.05.018

    Article  CAS  PubMed  Google Scholar 

  35. Wang K, Peng B, Lin B (2014) Fractalkine receptor regulates microglial neurotoxicity in an experimental mouse glaucoma model. Glia 62:1943–1954. doi:10.1002/glia.22715

    Article  PubMed  Google Scholar 

  36. Nakahira K, Choi AM (2015) Carbon monoxide in the treatment of sepsis. Am J Physiol Lung Cell Mol Physiol 309:L1387–L1393. doi:10.1152/ajplung.00311.2015

    Article  CAS  PubMed  Google Scholar 

  37. Wang P, Huang J, Li Y, Chang R, Wu H, Lin J, Huang Z (2015) Exogenous carbon monoxide decreases sepsis-induced acute kidney injury and inhibits NLRP3 inflammasome activation in rats. Int J Mol Sci 16:20595–20608. doi:10.3390/ijms160920595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ryter SW, Choi AM (2016) Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 167:7–34. doi:10.1016/j.trsl.2015.06.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Nils Schallner (Department of Anesthesiology and Intensive Care Medicine) for the training and introduction of Dr. Felix Ulbrich, and Sylvia Zeitler (University Eye Hospital Freiburg) for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Biermann.

Ethics declarations

Funding

This work was funded by the Deutsche Forschungsgemeinschaft (BI 1567/2-1, GO 2158/3-1). The sponsor had no role in the design or conduct of this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Animal experiments

All applicable international, national, and institutional guidelines for the care and use of animals were followed (Committee of Animal Care of the University of Freiburg, Permit Number: 35–9185.81/G-11/81).

Additional information

Felix Ulbrich and Ulrich Goebel contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulbrich, F., Goebel, U., Böhringer, D. et al. Carbon monoxide treatment reduces microglial activation in the ischemic rat retina. Graefes Arch Clin Exp Ophthalmol 254, 1967–1976 (2016). https://doi.org/10.1007/s00417-016-3435-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3435-6

Keywords

Navigation