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Abstract
Background Age-related macular degeneration (AMD) is an
ocular disease affecting macula — the central part of the
retina, resulting in the degeneration of photoreceptors and
retinal epithelium and causing severe central vision impair-
ment. The pathophysiology of the disease is not completely
known, but a significant role is attributed to genetic factors.
The contribution of oxidative stress in AMD as a trigger of
the degenerative process is well-established. Iron ions may
act as a source of reactive oxygen species; therefore, main-
taining iron homeostasis is important for redox balance in
the organism. Diversity in iron homeostasis genes may
counterpart in unbalanced redox state, and thus be involved
in AMD pathophysiology.
Methods In this work, we searched for an association be-
tween some single nucleotide polymorphisms in the divalent
metal transporter 1 (DMT1) gene intronic IVS4+44C>A

(rs224589) and 3’-UTR c.2044T>C (rs2285230) and envi-
ronmental factors and AMD. Genotyping was performed
using the PCR-RFLP method. DNA was obtained from
436 AMD patients and 168 controls.
Results We did not find any association between the geno-
types of the two polymorphisms and AMD occurrence.
However, we observed that AMD patients living in a rural
environment and having the CC genotype of the IVS4
+44C>A polymorphism had an increased risk of AMD,
while individuals with the CA genotype or the A allele
had a decreased risk of the disease. Moreover, in male
AMD patients the C allele increased the risk of the disease,
while the AA genotype decreased it.
Conclusions These results suggest that the VS4+44C>A
polymorphism of the DMT1 gene may interact with place
of living and gender to modulate the risk of AMD.
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Introduction

Age-related macular degeneration (AMD) is the primary
cause of irreversible vision loss among the elderly, in devel-
oped countries [1]. AMD is ex definitio an age-related
disease, and age is its strongest risk factor. It is estimated
that about 30% of individuals aged 75 or more are diag-
nosed with AMD [2], and this proportion is predicted to be
constantly increasing due to growing live expectancy [3].
Apart from age, in some populations women are reported to
be at a higher risk of AMD [4]. Caucasian ethnicity, as well
as bright iris color, seems to predispose to AMD [5, 6].
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However, the impact of sunlight exposure on AMD devel-
opment has not been unambiguously established [7, 8].
Tobacco smoking is frequently reported to be an important
AMD risk factor [6, 9, 10]. Cardiovascular diseases and
hypertension [11], obesity [12, 13], and high-fat diet [14]
are proved to enhance the risk of AMD, while the associa-
tion of the disease with cataract and cataract surgery needs
further research [15, 16].

AMD is a progressive disease, developing in its late stage
to one of two clinically distinct forms— dry or wet [17]. The
dry form (geographic atrophy) is characterized by drusen
formation and the presence of retinal depigmentation paths
as signs of the degeneration of photoreceptors together with
retinal epithelium [18]. The less prevalent wet form of AMD
(exudative, neovascular) is associated with a majority of total
blindness incidents. The progress of the wet form of the
disease is faster, with apparent choroidal neovascularization
leading to leakages and bleeding into the retina [18, 19]. A
local inflammatory process appears, and a central disciform
scar is formed. Photoreceptors and retinal pigment epithelium
degenerate, leading to the loss of central vision [19].

The etiology of AMD is complex, and the mechanism of
retinal cell death has not been fully understood. The eye is
constantly exposed to short-wavelength light [20]. That
causes a high rate of reactive oxygen species (ROS) gener-
ation within the eye, and this effect is augmented by high
oxygen pressure in the retina [21], high rate of catabolic
reactions in the inner segments of photoreceptors, and the
presence of photoreactive compounds and polyunsaturated
fatty acids (PUFA) in the retinal tissue [22–24]. Inflamma-
tory processes associated with AMD may be an additional
source of ROS [25].

The level of oxidative imbalance in the cell may exceed its
oxidative defense capacity. Then it can cause oxidative dam-
age to different cellular components including DNA, promot-
ing apoptosis [26, 27]. It is proved that iron ions may generate
free radicals in vivo by Fenton reaction, and that a number of
disorders developes through the iron-dependent oxidative
events [28, 29]. Severe iron overload leads to organ failure,
and may cause neurodegeneration [28, 29].

Genetic factors are considered to play an important role
in AMD, as has been shown in a number of family and twin
studies [30]. Several genetic risk markers have been identi-
fied in this disease [23, 31]. It is thought that strong geno-
type–environment interaction appears in the AMD
incidence [32]. In the present report, we show the interplay
between the IVS4+44C>A polymorphism in the DMT1
gene and environmental factors in the AMD occurrence.
The DMT1 gene (also known as SLC11A2, NRAMP2)
encodes transmembrane transporter of iron and other
divalent ions. It plays an important role in iron uptake,
and participates in keeping iron homeostasis in the
organism [33].

Materials and methods

Clinical subject

This study included a group of 436 individuals — 290 with
the wet form of AMD, 148 with the dry form of the disease,
and 168 controls. Medical history was obtained from all
subjects, and no one reported any genetic disease. The
patients underwent ophthalmic examination, including
best-corrected visual acuity, intraocular pressure, slit-lamp
examination, and fundus examination, performed with a slit
lamp equipped with either non-contact or contact fundus
lenses. The criteria for enrolling patients into the study
groups were based primarily on clinical usefulness; the dry
form group corresponded to AREDS categories 2, 3 and 4
(geographic atrophy subtype) and the wet to AREDS cate-
gory 4 (choroidal neovascularisation or neovascular macul-
opathy subtype) [34]. Diagnosis of AMD was confirmed by
optical coherence tomography (OCT) and, in some cases,
by fluorescein angiography (FA) and indocyanin green
angiography (ICG). OCT evaluated retinal thickness, the
presence of RPE atrophy, drusen, or subretinal fluid and
intraretinal edema; angiography assessed the anatomical
status of the retinal vessels, the presence of choroidal
neovascularization, and leakage. The OCT examinations
were performed with Stratus OCT model 3000, software
version 4.0 (Oberkochen, Germany). The FA and ICG
examinations were completed with a Topcon TRC-50I
IX fundus camera equipped with the digital Image Net
image system, version 2.14 (Topcon, Tokyo, Japan). A
structured questionnaire was used to get information from
study subjects about lifestyle habits and family/personal
history of AMD. The genetic analyses did not interfere
with diagnostic or therapeutic procedures for the subjects.
The Bioethics Committee of the Medical University of
Warsaw, Poland approved the study, and each patient gave
written informed consent.

DNA isolation

The sample of whole venous blood was collected from
every subject to EDTA-containing tubes. DNAwas isolated
from each sample using AxyPrep Blood Genomic DNA
Miniprep kit (Axygen Biosciences, San Francisco, CA,
USA) and stored deep frozen (−20°C) until use.

Genotyping

PCR reaction

Each reaction tube contained 10 ng of genomic DNA, 0.75U
Taq Polymerase (Biotools, Madrid, Spain), 1 × reaction
buffer, 0.5 mM dNTP, 1.5 mM MgCl2 and 0.25 μM of each
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primer (Sigma-Aldrich, St. Louis, MO, USA). The sequence
of primers for the IVS4+44C>A polymorphism was as in
reference [35]. The sequences of primers, and length of PCR
and restriction products for both polymorphisms, are given
in Table 1. PCR was run on a Bio-Rad C1000TM thermo-
cycler (BIO-RAD Laboratories, Hercules, CA, USA) Ther-
mal cycling conditions for the IVS4+44C>A polymorphism
were: initial denaturation step at at 95°C for 3 min, 34 cycles
of denaturation at 95°C for 30 s, annealing at 60°C for 30 s
and amplification at 72°C for 1 min; final extension at 72°C
for 5 min. For the c.2044T>C polymorphism, these condi-
tions were: initial denaturation step at 95°C for 5 min, 33
cycles of denaturation at 95°C for 30 s, annealing at 62°C
for 30 s and amplification at 72°C for 1 min; final extension
at 72°C for 5 min.

Enzyme reactions

Amplified DNA fragment containing IVS4+44C/A site was
incubated with 1.5 U of MnlI restriction enzyme (AKOR
Laboratories, Gdansk, Poland) for 4 h at 37°C, while fragment
containing the c.2044T>C site was incubated with 1.5U of
RsaI restrictase (Fermentas, Hanover, MD,USA) for 2.5 h in
37°C. The length of digestion products is shown in Table 1.

After digestion samples were separated on 10% poly-
acrylamide gel, electrophoresis was run at 5 V/cm in BLUE-
STAR apparatus (DNA-Gdansk, Gdynia, Poland) in Tris-
borate–EDTA buffer. ΦX-174 DNA/BsuRI (HaeIII) DNA
ladder was utilized as a mass marker. After separation, gels
were stained with ethidium bromide (0.5 μg/ml) and docu-
mented by the digital imaging system InGenius Bio Imaging
(Syngene, Cambridge, UK). Representative gels for geno-
typing the IVS4+44C/A and c.2044T>C polymorphism are
shown in Figs. 1 and 2 respectively.

Data analysis

The allelic frequencies were calculated by gene counting, and
genotypes were scored. The significance of the differences
between distributions of genotypes and alleles was tested using
the χ2 analysis. Unconditional logistic regression analysis was
performed to assess the association between the genotypes of
the polymorphisms and AMD incidence. The genotype-
associated risk was expressed by crude odds ratio with 95%

Table 1 Sequences of primers and lengths of PCR and restriction
products

Genotype/allele Primer sequences and DNA fragments after
digestion [bp]

IVS4+44 F: 5′ GACACATGCAATATCTGACATTG 3′

[352 bp]a R: 5′ AGGCTACTATCCAACATGCAG 3′

CC 183, 100, 35, 34

CA 217, 183, 100, 35, 34

AA 217, 100, 35

Genotype/allele Primer sequences and DNA fragments after
digestion [bp]

c.2044T>C F: 5′ AAATTTCTCAGCCTTTAAAAATCC3′

[231 bp]a R: 5′ TTGAAAAGCTGACATTTGCTG 3′

TT 231

TC 231, 145, 86

CC 145, 86

F — forward primer, R — reverse primer, a) PCR product length

Fig. 1 The frequent gel from the IVS4+44C>A polymorphism analy-
sis. The first line (M) is a DNA ladder. Two non-specific bands were
visible on all gels from IVS4+44C>A site analysis

Fig. 2 The frequent gel from the c.2044T>C polymorphism analysis.
The first line (M) is a DNA ladder

Table 2 Association of AMD with age, sex, tobacco smoking, AMD
in family, BMI, and living environment

Risk Factor OR (95% CI)1

Age (for +1 year) 1.04 (1.02–1.06); p<0.0012

Sex (for females) 0.68 (0.4–1.02)

Tobacco smoking (never vs ever) 0.82 (0.55–1.23)

AMD among 1st-degree relatives 10.81 (3.31–35.36); p<0.0012

Body Mass Index (for +1 BMI unit) 0.97 (0.92–1.02)

Environment (for countryside) 0.74 (0.43–1.28)

1 Odds ratio with 95% confidence interval, 2 Chi-square test
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confidence intervals and the p value. Odds ratios were then
adjusted for possible interfering factors. To verify a potential
gene–environment interaction, the patients and controls were
stratified depending on age, sex, living environment (rural or
urban), smoking status and body mass index (BMI). Multiple
unconditioned logistic regression analyses were run to test the
association of genotypes and environmental and social factors
with AMD occurrence. Statistical analysis was performed
using the Statistica 9.0 package (Statsoft, Tulsa, OK, USA).

Results

The frequencies of genotypes in the groups did not differ
significantly from Hardy-Weinberg equilibrium — p>0.05

for each group. The patient characteristics contained infor-
mation about environmental and social factors having pos-
sible impact on AMD incidence. The analysis of the
association between potential risk factors — age, sex, in-
habitation, smoking habit, and Body Mass Index and AMD
independently from genotypes was performed (Table 2). We
found no association of sex, environment, BMI, and tobacco
smoking with AMD. We observed a significant association
of AMD with age (OR 1.04; 95% CI 1.02–1.06; p<0.001;
for every additional year) and the occurrence of the disease
among 1st-degree relatives (OR 10.81; 95% CI 3.31–35.36;
p<0.001). The next step was to test the association between
the genotypes of both polymorphisms and AMD. No asso-
ciation was found between the risk of AMD and the geno-
types of that polymorphism in the group of all AMD

Table 3 Distribution of genotypes, frequency of alleles of the IVS4+44C>A and c.2044T>C polymorphism of the DMT1 gene, and odds ratios
(OR) with 95% confidence intervals (95% CI) in age-related macular degeneration and controls

Genotype/allele Control (158) AMD (381) A OR (95% CI) B ORadjusted (95% CI)
IVS4+44C>A N (%) N (%)

CC 109 (0.69) 262 (0.69) 0.99 (0.66–1.48) 1.43 (0.79–2.60)

CA 46 (0.29) 109 (0.29) 0.98 (65–1.47) 0.76 (0.41–1.38)

AA 3 (0.02) 10 (0.03) 1.39 (0.38–51.3) 0.38 (0.06–2.51)

C 264 (0.84) 633 (0.83) 0.97 (0.68–1.38) 2.63 (0.40–17.43)

A 52 (0.16) 129 (0.17) 1.03 (0.73–1.47) 0.73 (0.41–1.32)

Genotype/allele Control (168) AMD (436) A OR (95% CI) B ORadjusted (95% CI)
c.2044T>C N (%) N (%)

TT 127 (0.76) 320 (0.73) 0.86 (0.59–1.34) 1.23 (0.65–2.35)

TC 39 (0.23) 108 (0.25) 1.09 (0.72–1.66) 0.79 (0.41–1.53)

CC 2 (0.01) 8 (0.02) 1.55 (0.33–7.38) 1.75 (0.19–15.86)

T 293 (0.87) 748 (0.86) 0.86 (0.59–1.26) 0.87 (0.09–8.37)

C 41 (0.12) 122 (0.14) 1.17 (0.80–1.70) 0.77 (0.40–1.47)

ACrude odds ratio with 95% confidence interval; B Odds ratio adjusted for age, sex, and environment of living

Table 4 Distribution of geno-
types, frequency of alleles of the
IVS4+44C>A and c.2044T>C
polymorphism of the DMT1
gene, and odds ratios (OR) with
95% confidence intervals (95%
CI) in wet form of age-related
macular degeneration and
controls

A Crude odds ratio with 95%
confidence interval; B Odds ratio
adjusted for age, sex and envi-
ronment of living

Genotype/allele Control (158) Wet AMD (233) A OR (95% CI) B ORadjusted (95% CI)
IVS4+44C>A N (%) N (%)

CC 109 (0.69) 163 (0.70) 1.13 (0.72–1.76) 1.57 (0.79–3.12)

CA 46 (0.29) 65 (0.28) 0.94 (0.60–1.47) 0.73 (0.37–1.45)

AA 3 (0.02) 5 (0.02) 0.66 (0.16–2.80) 0.16 (0.01–1.95)

C 264 (0.84) 391 (0.84) 1.03 (0.70–1.51) 6.29 (0.51–77.15)

A 52 (0.16) 75 (0.16) 0.97 (0.66–1.43) 0.69 (0.35–1.36)

Genotype/allele Control (168) Wet AMD (290) A OR (95% CI) B ORadjusted (95% CI)
c.2044T>C N (%) N (%)

TT 127 (0.76) 217 (0.75) 0.96 (0.62–1.49) 1.30 (0.62–2.70)

TC 39 (0.23) 70 (0.24) 1.05 (0.67–1.65) 0.82 (0.39–1.71)

CC 2 (0.01) 3 (0.01) 0.87 (0.14–5.25) 1.23 (0.10–15.21)

T 293 (0.87) 504 (0.87) 0.93 (0.62–1.39) 2.62 (0.15–45.54)

C 41 (0.12) 76 (0.13) 1.08 (0.72–1.62) 0.70 (0.33–1.47)
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patients (dry and wet forms) (Table 3.). Similarly, neither
polymorphism correlated with the wet (Table 4) or dry
(Table 5) forms of AMD. Then, the frequency of the com-
plex genotypes of both polymorphic sites were counted
(Table 6.). We found no association between these complex
genotypes and AMD. Then, the patients were classified
depending on potential risk factors, and tested separately.
We found no associations in the case of the c.2044T>C
polymorphisms. We did not observe any interaction of gen-
otypes with age, sex, BMI, or tobacco smoking in AMD
patients (data not shown). However, we found that the CC
genotype of the IVS4+44C>A polymorphism was positive-
ly correlated with AMD (OR 3.50; 95% CI 1.19–10.31; p<
0.05), and the CA genotype and the A allele was inversely
correlated with AMD (OR 0.29; 95% CI 0.10–0.84; p<
0.05) in the group of rural inhabitants (Table 7). No corre-
lation was found in the group of industrial inhabitants. The
AA allele of the IVS4+44C>A polymorphism was negative-
ly correlated with AMD (OR 0.11; 95% CI 0.01–0.98; p<
0.05), while the C allele had a strong positive linkage with
AMD among males (OR 9.56; 95% CI 1.02–89.99; p<0.05)
(Table 8).

Discussion

Age-related macular degeneration is an important health
problem in developed countries. A constantly growing per-
centage of affected individuals and the estimated tendency
that it will rise over the next years is an argument confirm-
ing the urgency of revealing the nature of AMD. That
includes searching for genetic markers of this disease, since
it is established that AMD have features of inherited disease
[30–32]. Several genetic polymorphisms significantly af-
fecting AMD has been identified. These include polymor-
phisms in the CFH, CFB, C2, ERCC6, HTRA, VEGF and
other genes [36]. In the present study, we analyzed poly-
morphisms in the divalent metal transporter 1 (DMT1) gene
and their association with AMD risk. Iron homeostasis is
crucial for proper functioning of the organism, and while
iron deficiency leads to anemia, its excess may cause severe
symptoms. In a number of cases, iron overload leads to
heart, liver or brain damage [37, 38]. It is particularly visible
in hereditary haemochromatosis — genetic defects in one of
the iron homeostasis genes, associated with iron accumula-
tion in the organism [39]. Moreover, the elevated iron level

Table 5 Distribution of geno-
types, frequency of alleles of the
IVS4+44C>A and c.2044T>C
polymorphism of the DMT1
gene, and odds ratios (OR) with
95% confidence intervals (95%
CI) in dry form of age-related
macular degeneration and
controls

A Crude odds ratio with 95%
confidence interval; B Odds ratio
adjusted for age, sex and envi-
ronment of living

Genotype/allele Control (158) Dry AMD (148) A OR (95% CI) B ORadjusted (95% CI)
IVS4+44C>A N (%) N (%)

CC 109 (0.69) 99 (0.67) 0.91 (0.56–1.47) 1.27 (0.62–2.60)

CA 46 (0.29) 44 (0.30) 1.03 (0.63–1.68) 0.82 (0.40–1.69)

AA 3 (0.02) 5 (0.03) 1.81 (0.42–7.70) 0.65 (0.08–5.19)

C 264 (0.84) 242 (0.82) 0.88 (0.58–1.34) 1.54 (0.19–12.28)

A 52 (0.16) 54 (0.18) 1.13 (0.75–1.72) 0.79 (0.38–1.61)

Genotype/allele Control (168) Dry AMD (146) A OR (95% CI) B ORadjusted (95% CI)
c.2044T>C N (%) N (%)

TT 127 (0.76) 103 (0.71) 0.77 (0.47 - 1.28) 1.14 (0.53–2.48)

TC 39 (0.23) 38 (0.26) 1.16 (0.70 - 1.95) 0.78 (0.35–1.73)

CC 2 (0.01) 5 (0.03) 2.94 (0.56 - 15.40) 2.31 (0.22–24 .03)

T 293 (0.87) 244 (0.84) 0.71 (0.45 - 1.12) 0.43 (0.04–4.52)

C 41 (0.12) 48 (0.16) 1.41 (0.90 - 2.21) 0.88 (0.40–1.90)

Table 6 Distribution of com-
bined genotypes of the IVS4
+44C>A and c.2044T>C poly-
morphism of the DMT1 gene
and odds ratios (OR) with 95%
confidence intervals (95% CI) in
age-related macular degenera-
tion and controls

A Crude odds ratio with 95%
confidence interval; B Odds ratio
adjusted for age. sex and envi-
ronment of living

Genotype Control (158) AMD (377) A OR (95% CI) B ORadjusted (95% CI)
IVS4+44C>A /c.2044T>C N (%) N (%)

CC/TT 107 (0.68) 249 (0.66) 0.93 (0.62–1.38) 1.33 (0.74–2.38)

CC/TC 2 (0.01) 8 (0.02) 1.69 (0.36–8.05) 2.19 (0.19–25.36)

CC/CC 0 (0) 1 (0) – –

CA/TT 12 (0.08) 25 (0.07) 0.86 (0.42–1.77) 0.73 (0.28–1.96)

CA/TC 34 (0.22) 84 (0.22) 1.05 (0.67–1.64) 0.81 (0.41–1.59)

CA/CC 0 (0) 0 (0) – –

AA/TT 0 (0) 0 (0) – –

AA/TC 1 (0.01) 4 (0.01) 1.68 (0.19–15.18) –

AA/CC 2 (0.01) 6 (0.02) 1.26 (0.25–6.32) 0.91 (0.09–9.32)
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may stimulate cancer transformation [40]. Many age-related
diseases may be connected with an elevated iron level
associated with aging [41, 42]. The mechanism of iron-
related harmful effects in the organism involves the action
of free radicals. Free divalent iron ions participate in the
Fenton reaction, producing highly reactive hydroxyl radi-
cals, which may damage cellular components, including
DNA, and impair DNA repair [43]. An elevated level of
chelatable iron ions has been observed in maculas derived

post mortem from AMD patients [44]. Mice lacking key
genes of iron homeostasis – ceruloplasmin, hephaestin and
hepcidin — developed retinal degeneration with features of
AMD [45, 46]. Similarly, the case of a patient with a defect
in the ceruloplasmin gene has been reported. The patient
suffered from AMD, and an increased iron content in the
macula of the patient was shown [47]. It was also shown, in
a mouse model of AMD and RPE cell line, that iron chela-
tion protected from AMD development [45, 48].

Table 7 Distribution of genotypes. frequency of alleles of the IVS4+44C>A and c.2044T>C polymorphism of the DMT1 gene, and odds ratios
(OR) with 95% confidence intervals (95% CI) in age-related macular degeneration and controls among urban and countryside ancestors

Urban district Countryside

Genotype/allele Control (55) Dry AMD (113) A OR (95% CI) Control (33) Dry AMD (50) A OR (95% CI)
IVS4+44C>A N (%) N (%) N (%) N (%)

CC 40 (0.73) 77 (0.68) 0.94 (0.45–1.99) 20 (0.61) 40 (0.80) 3.50 (1.19–10.31) *

CA 13 (0.24) 33 (0.29) 1.24 (0.58–2.68) 13 (0.39) 10 (0.20) 0.29 (0.10–0.84) *

AA 2 (0.04) 3 (0.03) 0.31 (0.04–2.18) 0 (0) 0 (0) –

C 93 (0.85) 187 (0.83) 3.25 (0.46–23.04) 53 (0.80) 90 (0.90) –

A 17 (0.15) 39 (0.17) 1.14 (0.54–2.39) 13 (0.20) 10 (0.10) 0.29 (0.10–0.84) *

Genotype/allele Control (56) Dry AMD (113) A OR (95% CI) Control (33) Dry AMD (50) A OR (95% CI)
c.2044T>C N (%) N (%) N (%) N (%)

TT 45 (0.80) 82 (0.73) 0.789 (0.35–1.78) 23 (0.70) 42 (0.84) 3.03 (0.94–9.76)

TC 10 (0.18) 27 (0.24) 1.29 (0.56–3.00) 10 (0.30) 7 (0.14) 0.33 (0.10–1.07)

CC 1 (0.02) 4 (0.03) 0.97 (0.10–9.77) 0 (0) 1 (0.02) –

T 100 (0.89) 191 (0.85) 1.03 (0.10–10.30) 56 (0.85) 91 (0.91) –

C 12 (0.11) 35 (0.15) 1.19 (0.52–2.69) 10 (0.15) 9 (0.09) 0.33 (0.10–1.07)

A Odds ratio adjusted for age and sex; * p<0.05

Table 8 Distribution of genotypes. frequency of alleles of the IVS4+44C>A and c.2044T>C polymorphism of the DMT1 gene, and odds ratios
(OR) with 95% confidence intervals (95% CI) in age-related macular degeneration and controls among males and females

Males Females

Genotype/allele Control (39) Dry AMD (127) A OR (95% CI) Control (119) Dry AMD (254) A OR (95% CI)
IVS4+44C>A N (%) N (%) N (%) N (%)

CC 27 (0.69) 78 (0.61) 1.49 (0.49–4.57) 82 (0.69) 184 (0.72) 1.44 (0.71–2.93)

CA 10 (0.26) 44 (0.35) 1.09 (0.34–3.47) 36 (0.30) 65 (0.26) 0.66 (0.32–1.35)

AA 2 (0.05) 5 (0.04) 0.11 (0.01–.98) * 1 (0.01) 5 (0.02) –

C 64 (0.82) 200 (0.79) 9.56 (1.02–9.99) * 200 (0.85) 433 (0.85) –

A 14 (0.18) 54 (0.21) 0.67 (0.22–2.05) 38 (0.16) 75 (0.15) 0.75 (0.37–1.51)

Genotype/allele Control (43) Dry AMD (129) A OR (95% CI) Control (125) Dry AMD (306) A OR (95% CI)
c.2044T>C N (%) N (%) N (%) N (%)

TT 32 (0.74) 87 (0.67) 2.00 (0.60–6.66) 95 (0.76) 232 (0.76) 1.04 (0.48–2.27)

TC 10 (0.23) 37 (0.29) 0.57 (0.17–1.94) 29 (0.23) 71 (0.23) 0.91 (0.42–1.99)

CC 1 (0.03) 5 90.04) 0.45 (0.04–5.13) 1 (0.01) 3 (0.01) –

T 74 (0.86) 211 (0.82) 2.24 (0.20–25.72) 219 (0.88) 535 (0.87) –

C 12 (0.14) 47 (0.18) 0.47 (0.14–1.58) 31 (0.12) 77 (0.13) 0.92 (0.42–2.02)

A Odds ratio adjusted for age and living environment; * p<0.05
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In this paper, we have analyzed two SNP polymorphisms
in the DMT1 gene. This gene has two alternative promoters
and two alternative polyadenylation sites. Four main iso-
forms of DMT1 have been identified. Depending on the
choice of polyadenylation site, the transcript may include
the iron response element (IRE) in the 3’UTR region [49,
50]. The differences between isoforms determine mainly the
tissue-specific expression pattern of the final protein [51].
DMT1 plays a role in iron absorption from the intestine and
its endosomal transport in the cell, being responsible for
cellular distribution of this metal [52, 53]. DMT1 also plays
an important role in cation balance in the nervous system
[52, 53]. There are reports concerning imbalance of iron in
the organism as a consequence of mutations in the DMT1
gene [54, 55]. It has also been postulated that DMT1 plays a
role in the process of neurodegeneration [56]. The IVS4
+44C>A polymorphism is located in the intron 4 of the
DMT1 gene. A nucleotide change inside the intron may
affect significantly either constitutive splicing or alternative
splicing by the corruption of splicing regulatory cis-ele-
ments, giving incorrect isoforms of the protein [57, 58].
This polymorphism has been reported not to be associated
with inflammatory bowel disease [59] and hereditary hae-
mochromatosis [60], but its association with Parkinson’s
disease has been shown [35]. We did not find any report
on the functional significance of the other polymorphism,
c.2044T>C.

Our genotype-independent analysis of potential AMD
risk factors showed an association with age and a strong
association with familial AMD. Therefore, positive AMD
familial history may increase the risk of the occurrence of
the disease among remaining family members. On the other
hand, we found no association of AMD with smoking
status, sex, BMI, and place of living. In particular, the lack
of association of AMD with sex and smoking is somehow
surprising, because several groups have shown a significant
association between tobacco smoking and AMD [61]. Fur-
thermore, female sex was reported as an AMD risk factor in
several populations [4]. We do not have information on the
general association between AMD occurrence and gender in
Poland, so we can conclude that the dependence of the
AMD risk on sex may be population-specific, or that our
studies lacked power to detect this dependence, and further
investigations in the Polish population are needed to clarify
this point. Tobacco smoking is well-confirmed as a modu-
lator of AMD risk, although some groups have reported no
association between smoking and AMD, or only a limited,
borderline association [62–65]. Again, the dependence be-
tween smoking and AMD may be population-specific and
influenced by passive smoking, which should not be ignored
[66]. Stratification of patients depending on age, sex, BMI,
living environment and tobacco smoking status revealed no
correlation between these factors, AMD, and the genotypes

of the c.2044T>C polymorphism. However, in the group of
rural inhabitants, the polymorphism IVS4+44C>A was sig-
nificantly correlated with AMD risk. The C variant seemed
to increase the AMD risk if it occurred among rural inhab-
itants, while the A variant had a protective role. Similarly,
the C variant strongly positively increased AMD risk among
males, and the A variant decreased the risk in this group. This
is particularly interesting, since in a number of researches in
other populations, females were at higher risk of AMD [4]. No
significant influence of a tobacco smoking habit is also worth
emphasizing, as tobacco smoking is thought to be a major risk
factor in AMD. Our result showed that the IVS4+44C>A
polymorphism in DMT1 gene may be considered as a poten-
tial environment-dependent risk marker for AMD.
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