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RETINAL DISORDERS

Pattern recognition can detect subtle field defects in eyes
of HIV individuals without retinitis under HAART
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Abstract

Objectives To use machine learning classifiers (MLCs) to
seek differences in visual fields (VFs) between normal eyes
and eyes of HIV+ patients; to find the effect of immunode-
ficiency on VFs and to compare the effectiveness of MLCs to
commonly-used Statpac global indices in analyzing standard
automated perimetry (SAP).

Methods The high CD4 group consisted of 70 eyes of 39
HIV-positive patients with good immune status (CD4
counts were never <100/ml). The low CD4 group had 59
eyes of 38 HIV-positive patients with CD4 cell counts
<100/ml at some period of time lasting for at least 6 months.
The normal group consisted of 61 eyes of 52 HIV-negative
individuals. We used a Humphrey Visual Field Analyzer,
SAP full threshold program 24-2, and routine settings for
evaluating VFs. We trained and tested support vector
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machine (SVM) machine learning classifiers to distinguish
fields from normal subjects and high and CD4 groups
separately. Receiver operating characteristic (ROC) curves
measured the discrimination of each classifier, and areas
under ROC were statistically compared.

Results Low CD4 HIV patients: with SVM, the AUROC was
0.790+0.042. SVM and MD each significantly differed from
chance decision, with p<.00005. High CD4 HIV patients: the
SVM AUROC of 0.664+0.047 and MD were each signifi-
cantly better than chance (p=.041, p=.05 respectively).
Conclusions Eyes from both low and high CD4 HIV+
patients have VFs defects indicating retinal damage.
Generalized learning classifier, SVM, and a Statpac
classifier, MD, are effective at detecting HIV eyes that
have field defects, even when these defects are subtle.

Keywords HIV retinopathy - Visual field - Machine
learning classifiers

With the improvement brought about by highly active
antiretroviral therapy (HAART) in the health of human
immunodeficiency virus (HIV)-positive patients, it has
become important to determine whether damage continues
to occur under HAART, which implies good immune
control, and to identify methods of finding such damage.
In HIV patients without history or evidence of retinitis,
previous studies by us and others have disclosed structural
damage to the retina and functional deficits resulting from
such damage [1-13]. Individuals with HIV retinopathy
without retinitis and with low CD4 T-lymphocyte counts
show deficits in visual function, even though the central
vision may be preserved [1, 2]. In the era before HAART
became available, damage was suggested in such eyes by
studies showing that HIV-positive patients have reduced
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sensitivity in the field of vision [3, 4], decreased color and
contrast sensitivity in the test of central vision [5, 6], and
altered retinal processing with electrophysiological testing
[7]. Further studies from our group have shown that there are
particular topographic patterns of this visual field (VF) loss
[8]. Retinal cotton wool spots, microaneurysms, capillary
drop-out, and ischemia are assumed to damage the ganglion
cell layer and retinal nerve fiber layer (RNFL) [1, 9, 10].

Even in the HAART era, it has been shown that damage
still occurs in HIV patients managed by HAART [11]. Using
high-resolution optical coherence tomography and scanning
laser polarimetry, we found thinning in the retinal nerve fiber
layer of HIV patients with low CD4 counts [12, 13].
Multifocal electroretinogram (mfERG) showed abnormalities
in the second order kernel (inner retina) in HIV populations
[14]. Second order kernel abnormalities in mfERGs indicated
that not only low CD4 patients but also high CD4 patients
underwent detectable electrophysiological alteration and
maybe even damage in the inner retina [15].

HIV patients with high CD4 counts may also have
symptoms of retinopathy. Although most of these patients
do not have visual symptoms, a few patients observe visual
field changes. Automated perimetry is currently the most
widely used method to detect functional deficits that
anatomic changes in this population might cause. Because
these changes are usually subtle, the deficits are difficult to
detect by human observers, including perimetric experts.

Pattern recognition techniques, especially machine learn-
ing classifiers (MLCs), have been previously applied to
ophthalmologic problems, such as the interpretation and
classification of visual fields [16, 17], detection of visual
field progression [18, 19], assessment of the structure of the
optic nerve head [20, 21], measurement of retinal nerve fiber
layer thickness [22, 23], and separation of noise from visual
field information [24]. From previous studies in glaucoma,
we found support vector machine (SVM) to be particularly
effective for discriminating between normal and glaucoma-
tous visual fields [16, 25]. MLCs can be trained to
distinguish the group identity of patterns, sometimes with
greater sensitivity than a human expert [25-28].

In this study, we applied SVM with the Gaussian kernel
to determine if visual fields in HIV subjects differ from
visual fields in normal subjects. Since the immune function
presumably was better in the high CD4 group, we expected
HIV retinopathy damage to be less in the high CD4 group
than in the low CD4 group. We assumed that there was
enough information in the visual fields to distinguish low
CD4 patients from HIV-negative patients, and we antici-
pated that there might be enough information to discrimi-
nate high CD4 patients from HIV-negatives. The Statpac
global indices, mean deviation (MD) and pattern standard
deviation (PSD) are widely available and in common use to
interpret automated perimetry for glaucoma. We compared
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MLCs to MD and PSD in the ability to separate fields of
low CD4 from those of high CD4 HIV patients.

Machine learning classifiers (MLCs) have evolved to
approach the theoretical limit in finding the differences
between classes. With these theoretically more effective
MLCs, we (1) seek differences in visual fields between
normal eyes and eyes of HIV patients, (2) try to find the
effect of immunodeficiency on visual fields, as reflected in
CD4 count, and (3) compare the effectiveness of MLCs to
commonly-used Statpac global indices in analyzing stan-
dard automated perimetry (SAP).

Methods

Patients The HIV-positive patients come from an Institution-
al Review Board-approved, National Institutes of Health-
sponsored longitudinal study of HIV disease at the University
of California, San Diego (UCSD). The research followed the
tenets of the Declaration of Helsinki. Non-HIV controls were
age-matched healthy participants in the HIV study as well as
non-glaucomatous age-matched healthy controls from the
National Eye Institute-sponsored ongoing longitudinal Diag-
nostic Innovations in Glaucoma Study (DIGS).

The patients were divided into three groups. The high
CD4 group (H) consisted of HIV-positive patients with
good immune status. Their medical records showed that
their CD4 counts were never valued at <100 (1.0x10°/1).
The low CD4 group (L) were HIV-positive patients with
CD4 cell counts measured at <100 (1.0x10%1) at some
period of time in their medical history lasting for at least
6 months. Out of 59 eyes in this subgroup, 32 had signs of
HIV retinopathy at the time of examination (n=6) or based
on their medical records (n=26). None of the eyes had
evidence of retinopathy caused by other virus. All HIV
patients were on HAART therapy prior to the time of the
examination, and a substantial portion of these patients had
a recovery in their CD4 counts. The HIV individuals had no
confounding ocular disease or eye surgery. The normal
group (N) consisted of HIV-negative patients without
evidence of ocular damage. This normal control group
comprised 17% with a life style similar to the HIV groups,
and 83% from DIGS.

Ophthalmologic evaluation All patients had a complete
ocular examination, including indirect ophthalmoscopy and
morning intraocular pressure measurement. The exclusion
criteria were inability to perform visual field testing,
corrected visual acuity worse than 20/40, spherical refrac-
tion beyond+5 diopters, cylindrical correction greater than
3 diopters, unclear ocular media, concurrent or healed
CMV retinitis (a fellow eye without retinitis was eligible),
scotopic pupil size<3 mm, glaucoma or suspicion of
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glaucoma by disk or field or intraocular pressure greater
than 21 mmHg on two visits, and diseases that can cause
retinopathy, like diabetes or uncontrolled hypertension.

Visual field testing and data input for the classifier We
used a Humphrey Visual Field Analyzer (model 620; Carl
Zeiss Meditec, Dublin, CA, USA), standard automated
perimetry (SAP) full threshold program 24-2, and routine
settings for evaluating visual fields. Visual fields were
taken within 1 week of the ophthalmologic examination.
The examination was paused for a while before evaluating
the second eye. Only reliable VFs, defined as those with
less than 33% false-positives, 33% false-negatives, and
33% fixation losses, were used. Thus, eight eyes had to be
excluded from analysis. Naive visual fields were not
analyzed; fields were included only after initial practice.

The absolute sensitivity (in decibels) of 52 visual field
locations (54 excluding the two located in the blind spot)
formed a feature vector in 52-dimensional input space for each
of the 124 SAP fields of normal and HIV eyes [16, 25]. SAPs
from the left eye were mapped to right eye format to make all
the fields appear as right eyes for input for the SVMs.

Machine learning classifiers Pattern recognition can use
methods of machine learning classifiers. Support vector
machine (SVM) is a machine classification method that seeks
the boundary that best separates sparse samples that are
difficult to separate in the two classes [29, 30]. SVM learning
adapts to the data and often outperforms other classifiers; the
use of sparse data helps SVM to learn efficiently. Support
vector techniques have been used for various clinical
medicine classification applications including the detection
of glaucoma and HIV-related ocular disease [16, 21, 31].
The support vector method was implemented by using
Platt’s sequential minimal optimization algorithm in
commercial software (MatLab, version 7.0 MathWorks,
Natick, MA). For classification of the SAP data,
Gaussian (nonlinear) kernels of various widths were
tested, and the chosen Gaussian kernel width was the
one that gave the highest area under the receiver
operating characteristic (AUROC) curve, using 10-fold
cross-validation to separate teaching and test samples.

Training and testing machine learning classifiers In this
study, we used 10-fold cross validation, which randomly
split each class into ten equal subsets. The classifier was
trained on a set that combined nine of the ten partitions, and
the 10th partition served as the testing set. This procedure
was performed ten times, with each partition having a
chance to serve as the test set.

Performance measure of trained machine learning classifiers
Receiver operating characteristic (ROC) curves display the

discrimination of each classifier as the separation threshold is
moved from one end of the data to the other. We generated an
ROC curve to represent a chance decision to permit
comparison of the machine learning classifiers against
chance; the predictor with performance equal to chance
will have AUROC=0.5, while the ideal classifier will
give an AUROC=1.0. We tested the null hypothesis (p-
value) for comparing the AUROCSs of classifiers [25, 32].
We trained and tested SVM to distinguish fields from
normal subjects and high CD4 group, and between normal
subjects and low CD4 patients group.

Dimension reduction by feature selection We trained the
machine learning classifiers with the full feature set (SVM
full) and, in an effort to improve performance, with a
performance-peaking subset of near optimal features de-
rived with feature selection [21]. To create small subsets
with the best features, we used backward elimination (SVM
back) with SVM. Previous research found backward
elimination to work better than forward selection on visual
field data [21]. Backward elimination started with the full
feature set. The feature that, when removed, either
maximally increased or minimally decreased the SVM
performance was removed, and the process was repeated
sequentially down to one feature. Close to the best feature
set could be determined by choosing the reduced feature set
with peak performance.

Results

There were 132 subjects (118 men, 14 women, 190 eyes) in
the HIV group. There were 70 Hispanic, 48 Caucasian, 12
African-American and two Asian-Pacific patients in this
cohort. The normal group consisted of 52 HIV-negative
individuals (61 eyes) with the mean age =+ standard
deviation of 48.5+8.2 years and mean spherical equivalent
in diopters (Dsph) of —0.70+0.43 Dsph. The high CD4
group had 39 patients (70 eyes) with mean age of 47.1+
8.1 years and mean spherical equivalent —1.20+0.46 Dsph.
There were 38 patients (59 eyes) in the low CD4 group,
with mean age of 46.5+7.8 years and mean spherical
equivalent —0.91+0.57 Dsph. The AUROCs and their
standard deviations for the various combinations of CD4
level and feature set size are shown in the Table 1, which
also demonstrates the p-values for chosen comparisons.

HIV patients with low CD4 counts With SVM full, the
AUROC was 0.790+0.042 (Table 1, Fig. 1a). It significantly
differed from chance decision with p<0.00005 (Table 1).
Backward elimination selected a peak-performing 11-feature
feature set (arrow in Fig. 2a). The AUROC for SVM back
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Table 1 AUROCSs (maximum in italics) and p-values of comparison of ROC curves generated by classifiers separating HIV-positive and normal

eyes (maximum AUROC italics, p<0.05 bold face)

SVM full SVM back PSD MD Chance

Low CD4

AUROC + SD 0.790-+0.042 0.833+0.038 0.723+0.047 0.813+0.039 0.500+0.053

SVM full .050 .070 25 <.00005

SVM back (11) .004 41 <.00005

PSD .030 .002

MD <.00005
High CD4

AUROC+SD 0.664+0.047 0.733+0.044 0.587+0.050 0.651+0.048 0.500+0.051

SVM full (8) 12 .080 .61 041

SVM back .007 .10 .0007

PSD 21 17

MD .050

HIV = human immunodeficiency virus, ROC = receiver operating characteristic curve, AUROC = area under ROC, SVM full = support vector
machine trained on full set of field positions, SVM back = SVM trained on best subset found (size in parentheses), PSD = pattern standard

deviation, MD = mean deviation

significantly improved to 0.833+0.037 (p=.050), compared to
SVM full. The bold dashed curve was the average of curves
generated by the standard method of backward elimination
[29] (Fig. 2). The location of the eight most significant field
locations were mapped to the standard visual field display.
Eight were chosen to match the size of the best feature subset
for high CD4 patients (see below). The majority of the top
eight features were located near the blind spot, with a
preponderance superiorly and temporally (Fig. 3a).

MD and PSD produced AUROCs of 0.813+£0.039 and
0.723+0.047 respectively. MD was better than PSD (p=.03).
SVM back was significantly more effective than PSD
(p=.004 )(Table 1), but not significantly better than MD

(p=A41).

HIV patients with high CD4 counts The AUROC was
0.664+0.047 with SVM trained on the full feature set of 52
SAP locations (Table 1, Fig. 1b). It was significantly better
than chance (p=0.041). Backward elimination produced
subsets that peaked at eight features. The AUROC with the
eight-feature subset, was 0.733+0.044. This peaking was
demonstrated by the arrow in Fig. 2b. The top eight visual
field locations were diffusely scattered (Fig. 3b).

The Statpac indices, MD and PSD, generated AUROCs of
0.651+0.48 and 0.587+0.50 respectively. SVM back was
significantly better than PSD (p=.0007) but not MD (p=.10).

Discussion

This study in the HAART era confirmed the reports in
previous publications that eyes from HIV patients with low
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CD4 T-lymphocyte counts have retinopathy damage that
affects the visual field [3, 4, 8]. SVM trained with the full
set of visual field locations, optimized SVM trained on the
best subset of visual field locations, MD and PSD all
distinguished visual fields of HIV subjects with low CD4
counts from fields in normal eyes. SVM and optimized
SVM conferred no advantage over MD. A larger number of
examples in each group is necessary to determine if
optimized SVM differs from MD.

MD outperformed PSD in low CD4 eyes (p=.03). As a
mass output measure of decreased field sensitivity, MD does
not indicate if the depressions are focal, regional, or diffuse.
PSD, designed to suppress global depression, is more
responsive to local and regional field depression. PSD is
more sensitive than MD to glaucomatous field defects, which
tend to be regional [25]. The better performance of MD in
eyes of low CD4 HIV eyes suggests that the field defects
may be diffusely scattered, and less likely to be focal or
regional. Also, since these patients were not old, the ability
of PSD to account for cataracts was not beneficial.

Optimizing SVM significantly improved its performance
on low CD4 eyes (p=.05), reducing the likelihood that the
choice of the top field locations was due to the vagaries of
the data set. The standard backward elimination curve
found no increase in accuracy with the use of more than the
top 11 locations (Fig. 2a). The eight most important field
locations for distinguishing the low CD4 HIV eyes from
normal tended to be superior, temporal, and close to the
blind spot (Fig. 3a). This tendency located the retinal
damage in low CD4 eyes to regions mostly close to the
optic nerve, inferior, and nasal. It is not clear whether the
damage was most prominent near the disk, or whether it
was just more easily detected there.
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Fig. 1 Receiver operating curves (ROCs) for support vector machine
(SVM) and Statpac global indices, mean deviation (MD) and pattern
standard deviation (PSD), in human immunodeficiency virus (HIV)
positive patients. SVM full are ROCs generated by SVM trained on all
52 field locations. SVM back are ROCs generated from the subset
with the peak performance. The chance curve is the effect of SVM
learning to distinguish classes with data randomly distributed between
them. a ROCs from distinguishing low CD4 eyes from normal. b
ROC:s from distinguishing high CD4 eyes from normal

SVM, optimized SVM, and MD were able to distinguish
eyes from HIV patients with high CD4 T-lymphocyte counts
from normal eyes, though with less assurance than with low
CD4. PSD was no better than chance in making the distinction
in high CD4 eyes (p=.17), though it was better than chance
for low CD4 eyes (p=.002). The diminished assurance
indicated that the visual field defects were fewer and less
deep in high CD4 eyes than in low CD4 eyes. It is unclear if
the smaller difference from normal in the high CD4 eyes is
due to resolution of some defects in the high CD4 group, or
if a relatively greater depression in the field around the optic

nerve is present in the low CD4 subjects. This is a cross-
sectional analysis, and the true answer to the point above
could be possible with longitudinal observation and a larger
data set. A comparison of field defects between those whose
CD4 counts remained <100 at the time of testing versus
those whose CD4 counts recovered would be interesting, as
the question that arises is whether these defects are reversible
with a recovery in CD4 counts.

Optimizing SVM did not significantly improve perfor-
mance on high CD4 eyes compared to SVM full. This
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Fig. 2 Performance curves measuring area under receiver operating
curve (AUROC) for the best feature combination for each size subset of
features generated by backward elimination between one feature and all
52 features. The bold curve averages the curves (thin dark gray curves)
derived from the standard backward elimination. The peak (arrow) is
the subset size with the best performance. a Curves generated by
backward elimination applied to low CD4 vs normal eyes. b Curves
generated by backward elimination applied to high CD4 vs normal eyes
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Fig. 3 Ranking by backward elimination. a Location of field defect in
low CD4 group showing that the top eight field locations tend to be
clustered superior temporally, close to the blind spot. bLocation of
field defect in high CD4 group showing that the top eight field
locations tend to be without discernable pattern

observation diminished the veracity of the ranking for high
CD4 and made the location of the significant defects
uncertain. The locations of the eight most important field
locations were scattered without a pattern.

Our previous observation at the beginning of the HAART
era showed a pattern of visual loss sparing of the papillo-
macular bundles and associated damage to the inferior retina
external to the posterior pole [8]. Similarly, the papillomac-
ular area was spared in this cohort, as was the inferior retina
outside the arcades. The diffuse pattern of damage has also
been shown when analyzing one eye per patient only, in a
similar but not identical HIV-positive cohort [32]. It is
tempting to speculate that HAART therapy may have an
effect on the extent of retinal damage; longitudinal observa-
tion could bring more light to this complex problem.

HIV retinopathy is a microvasculopathy that causes
peripapillary hemorrhages, microangiopathy, and cotton-
wool spots in retinas that have not been secondarily
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infected [9, 10, 33, 34]. Inner retinal thinning was
previously reported with OCT and scanning laser polarim-
etry of low CD4 eyes, with inferior thinning being more
prominent [12, 13]. RNFL thinning was found even in
patients with good immune status in the HAART era [35].
Retinal microinfarctions may be responsible for the RNFL
defects and field deficits. Similar findings were also
reported in HIV-positive children using the third-
generation OCT [36]. Although fields from high CD4 eyes
appear mostly normal to human perimetric experts, this
study found that the trained machine learning classifiers
and MD could each distinguish between eyes from high
CD4 patients and normal eyes.

Pattern recognition has proved extremely useful in this
clinical scenario. Even if testing the visual field in HIV
patients currently does not have the same relevance for
managing patients as it does in glaucoma, it has served to
uncover information about the disease process. To assist the
management of patients with HIV, a future approach could
be the establishment of threshold values for MD or for
SVM that would enable identification of individuals who
have retinal damage.

SVM, especially when the feature set is optimized by
dimensionality reduction, is a sensitive classification method
that approaches the performance of the theoretical optimal
classifier for classifying visual fields [16, 18, 24, 25].
Optimized machine learning classifiers appear to be a valid
approach to detecting subtle abnormalities in medical tests
with complex multidimensional measurements. This concept
was demonstrated in our previous report analyzing complex
datasets from mfERG in HIV-positive patients [15].

In summary, we have confirmed that eyes from low CD4
HIV patients have visual field measurements indicating
retinal damage, and that high CD4 eyes also have retinal
damage. We have demonstrated that a generalized learning
classifier, SVM, is effective at learning which eyes have
field defects, even when these defects are subtle, and we
have discovered that MD, a statistical classifier tuned to
visual field data, is also effective in distinguishing both
high CD4 fields and low CD4 fields from normal. An
important message to people at risk of HIV and to their
providers is that HIV infection may produce ocular damage
under HAART, even if there is good immune status.
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