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Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of 
both upper and lower motor neurons. A defining histopathological feature in approximately 97% of all ALS cases is the 
accumulation of phosphorylated trans-activation response (TAR) DNA-binding protein 43 protein (pTDP-43) aggregates in 
the cytoplasm of neurons and glial cells within the central nervous system. Traditionally, it was believed that the accumula-
tion of TDP-43 aggregates and subsequent neurodegeneration primarily occurs in motor neurons. However, contemporary 
evidence suggests that as the disease progresses, other systems and brain regions are also affected. Despite this, there has 
been a limited number of clinical studies assessing the non-motor symptoms in ALS patients. These studies often employ 
various outcome measures, resulting in a wide range of reported frequencies of non-motor symptoms in ALS patients. The 
importance of assessing the non-motor symptoms reflects in a fact that they have a significant impact on patients’ quality of 
life, yet they frequently go underdiagnosed and unreported during clinical evaluations. This review aims to provide an up-to-
date overview of the current knowledge concerning non-motor symptoms in ALS. Furthermore, we address their diagnosis 
and treatment in everyday clinical practice.
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TARDBP  Trans-activation response (TAR ) DNA-bind-
ing protein 43 Gene

TDP-43  Transactive response DNA binding protein 
43

THC/CBD  Delta-9-tetrahydrocannabinol and 
cannabidiol

VAS  Visual Analogue Scale

Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegen-
erative disease characterized by progressive degeneration of 
both upper and lower motor neurons. Common clinical signs 
of ALS include progressive muscle wasting, weakness, dys-
arthria, dysphagia, and ultimately, respiratory failure. The 
initial presentation of ALS varies depending on the site of 
onset. Limb (spinal) onset is the most common (approxi-
mately 65% of cases), followed by bulbar onset (about 30%), 
and, less commonly, respiratory onset (about 5%) [1]. The 
worldwide incidence rates of ALS vary depending on the 
region, with estimates ranging from 0.5 to 3.6 cases per 
100,000 individuals [2].

ALS is a complex disorder believed to result from a com-
bination of genetic and environmental factors. While the 
majority of cases are sporadic (sALS), approximately 5–10% 
are familial (fALS), with a Mendelian inheritance pattern 
[3]. Over 30 genes have been implicated in ALS pathogen-
esis. The most common genetic mutations associated with 
fALS are found in the Superoxide dismutase 1 (SOD1) gene, 
Chromosome 9 open reading frame 72 (C9orf72) gene, 
Trans-activation response (TAR) DNA-binding protein 43 
(TARDBP) gene, and Fused in sarcoma (FUS) gene, collec-
tively accounting for about 70% of fALS cases [4].

The accumulation of phosphorylated 43-kDa TDP protein 
(pTDP-43) aggregates in the cytoplasm of neurons and glial 
cells within the central nervous system (CNS) is a defin-
ing histopathological feature observed in approximately 
97% of all cases of ALS [5]. Exceptions do exist, such as in 
cases of ALS with SOD1 [6] or FUS [7] mutations, where 
other types of protein aggregates are observed. First, it was 
assumed that accumulation of TDP-43 aggregates and subse-
quent neurodegeneration occurs primarily in motor neurons. 
However, more recent evidence suggests that other systems 
and brain regions are also affected as the disease progresses. 
The degeneration starts in a focal manner (typically aligning 
with the region of symptom onset) and subsequently spreads 
throughout the CNS, affecting not only the motor regions but 
also non-motor regions of CNS [8–11].

Parkinson’s disease, another neurodegenerative disorder 
characterized by the accumulation of toxic protein aggre-
gates (in this case, α-synuclein), has undergone extensive 
evaluation of its non-motor symptoms. This evaluation has 

not only led to improvements in the quality of life (QoL) 
of patients but has also enhanced our understanding of the 
underlying disease mechanisms. Regarding ALS, only 1% 
of publications have focused on non-motor symptoms [12]. 
The frequency of non-motor symptoms in ALS varies widely 
between studies, ranging from 5 to 80%. They significantly 
affect patients' QoL, often going underdiagnosed and unre-
ported during clinical evaluations [13]. The gross classifi-
cation of non-motor symptoms in ALS encompasses four 
main categories: neuropsychiatric symptoms, autonomic 
symptoms, vascular symptoms, and gastrointestinal symp-
toms [13].

The term “non-motor symptoms” in ALS often conceals a 
certain level of misunderstanding. What exactly falls under 
this category? Should we consider dysphagia, sialorrhea, 
or alterations to the sense of taste due to riluzole therapy as 
non-motor symptoms? For instance, Shojaie et al., in their 
recent paper on non-motor symptoms in ALS, discussed 
how these symptoms can stem directly from neuromuscu-
lar weakness (such as sialorrhea), indirectly from weakness 
(such as pain due to immobility), as side effects of therapy 
(like alterations to taste from riluzole), or from neurodegen-
eration occurring outside the corticobulbar and corticospinal 
motor system [14]. It is clear that exact distinction between 
what falls under this term can be challenging.

This review aims to provide an up-to-date overview of the 
current knowledge regarding non-motor symptoms in ALS, 
as well as their diagnosis and treatment in everyday clini-
cal practice. We focus on pain, fatigue, sleep disorders and 
restless legs syndrome, autonomic dysfunction, and, finally, 
cognitive and neuropsychiatric symptoms, metabolic abnor-
malities and weight loss.

Pain

With the exception of some earlier reports [15], pain has 
been utterly neglected for a long time since ALS was consid-
ered purely a disease of motor neurons. However, awareness 
of the presence of pain in ALS patients emerged in the past 
decades and years, given its significant negative influence on 
the QoL of ALS patients and their caregivers [16–20]. The 
pathogenesis and characteristics of pain in ALS are still not 
entirely understood.

Frequency of pain in ALS

Reported pain frequency among ALS patients varies widely, 
with rates ranging from 15 to 85% [18, 19, 21–27]. These 
variations can be attributed to differences in study designs 
and the use of various pain assessment instruments [28]. 
The number of ALS patients included in these studies also 
varies significantly, ranging from seven to 2092 patients. 
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Furthermore, some individuals may not report pain because 
they perceive it as a minor symptom compared to other 
aspects of ALS [20]. In the two most recent studies, both 
employing self-constructed questionnaires, pain was one 
of the most common non-motor symptoms in patients with 
ALS [14, 29].

The latest meta-analysis focused on pain in ALS, con-
ducted in 2021 [30], included 21 articles, all of which were 
observational studies, comprising 14 cross-sectional studies, 
six cohort studies, and one case–control study. The findings 
revealed that between half and two-thirds of ALS patients 
experience pain, with a pooled prevalence of 60% (95% con-
fidence interval [CI] = 50–69%). However, it is important to 
note that there was a substantial heterogeneity in the results 
(I2 = 94%, p < 0.001). The lowest heterogeneity was observed 
for studies using validated measures (I2 = 82%, p < 0.002), 
which was still quite high.

Characteristics of pain in ALS patients

Primary versus secondary pain

Primary pain originates from damage to the nervous system 
and can be categorized into neuropathic pain and pain due to 
cramps and spasticity. Secondary pain arises due to non-neu-
ronal damage and is nociceptive in nature [31]. Chio et al. 
discussed in their review that most of the pain experienced 
by ALS patients seems to result from the motor impairment 
itself but that not all types of pain can be explained this way 
[28].

Neuropathic pain is caused by a lesion or disease of the 
somatosensory nervous system [32]. Some evidence of the 
involvement of the sensory cortex as the part of the neu-
rodegeneration was found in post-mortem studies of ALS 
patients [33, 34], as well as, in numerous neuroimaging 
[35–39] and electrophysiological studies [40–48]. Neuro-
imaging and neurophysiological studies have also identified 
alterations in the spinal sensory ascending pathways in as 
many as 85% of ALS patients [43, 44, 49–51]. These find-
ings have been further supported by pathological studies in 
both humans and mouse models, which have reported that 
up to 50% of ALS patients exhibit degeneration of the dorsal 
columns [51–55]. Furthermore, dorsal roots and peripheral 
nerves, as well as small sensory nerve fibers can be affected 
in ALS [22, 51, 56–65]. Yet, neuropathic pain appears to be 
relatively uncommon in ALS. Depending on the pain assess-
ment tool used, studies have shown a prevalence of neuro-
pathic pain in ALS ranging from 0 to 9% [19, 66–68]. The 
global prevalence of neuropathic pain is believed to range 
from 6.9 to 10% [69], which does not considerably differ 
from the prevalence of pain in ALS.

The occurrence of muscle cramps in ALS patients is 
attributed to the instability of the affected motor units and 

is commonly linked to muscle denervation [70]. These 
cramps, marked by sudden and involuntary muscle contrac-
tions originating from peripheral nerves [70], tend to be 
more frequent in patients with limb-onset ALS and in older 
individuals with the disease [71]. Spasticity, on the other 
hand, is a velocity-dependent increase in muscle tone due to 
the loss of inhibitory control of upper motor neurons [72]. 
Clinically, it leads to exaggerated tendon tap reflexes and 
an increased resistance of a muscle to stretching, stiffness, 
fine motor control difficulties and gait problems [72, 73]. In 
the research conducted by Verschueren et al., spasticity was 
observed in 36% of a sample of 150 ALS patients. Among 
those with spasticity, 42.5% reported spasticity-related pain, 
with the majority of these patients describing their pain as 
mild [74].

Secondary pain in ALS arises from alterations in non-
neuronal tissues, such as connective tissue, bones, and joints. 
These changes result from muscle atrophy, weakness, and 
prolonged immobility and lead to musculoskeletal pain [28]. 
Joint pain is a common manifestation in ALS patients, and it 
typically occurs when weakened and wasted muscles can no 
longer provide adequate support to the joints. The shoulders 
and hips are the most frequently affected joints [18, 28, 75]. 
Furthermore, immobility in ALS can cause skin pressure 
and decubitus ulcers, occasionally leading to perceived pain 
[28]. Patients on mechanical ventilation, especially those 
using non-invasive ventilation, may also experience skin 
issues, often around the nasal bridge due to mask interfaces 
[31].

Pain severity

Studies show substantial variability in reporting pain sever-
ity. For instance, Hanisch et al. [25] found that the majority 
of participants reported mild pain (58.0%), whereas Pizzi-
menti et al. [76] reported a high prevalence of very severe 
pain (65.4%) in ALS patients. However, a recent meta-
analysis revealed that slightly over three-quarters of ALS 
patients reported experiencing moderate pain, with 17.5% 
experiencing severe pain. Mild and very severe pain were 
less common, reported in fewer than 2.0% of cases [30].

Progression of pain throughout the disease

There is a substantial lack of longitudinal studies examining 
pain in ALS. Wigand et al. conducted a longitudinal study 
in which they examined pain with the Brief Pain Inventory 
(BPI) at three different time points in 151 ALS patients from 
three German centers [77]. They found that approximately 
half of the ALS patients had pain at the baseline assessment. 
Furthermore, 70% of 40 patients reported pain at the third 
survey. Adelman et al. investigated the agreement between 
69 end-stage ALS patients and their family caregivers 
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concerning various indicators of physical and psychologi-
cal well-being at the end of life, including the assessment of 
pain [78]. Patients were asked to rate their current pain using 
a Visual Analogue Scale (VAS) by answering the question, 
'How much pain is the patient feeling?'. The authors discov-
ered a significant increase in pain levels on the VAS, with 
scores rising by 1 point (from 2.3 to 3.3; p < 0.003) during 
the last assessment. Fifty-four of the patients had undergone 
at least two assessments, with a median number of study 
assessments being 3. Caress et al. conducted a 21-month 
follow-up study involving 41 ALS patients, revealing that 
cramps were experienced by 95% of patients during the 
course of the disease [71]. Cramps typically emerged early 
in the disease, with a decreasing trend observed in subse-
quent years (mean number of cramps in the first year was 
46.3 ± 95.7, in the second year was 37.6 ± 62.5, and in the 
third year was 24.1 ± 31.7). However, it is worth noting that 
this trend did not reach statistical significance.

Other available studies are predominantly cross-sec-
tional in nature, which may not be ideal for assessing the 
natural history of pain in ALS. Moreover, these studies have 
yielded conflicting results. Some have indicated a correla-
tion between pain and the progression of functional impair-
ment, suggesting that pain becomes more frequent in the 
later stages of the disease [18, 79, 80]. Conversely, other 
studies have reported no significant differences in pain fre-
quency between early and late-stage disease, and have found 
no clear correlations between pain and the course or severity 
of the disease [19, 81].

Treatment

To treat pain effectively, it is crucial to comprehend its char-
acteristics and its nature (primary or secondary pain) [82]. 
This highlights the significance of accurate pain assessment 
because administering inappropriate pain medications, for 
example using antiepileptic drugs in patients with nocicep-
tive pain, can rather potentially exacerbate discomfort due 
to side effects. This means that pain treatment should be 
individualized. Pharmacological and non-pharmacological 
treatment options stand in disposal as a treatment of pain 
in ALS patients. Pharmacological treatments are primarily 
employed for neuropathic and primary pain, often in con-
junction with non-pharmacological treatment, whereas non-
pharmacological strategies are typically more effective for 
addressing secondary pain [28].

Pharmacological treatment options

Nociceptive (secondary) pain A recent Cochrane review 
concluded that there is a lack of evidence from randomized 
controlled trials when it comes to managing pain in ALS 
[83]. According to this Cochrane review from 2017, treat-

ment of nociceptive (secondary) pain in ALS should follow 
the 1990 World Health Organization Analgesic Ladder [83]. 
This approach entails the recommendation of nonsteroidal 
anti-inflammatory drugs (NSAIDs) for managing mild pain, 
and for moderate to severe pain, a combination of NSAIDs 
and either weak or potent opioids [84, 85]. The concern 
regarding respiratory depression in ALS patients receiving 
opioid treatment seems to be exaggerated, and a low-dose 
opioid therapy should typically be safe when used in con-
junction with noninvasive ventilation, according to Dorst 
et al. [86].

Neuropathic pain Neuropathic pain should be treated 
according to the guidelines. In two surveys conducted 
across 18 European ALS centers, gabapentin, pregaba-
lin, and tricyclic antidepressants were the most frequently 
employed medications for managing neuropathic pain in 
ALS patients [87, 88]. There have been just two surveys 
conducted on the utilization of cannabinoids for neuro-
pathic and nociceptive pain in ALS [89, 90]. While these 
surveys suggest that cannabis may have potential effec-
tiveness in pain reduction and could potentially comple-
ment the action of opioids, it's important to note that they 
primarily serve an epidemiological perspective and do not 
offer substantial clinical guidance [28]. Urbi et  al. pub-
lished the study protocol in 2019 for the ongoing EMER-
ALD trial which assesses the effects of cannabis-based 
medicine extract on spasticity, pain, weight loss and QoL, 
as secondary outcome measures [91].

Muscle cramps Quinine sulfate is a commonly prescribed 
drug in European countries for managing cramps but has 
not been approved by the U.S. Food and Drug Administra-
tion (FDA) [28, 31]. Also, quinine sulfate is effective for 
idiopathic muscle cramps, but there is still no randomized 
trials conducted in ALS [92]. Of note is also that quinine 
sulfate carries the potential for severe side effects, includ-
ing thrombocytopenia, cinchonism, myocardial toxicity 
and interactions with other drugs [31, 88, 93]. On the other 
hand, the effectiveness of sodium channel blocker, mexile-
tine, for muscle cramps in ALS, was demonstrated in two 
randomized clinical studies at a dosage of 2 × 150 mg [94, 
95]. Alternatively, another sodium channel blocker, ranola-
zine, can be used [84], but it has only been studied in myoto-
nia so far [96]. In cases where treatment is not effective, can-
nabinoids may be considered [84]. Several other substances, 
such as baclofen, memantine, vitamin E, and L-threonine, 
have not demonstrated notable effects in alleviating mus-
cle cramps among ALS patients [97]. Shakuyakukanzoto 
(TJ-68), a traditional Japanese medicine used to treat mus-
cle cramps, is undergoing evaluation in a two-site, double-
blind, randomized clinical trial for its effectiveness in allevi-
ating muscle cramps in 22 ALS patients [98].
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Spasticity Baclofen, tizanidine, benzodiazepines, dant-
rolene, and carbamazepine are among the options for man-
aging spasticity [88]. However, it is important to note that 
there have been no controlled clinical trials specifically dem-
onstrating the efficacy of these medications in addressing 
spasticity in ALS patients. Given that these medications can 
lead to significant side effects, such as weakness, daytime 
drowsiness, or excessive fatigue, a cautious approach to their 
initiation, titration, and discontinuation is essential [31]. In 
a placebo-controlled randomized phase 2 trial involving 60 
ALS patients, the use of a delta-9-tetrahydrocannabinol and 
cannabidiol (THC/CBD) spray showed promise in reducing 
spasticity symptoms in patients with motor neuron disease 
and had an acceptable safety and tolerability profile [99]. 
Additionally, in cases of focal spasticity that is resistant to 
standard treatments, botulinum toxin A may be a viable 
therapeutic option [100].

Non‑pharmacological treatment options

Physical and occupational therapy should be prescribed to 
ALS patients to prevent secondary complications such as 
pain and contractures [84]. A growing body of evidence sug-
gests that the inclusion of flexibility exercises in the man-
agement of individuals with neuromuscular conditions is a 
valuable strategy for preventing the development of painful 
contractures that could disrupt their daily lives [101]. Less 
frequently employed approaches for managing secondary 
forms of pain encompass warm and cold compress therapy, 
transcutaneous electrical nerve stimulation and acupuncture 
[28]. Assistive devices, like wheelchairs, special bedding 
and mattresses, splints, canes and walkers can reduce pain 
from limited mobility, prevent joint contractures and falling 
accidents [28].

Future directions

We still have limited knowledge about the natural history of 
pain in ALS, primarily due to the absence of longitudinal 
studies. Furthermore, ALS is a substantially clinically and 
genetically heterogeneous disease [102], which underscores 
the need for extensive cohort studies to draw meaningful 
conclusions about pain in ALS. Understanding how pain 
varies in different ALS subtypes or genetic backgrounds is 
crucial. To address this gap, future research should adopt 
a multicenter and longitudinal approach, involving a sub-
stantial number of ALS patients, and utilize validated meas-
ures. Moreover, it is evident that certain ALS patients may 
concurrently experience various pain mechanisms. This 
underscores the significance of prioritizing the development 
of new standardized measures that can comprehensively 
encompass and address these various pain mechanisms in 
ALS. There is a complete lack of randomized clinical trials 

assessing specific pharmacological treatment options in 
treatment of pain in ALS. General practitioners and neu-
rologists should be more educated about the presence and 
mechanisms of pain in ALS. Future clinical trials should 
also utilize validated screening methods to assess the pain 
development under investigated medication.

Fatigue

Fatigue is defined as an overwhelming sense of tiredness, 
lack of energy, and a feeling of exhaustion [103], and it 
has been reported in a wide range of both neurological 
[104–108] and non-neurological diseases [109–113]. It can 
be classified into peripheral and central fatigue. Regarding 
neuromuscular disorders, peripheral fatigue emerges as a 
direct consequence of diminished muscle endurance attribut-
able to nerve, muscle, or neuromuscular junction dysfunc-
tions. In contrast, central fatigue presents as an all-encom-
passing feeling of lethargy and reduced vitality, regardless of 
muscle weakness or pain, frequently hindering both mental 
and physical activities [114].

Fatigue is a largely overlooked clinical concern in ALS, 
often evading the notice of healthcare professionals who 
provide care for individuals with ALS. Nonetheless, it is 
very important to assess this non-motor symptom in ALS 
patients, since it can seriously lower the QoL of the patients 
[115–117]. In ALS, both central and peripheral fatigue 
play a significant role. Dysfunction of lower motor neurons 
results in motor units' inability to sustain a given level of 
activity, leading to peripheral fatigue. In contrast, impair-
ments at the spinal and/or cortical level reduce voluntary 
drive, causing central fatigue [118]. Beyond the physical 
factors contributing to fatigue, ALS patients also contend 
with associated factors that can exacerbate fatigue symp-
toms. These may encompass depression, sleep disturbances, 
respiratory issues, and weight loss [118]. Additionally, the 
medications often prescribed to ALS patients, such as those 
used to manage spasticity (e.g., baclofen), antidepressants, 
and anticholinergic drugs have the potential to further inten-
sify fatigue symptoms [118].

Prevalence of fatigue in ALS

Hamad et al. recently conducted a meta-analysis, which 
included 11 studies (eight cross-sectional and three longitu-
dinal) that analyzed fatigue using a validated tool with a spe-
cific cutoff value [119]. This meta-analysis encompassed a 
total of 1072 ALS patients. The pooled prevalence of fatigue 
was 48% (95% CI 40–57%). The included studies exhibited 
significant heterogeneity (I2 = 85%, p < 0.01). The study 
by Vogt et al. reported the highest prevalence of fatigue at 
76.7%, based on an assessment of 121 patients with a mean 
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ALSFRS-R score of 27.8 ± 9.5, using the Fatigue Severity 
Scale (FSS) [117]. In contrast, An et al. found the lowest 
reported prevalence of fatigue at 32.6% in 175 included 
ALS patients, with a mean ALSFRS-R score of 39.5 ± 1.5, 
also using the FSS [120]. Hamad et al. further reported that 
the prevalence of fatigue was higher in studies with lower 
ALSFRS-R scores (< 30) compared to studies with higher 
ALSFRS-R scores (≥ 30). The pooled prevalence of fatigue 
was 62% (95%  CI 43–79%) and 43% (95%  CI 37–49%), 
respectively [119].

Factors associated with fatigue in ALS patients

Fatigue exhibits a negative association with the ALSFRS-R 
score [115, 120–123]. Hamad et al. proposed that this cor-
relation may be attributed to reduced functionality, dimin-
ished QoL, higher pain levels, advanced disease progres-
sion, and muscle weakness [119]. Moreover, various studies 
have revealed a negative correlation between fatigue and 
QoL [115–117], forced vital capacity [121] and sleep qual-
ity [121]. On the other side, a positive association has been 
observed between fatigue and pain [16, 115], sleepiness 
[120, 121] and depression [121, 122]. Hamad et al. found 
no significant correlations between fatigue and sample size, 
gender distribution (number of males), duration of disease, 
or publication year [119].

Treatment of fatigue in ALS

Pharmacological treatment of fatigue in ALS

Currently, there is no established evidence-based treatment 
for fatigue in ALS due to the limited and low-quality evi-
dence available from randomized controlled trials [124]. 
However, the 2012 European Federation of the Neurologi-
cal Societies (EFNS) guidelines suggest that modafinil may 
be a consideration for treating debilitating fatigue in ALS 
[125]. Modafinil is an FDA-approved treatment for fatigue 
and excessive daytime sleepiness in narcolepsy. The precise 
mechanism by which modafinil reduces fatigue in neurologi-
cal conditions remains uncertain. Some observations sug-
gest that modafinil may promote wakefulness through the 
activation of the histaminergic system [126] or by increasing 
glutamate levels and decreasing gamma-aminobutyric acid 
(GABA) levels in CNS, particularly in regions that control 
the sleep-wakefulness cycle [127]. In ALS, an open-label 
study showed a decrease in fatigue severity by 17%, and 
sleepiness by 45% following a 2-week course of modafinil 
[128]. Furthermore, in a small placebo-controlled trial 
in 32 ALS patients, modafinil showed a response rate of 
86% (compared to 14% in placebo group), and the num-
ber needed to treat was 1.6 [129]. However, according to 
the latest Cochrane review from 2018, it is still uncertain 

whether modafinil could be of benefit [124]. Furthermore, 
Rosenfeld et al. measured fatigue during isometric contrac-
tion in their multicenter, double-blinded study and found no 
significant improvement after 9 months of treatment with 
creatine monohydrate [130]. In a small randomized double-
blind, crossover trial conducted by Bertorini et al., involving 
13 patients diagnosed with motor neuron disease, the drug 
amifampridine (voltage-gated potassium channel blocker) 
exhibited a modest improvement in subjective fatigue scores 
following 4 weeks of treatment compared to a placebo [131]. 
Finally, it is crucial to consider discontinuing medications 
if fatigue is recognized as a potential side effect of drug 
therapy, as recommended by the latest guidelines from the 
European Academy of Neurology (EAN) [85].

Non‑pharmacological treatment of fatigue in ALS

In healthy individuals, physical activity enhances the effec-
tiveness of the neuromuscular system and reduces fatigue 
[132]. In the context of ALS, several interventions, such as 
treadmill ambulation [133], muscular exercise [134], and 
repetitive transcranial magnetic stimulation [135], have been 
examined as potential strategies to alleviate fatigue. Sanjak 
et al. investigated repetitive rhythmic exercise through sup-
ported treadmill ambulation training, performed three times 
a week for 8 weeks by nine ALS patients [133]. The study 
found no significant changes in the FSS score. Drory et al. 
conducted a study involving 25 ALS patients, where some 
were randomly assigned to a daily exercise regimen, while 
the rest adhered to their typical activity levels [134]. The 
exercise group showed minimal changes in the FSS score, 
while the control group experienced an increase. However, 
the difference between the two groups did not reach statisti-
cal significance. Zanette et al. assessed the effects of repeti-
tive transcranial magnetic stimulation in 10 ALS patients 
and reported no significant alterations in FSS scores after a 
2-week period. A Cochrane review has also concluded that 
there is insufficient evidence that breathing exercises, resist-
ance exercise, or repetitive transcranial magnetic stimulation 
are of benefit in ALS [124].

Future directions

Given that behavioral symptoms like apathy are commonly 
observed in ALS [136], it is crucial for future research to 
explore how these symptoms intersect with fatigue and con-
tribute to its severity. While earlier studies used a cross-
sectional approach to examine fatigue in ALS, there is a 
clear need for longitudinal studies to uncover its natural his-
tory in ALS. Moreover, employing comprehensive assess-
ment tools, such as the Multidimensional Fatigue Inventory 
(MFI), which examine both the physical and mental aspects 
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of fatigue, would be more beneficial than using unidimen-
sional ones like the FSS.

Autonomic dysfunction in ALS

As previously mentioned, ALS is now acknowledged as a 
multisystem disorder, involving impairment of the auto-
nomic nervous system as well [137–139]. Dysautonomia 
in ALS is often overlooked in routine clinical practice. 
However, studies have yielded conflicting results, with 
some reporting a relatively high frequency of autonomic 
dysfunction [139], while others report a much lower fre-
quency [140]. The study conducted by Piccione et al. on 132 
ALS patients revealed that one-third of patients experienced 
autonomic symptoms. Among these symptoms, urinary and 
gastrointestinal issues were the most prevalent. However, the 
degree of autonomic impairment was generally mild in the 
majority of cases (85%), moderate in 15%, while none of the 
patients demonstrated severe generalized autonomic failure. 
Notably, patients with predominantly upper motor neuron 
affection had more severe autonomic impairment [139].

Affection of the urogenital system

Symptoms of lower urinary tract involvement have been 
reported to occur in ALS patients with a prevalence ranging 
from 4 to almost 45% [141–144]. While medication usage 
and decreased mobility may play a role in exacerbating uri-
nary symptoms in ALS [145], it has been suggested that 
neurogenic bladder is the primary cause in the majority of 
cases [144]. Among these symptoms, urgency urinary incon-
tinence emerges as the most prevalent presentation, leading 
to an increased burden of disease [141, 143, 144]. A post 
void residual (PVR) of > 50 ml was found in 24–35% of 
patients [144, 146], and this was found to correlate with an 
increased ALSFRS-R and lower limb affection. In a study 
by Arlandis et al., urodynamic studies on 10 ALS patients 
revealed that detrusor overactivity with obstruction, primar-
ily due to non-relaxing external sphincter (five patients) or 
bladder neck (two patients), was the most common cause 
of increased PVR [144]. Vázquez-Costa et al. observed 
that patients reporting early (< 2 years after disease onset) 
lower urinary symptoms, especially neurogenic bladder dis-
orders, have a worse survival rate than patients with later 
onset [145]. Interestingly, clinically significant lower urinary 
tract symptoms appear to be independent of age, phenotype, 
disability, cognitive or behavioral impairment, or disease 
progression, while female sex appeared to be a protective 
factor [145].

The underlying mechanisms of urinary symptoms in 
ALS are not well understood. Various central and peripheral 
nervous system structures are involved in the two phases of 

micturition: storage and voiding phase. Generally, suprapon-
tine (predominantly storage symptoms), spinal (infrapon-
tine–suprasacral) (both storage and voiding symptoms) or 
sacral/infrasacral lesions (predominantly voiding symptoms) 
can cause the neurogenic bladder. Vázquez-Costa et al. 
conducted a study which revealed that the majority of ALS 
patients experiencing lower urinary symptoms reported both 
storage and voiding symptoms, suggesting that an infrapon-
tine–suprasacral lesion may be the underlying cause of these 
symptoms in motor neuron disease [145]. Moreover, earlier 
studies have identified the involvement of both the sacral 
intermediolateral nucleus and Onuf's nucleus (distinct group 
of neurons located in the ventral part of the anterior horn of 
the sacral region of the spinal cord), which play critical roles 
in autonomic bladder function [147, 148].

Various treatment options are available for manag-
ing lower urinary symptoms, ranging from conservative 
approaches (behavioral therapy, antimuscarinic agents, 
desmopressin, onabotulinumtoxin A injections into the det-
rusor, β3-adrenoceptor agonists, and tibial neuromodulation) 
to surgical interventions (sacral neuromodulation, bladder 
augmentation, sacral deafferentation/anterior root stimu-
lation, and continent/incontinent urinary diversion) [149]. 
According to a study by Samara et al., catheterization, oxy-
butynin, and doxazosin were identified as the most effective 
interventions and medications for treating urinary symptoms 
in ALS, according to the patients [150].

Gastrointestinal symptoms

Symptoms of bowel movement dysfunction are common in 
ALS patients [141, 150]. Constipation is the most commonly 
reported issue by patients, and its frequency tends to increase 
with disease progression. In a study performed by Samara 
et al., approximately 30% of the patients had obstipation, 
increasing to 60% on the second follow-up appointment 
6–12 months after diagnosis [150]. Bowel incontinence was 
uncommon, reported by only 9% of patients, and this preva-
lence did not change as the disease advanced [141, 150]. In 
patients on ventilators who are in total locked-in states and 
live beyond respiratory failure, loss of anal sphincter func-
tion has been described [151]. This is further confirmed by 
de Carvalho et al. who showed affection of the external anal 
sphincter by single fiber electromyography, despite loss of 
muscle fiber density in semimembranosus-semitendinosus 
muscles [146]. Additionally, it has been shown that ALS 
patients have a delayed colonic transport time. Toepfer et al. 
have shown by multiple-ingestion single-radiograph tech-
nique that patients exhibit a significantly decreased right and 
left colonic transit [152].

ALS can cause gastrointestinal symptoms through various 
pathophysiological pathways. Neurons in the Onuf’s nucleus 
have been found to atrophy in ALS patients [147–149]. This 
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finding could potentially contribute to the loss of control of 
the external anal sphincter. Furthermore, there is evidence 
suggesting that the enteric nervous system may be affected 
by ALS. In the TDP-43 A315T mouse model, a decrease 
in nitric oxide synthase (NOS) neurons in the myenteric 
plexus has been observed, contributing to intestinal dysmo-
tility [153].

Treatment of bowel movement disorder primarily 
revolves around managing constipation. The most effec-
tive medications were found to be docusate sodium salts 
and polyethylene glycol. Non-medication-based treatments 
included an increase in dietary fiber and fluid intake [150].

Cardiovascular symptoms

Already in the early stages of disease, ALS patients exhibit 
reduced heart rate variability (HRV) and an increased resting 
heart rate [154–156]. A decreased HRV coefficient of vari-
ation has been shown to precede unexpected death in ALS 
[157]. Especially in ventilated patients, circulatory collapse 
following an autonomic storm has been reported as a com-
mon cause of death. These patients exhibited nightly hypo-
tension without a corresponding increase in tachycardia, 
ultimately leading to circulatory collapse and death [158]. 
Cardiac magnetic resonance tomography revealed reduced 
ejection volumes in the left and right heart in ALS patients 
compared to healthy controls. Rosenbohm et al. showed that 
ALS patients had an increased T1 enhancement in cardiac 
magnetic resonance tomography in 77% of the patients com-
pared to 27% of controls [159].

Cardiovascular symptoms in ALS could be attributed to 
an imbalance in the sympathetic and parasympathetic nerv-
ous system. A study conducted by Tanaka et al., utilizing 
[123I] MIBG scintigraphy to indicate cardiac sympathetic 
activity, revealed that some ALS patients exhibit sympa-
thetic hyperactivity at the time of diagnosis [160]. Sympa-
thetic affection was linked to disease progression and worse 
outcomes. Additionally, norepinephrine serum and cerebro-
spinal fluid levels are elevated in ALS patients [161, 162]. 
The elevation of norepinephrine levels in ALS patients is a 
subject of dispute, with some suggesting it may be second-
ary to factors like respiratory distress [163], while others 
argue it may be primary and linked to the pathophysiol-
ogy of ALS [162]. In addition to a hyperactive sympathetic 
state, there appears to be a parasympathetic dysfunction. 
ALS patients had a significant decreased cross-sectional area 
(CSA) of the vagal nerve compared to controls [138]. This 
combination of parasympathetic hypofunction and sympa-
thetic hyperfunction could explain the increase in resting 
heart rate loss of HRV and thereby sudden circulation failure 
in late-stage ALS patients.

Treatment options of cardiovascular symptoms in ALS 
are very limited. A clinical trial investigated the effects of 

intrathecally administered brain-derived neurotrophic fac-
tor (BDNF) on autonomic functions in 10 patients with 
ALS. The trial did not show success, and the authors con-
cluded that autonomic nervous system function deteriorates 
alongside poorer motor performance, independently from 
treatment with BDNF [164]. In another study, tamsulosin 
hydrochloride was evaluated for its effect on decreasing 
serum norepinephrine levels in ALS patients. Forty-one 
ALS patients received an oral dose of 0.2 mg/day tamsulo-
sin for 4 weeks, resulting in a significant reduction of serum 
norepinephrine levels. However, no significant differences 
were observed in HRV or blood pressure [162].

Cardiovascular comorbidities in ALS

Retrospective cohort studies have revealed substantial dis-
parities in the occurrence of specific concurrent comorbidi-
ties among individuals affected by ALS when compared to 
the general population [165]. For example, German cohort 
studies analyzing comorbidities prior to ALS diagnosis 
discovered that although cardiovascular risk factors were 
the most prevalent among ALS patients, their occurrence 
remained notably higher in the general population compared 
to the ALS-affected cohort [166, 167]. Many studies pro-
posed the existence of a potential shared mechanism con-
necting a favorable cardiovascular fitness profile and sus-
ceptibility to ALS [168, 169]. Xu et al. conducted a recent 
systemic review encompassing 17 studies to explore the 
prevalence and impacts of cardiovascular diseases on ALS. 
They found substantial regional variations in the prevalence 
of cardiovascular conditions [170]. Hypertension was high-
est in France (57%) [171], Portugal (48%) [172, 173], while 
the Netherlands [174] and Poland [175] reported lower rates 
at approximately 26% and 23% respectively. Chinese ALS 
patients had even lower prevalence of hypertension at 15% 
[176]. In Germany, around 10% and 5% of ALS patients 
experienced cardiac arrhythmia and heart failure respec-
tively [166, 177]. Conversely, in the United States, coronary 
heart disease afflicted 24% of ALS patients [178], whereas 
Denmark and the Netherlands exhibited notably lower rates 
ranging from 4 to 5% [174, 179]. Remarkably, Danish ALS 
patients showed the highest prevalence of heart diseases, 
reaching almost 24% [179]. Xu et al. concluded that hyper-
tension could notably decrease the survival of ALS patients, 
while coronary heart disease could significantly elevate 
the risk of developing ALS and therefore suggested to pay 
special attention to this subset of ALS patients in routine 
clinical practice [170]. Kim et al. have released a preprint 
(pending peer-review) proposing that treatment with riluzole 
is linked to a reduced incidence of heart failure. This might 
suggest a potential preventive strategy for early management 
[180].



Journal of Neurology 

Future directions

Limited understanding exists regarding whether autonomic 
symptoms in ALS are secondary manifestations due to mus-
cle weakness, dysphagia, or respiratory issues, or if they 
arise from primary neurodegeneration affecting non-motor 
brain regions. Often, these symptoms are overlooked in 
routine clinical practice. Conducting thorough examina-
tions of these symptoms can offer valuable insights into 
disease mechanisms and contribute to enhancing QoL for 
patients. Do compensatory mechanisms effectively obscure 
the clinical presentation of autonomic symptoms? Certainly, 
there is a significant need for multicenter studies with a lon-
gitudinal design, involving a large ALS patient cohort, for 
comprehensive assessment of autonomic nervous system 
involvement in ALS. The development of a self-reported, 
ALS-specific questionnaire assessing the autonomic nervous 
system should be considered for the future, both for every-
day practice as well as clinical trials. Additionally, there is 
a necessity for further research into treatment options tar-
geting the sympathetic and parasympathetic imbalance to 
prevent sudden death in patients with advanced ALS.

Sleep disorders

Sleep disorders can be generally categorized into six groups: 
insomnia, sleep-related breathing disorders, central disorders 
of hypersomnia, circadian rhythm sleep–wake disorders, 
parasomnias, and sleep-related movement disorders [181]. 
Sleep disturbances are common in neurodegenerative dis-
orders such as Alzheimer’s, Parkinson’s, and Huntington’s 
diseases, and this trend likely extends to ALS [182]. Sleep 
disorders are frequently observed and can emerge as an early 
sign of ALS, yet they might remain undetected until the 
disease progresses to its later stages [183]. Overall, 50–63% 
of patients with ALS have poor sleep quality [184]. In ALS, 
research has primarily focused on sleep-related breathing 
disorders, followed by insomnia, parasomnias, and sleep-
related movement disorders. Notably, hypersomnia or circa-
dian rhythm sleep–wake disorders have not been assessed in 
ALS so far. Sleep disorders significantly impact the health-
related QoL, psychological well-being, and day-to-day func-
tioning of affected individuals and therefore require more 
thorough investigation [121, 183, 185–187].

Hypothalamus and ALS

The hypothalamus, known for regulating sleep cycles and 
the endocrine system, has shown evidence of involvement 
in ALS, with observed hypothalamic atrophy and pTDP-43 
aggregation in morphological and pathological studies [188, 
189]. Disruptions in hormone systems, including growth 

hormone/insulin-like growth hormone-1, melanocortin and 
the hypothalamic–pituitary–adrenal axis, are also noted 
in ALS [190–195]. While Gnoni et al. hypothesized that 
hypothalamic dysfunction may play a key role in the sleep 
disturbances exhibited by ALS patients, the limited number 
of studies prevents definitive conclusions [196]. It appears 
that not all sleep disturbances in ALS can be solely linked 
to hypothalamic pathology, as some might be a result of 
disease-related factors.

Sleep‑related breathing disorders

In ALS patients, sleep-related breathing disorders pri-
marily involve nocturnal hypoventilation and obstructive 
sleep apnea, with central sleep apnea being a rare occur-
rence [197]. The majority of ALS patients experience res-
piratory muscle weakness due to bilateral degeneration of 
phrenic nerve motor neurons, leading to progressive dia-
phragm weakness. This heightens the risk of developing the 
most common sleep-related breathing disorder, nocturnal 
hypoventilation, particularly during rapid eye movement 
(REM) sleep, where muscle atonia occurs [197]. Obstruc-
tive sleep apnea is less common in ALS and less prevalent 
in patients with severe bulbar dysfunction, probably due to 
tongue atrophy [198, 199]. Also, sleep apnea often accom-
panies nocturnal hypoventilation [198]. In Boentert et al.'s 
study, encompassing 250 non-ventilated ALS patients, out 
of 3309 recorded apnoeic events, 71.3% were classified 
as obstructive, 23.3% as central, and 5.4% as mixed type 
[198]. Symptoms of sleep-related breathing disorder com-
prise sleep fragmentation, nonrestorative sleep, morning 
headache, daytime fatigue, and excessive sleepiness [199]. 
Regular evaluation of these symptoms during patient visits 
helps assess the need for polysomnographic testing. Apneas, 
hypopneas, and compromised gas exchange correlate with 
decreased sleep efficiency, frequent shifts in sleep stages, 
arousals from sleep, and a decrease in N3 (deep) or REM 
sleep [197]. The recognition of obstructive sleep apnea dur-
ing diagnostic sleep assessments has been associated with 
reduced survival rates in ALS. This underscores the sig-
nificance of early detection of obstructive sleep apnea in 
individuals with ALS [200].

Parasomnias and insomnias

The parasomnias can be divided into non-rapid eye move-
ment (NREM) related (confusional arousal, sleepwalking, 
and sleep terrors), rapid eye movement (REM) related, 
and other [181]. There isn't any compelling evidence sug-
gesting that NREM parasomnias occur frequently among 
patients with ALS. REM parasomnias are usually linked to 
α-synucleinopathies (such as Parkinson’s disease, demen-
tia with Lewy bodies, and multisystem atrophy) [201]. 
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However, REM parasomnias can be a crucial feature in some 
tauopathies (such as anti-IgLON5 disease) as well [202]. 
Some pathological studies found Bunina bodies and inclu-
sions of pTDP-43 protein in potentially REM controlling 
brainstem areas, e.g. in locus coeruleus [203] and in the 
reticular formation of severely affected ALS patients [204]. 
There's a general lack of understanding regarding REM 
behavioral disorders in ALS, with the prevailing belief 
that it might manifest in only a limited subset of patients 
[199]. Two studies observed a lower REM atonia index and 
a higher frequency of chin/leg movements per hour of sleep 
among ALS patients compared to a healthy control group 
[205, 206]. Notably, both of these measures exhibited a sig-
nificant correlation with the ALSFRS-R score, indicating a 
link between these sleep-related parameters and the severity 
of ALS symptoms.

Insomnia disorders can be generally divided into chronic 
insomnia disorders, short-term insomnia disorders and oth-
ers [181]. The clinical criteria defining chronic insomnia 
involve reported difficulties in falling or staying asleep, ade-
quate opportunities for sleep, and resulting daytime conse-
quences [181]. The prevalence of insomnia in ALS patients 
is estimated to range between 48 and 69% [185, 187, 207]. 
It is worth noting that these studies relied on self-reported 
measures rather than employing the aforementioned diag-
nostic criteria for defining an insomnia disorder. Insomnia in 
ALS patients can also arise from factors such as immobility, 
muscle cramps and nocturnal pain, and difficulty in adjust-
ing positions in bed, emotional distress associated with the 
disease, and the impacts of medications used in treatment 
[199].

Restless legs syndrome

Restless legs syndrome (RLS) is a common neurological 
sensorimotor sleep disorder characterized by an irresistible 
urge to move the legs, often accompanied by uncomfort-
able or unpleasant sensations [208]. These symptoms typi-
cally occur during periods of rest or inactivity, particularly 
in the evening or at night, and can be partially or completely 
relieved by movement [208]. The discomfort and restless-
ness often lead to sleep disturbance, which can significantly 
impact an individual's QoL and daily functioning [208]. 
The exact cause of RLS is not entirely understood, but it 
is believed to involve both genetic and environmental fac-
tors. Certain conditions, such as iron deficiency, anemia, 
pregnancy, end-stage renal disease, diabetes mellitus, and 
peripheral neuropathy, can exacerbate or contribute to RLS. 
Many neurodegenerative diseases, including Parkinson's 
disease, spinocerebellar ataxias, Huntington's disease, and 
hereditary spastic paraparesis, have been associated with 
a higher occurrence of RLS [209–212]. So far, only four 

studies assessed this non-motor symptom in ALS patients 
[213–216].

Epidemiology and characteristics of RLS in ALS

Among the general adult population, reported prevalence 
rates for RLS typically range between 5 and 15%, primar-
ily observed in studies within Caucasian populations. Con-
versely, in regions like Asia and South America, a lower 
prevalence is noted, with estimates ranging from 1.6 to 
2.0% [217–219]. RLS prevalence in ALS cohorts worldwide 
varies from 14.6 to 25% [199]. These studies consistently 
demonstrate a higher prevalence of RLS in ALS patients 
compared to the general population or control groups. How-
ever, there are exceptions; for instance, one study in a small 
ALS-cohort found a prevalence of only 5% in an Indian ALS 
cohort [185]. Sun et al. observed no significant differences 
between genetic and non- genetic ALS patients (32 ALS 
genes were screened by whole exome sequencing) [216].

Previous research indicates varying degrees of increased 
risk for RLS in ALS patients compared to control subjects: 
4.1-fold [214], 12.7-fold [216], and 19-fold [213]. Addi-
tionally, Lo Coco et al. noted that ALS patients reported 
a notably shorter history of RLS symptoms and a higher 
frequency of symptom occurrence compared to the control 
group [214]. Limousin et al. discovered that RLS distur-
bances preceded ALS onset in 26% of their patients [215], 
a contrast to Liu et al.'s findings where nearly all patients 
reported RLS symptoms following ALS onset [213]. Con-
cerning RLS intensity, Limousin et al. observed that RLS 
severity was rated as moderate or severe in almost all their 
patients (92%) [215].

Factors associated with RLS in ALS

Previous studies have linked the presence of RLS in ALS 
patients with several factors: higher ALSFRS-R scores indi-
cating increased functional disability [214], insomnia [214], 
older age [215], lower limb function scores on the ALSFRS-
R scale [213], excessive daytime sleepiness (EDS) and anxi-
ety [213]. Liu et al. proposed a plausible explanation for the 
association between RLS and more severe leg dysfunction, 
suggesting progressive spinal cord dysfunction as a potential 
cause. They theorized that since dopamine acts within the 
spinal cord to modulate sensory and motor functions, its 
involvement might intersect with the RLS pathway [213].

Boentert suggested that ALS patients might have a higher 
likelihood of experiencing RLS due to factors like immobi-
lization, mild sensory neuropathy, or even small fiber neu-
ropathy [197]. This suggestion finds support in Limousin 
et al.'s study, where they observed an association between 
the “turning in bed and adjusting the bedclothes” subscale 
of the ALSFRS-R score and RLS symptoms, suggesting 
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that immobility in bed may worsen leg discomfort in RLS 
patients [215]. Additionally, Boentert proposed actively 
inquiring about RLS symptoms in ALS patients.

Treatment of sleep disorders in ALS

Treatment of RLS in ALS

Customizing treatment approaches is crucial, taking into 
account the patient’s overall health, disease stage, and pres-
ence of other non-motor symptoms. Before initiating any 
treatment, confirming the presence of RLS is vital, given 
that symptoms such as pain, cramps, or edema often over-
lap with RLS [199]. Additionally, it is essential to check 
for and address iron deficiency following standard recom-
mendations [220]. Stating non-pharmacological methods as 
the initial approach for those with occasional or mild RLS 
symptoms can offer significant benefits and, at times, might 
serve as the sole treatment required [208]. Techniques like 
massage, stretching, walking, engaging in cognitive distrac-
tions such as games or puzzles, and even taking moderate 
(cold or warm) temperature baths can effectively alleviate 
RLS symptoms [208]. Suggesting these non-pharmacologi-
cal approaches as supplementary therapies can be beneficial, 
potentially reducing the need for higher doses of pharmaco-
logical treatments [208].

Approved medications for RLS treatment include, prami-
pexole (0.375–0.5 mg), ropinirole (3.0–4.0 mg), rotigotine 
(2.0–3.0 mg), and gabapentin (600–1200 mg). However, 
none of these treatment options were examined in ALS 
patients. In the authors’ opinion, it seems crucial to consider 
the presence of other non-motor symptoms, such as chronic 
nociceptive or neuropathic pain, when assessing RLS treat-
ment in ALS patients. For instance, gabapentin may be pre-
ferred for treating RLS in ALS patients experiencing chronic 
pain. Additionally, several off-label treatment options, such 
as pregabalin (150–450 mg), tramadol (200–300 mg), oxy-
codone (10–40 mg), and methadone (10–30 mg), exist for 
RLS [208]. These off-label treatments not only address RLS 
but can also aid in managing chronic pain. Their potential 
augmentation in treating chronic pain should be considered 
for selected ALS patients [199].

Future directions

Similar to other non-motor symptoms in ALS, no longitudi-
nal study assessing sleep disorders in ALS patients has been 
conducted to date. Consequently, our understanding of the 
natural history of sleep disorders in ALS remains sparse. 
The efficacy of available treatments for treating sleep disor-
ders in ALS patients has not been explored. Future studies 
should adopt a multicentric and longitudinal approach to 
investigate this. Both use of self-reported measures (such as 

PSQI and ESS) and video polysomnography are needed to 
fully understand this non-motor symptom in ALS.

Regarding RLS, it might be both misdiagnosed and 
underdiagnosed in ALS, as limb pain and cramps could 
be mistaken for RLS. A distinguishing feature could be its 
rhythmic occurrence, unlike spasms or pain, which do not 
follow a circadian rhythm. Healthcare providers should be 
aware about this symptom in ALS as it can be treated. Left 
unaddressed, RLS can disrupt nighttime sleep, exacerbate 
depression, and diminish overall QoL [221].

Cognitive and neuropsychiatric symptoms

Cognitive and behavioural dysfunction in ALS

Cognitive and behavioural abnormalities have long been 
known to be concomitant with ALS [222–224], especially 
relating to behavioural and verbal variants of the frontotem-
poral dementia (FTD) spectrum [223]. However, in ALS 
patients, cognitive dysfunction is not confined solely to the 
FTD phenotype. One meta-analysis revealed that every cog-
nitive domain, except visuoperception, is affected in ALS 
[224]. The cognitive spectrum in ALS exhibits significant 
heterogeneity, encompassing deficits in executive function, 
attention, verbal fluency, naming, language, social cognition, 
visuospatial abilities, verbal memory, and other cognitive 
domains [225]. However, the primary cognitive domains 
affected in ALS are executive, language and slightly less 
observed—memory impairment [226]. The prevalence of 
cognitive impairment (CI) varies between 30 and 75%, and 
it correlates with later disease stages, patients' genotype/
phenotype, and has an adverse impact on patient survival. 
Similar to that, behavioural dysfunction is prevalent in as 
many as half of ALS patients [225]. Apathy is the pre-
dominant behavioural change, present in as many as 60% 
of patients. Features typical of FTD, like disinhibition, 
decreased empathy, stereotyped behaviours, and dietary 
changes, are also commonly found in ALS and are often 
associated with declines in social cognition [227]. Interest-
ingly, one study showed that ALS patients with behavioural 
impairment (ALSbi) experienced more pronounced dete-
rioration in motor function compared to ALS patients with 
cognitive impairment (ALSci) [228]. The indication that 
ALS with a bulbar site of onset is more frequently associated 
with cognitive decline [223] is a subject of dispute. More 
to that, when the speed of diagnostic neuropsychological 
tests was adjusted for dysarthria, no significant difference 
between spinal and bulbar onset was found [224]. Detecting 
and monitoring CI in ALS early on is essential not just for 
prognostic reasons, but also because it could have significant 
implications for future clinical trials [229].
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Diagnosis of cognitive impairment in ALS

Diagnosing CI in ALS patients involves using specific neu-
ropsychological screening batteries, such as the Edinburgh 
Cognitive and Behavioral ALS Screen (ECAS) and the ALS 
Cognitive Behavioral Screen (ALS-CBS). These tests are 
thoroughly standardized, available in several languages, and 
can be performed in short time [230–236]. Additionally, 
screening tests such as the Mini-Mental State Examination 
(MMSE) and the Montreal Cognitive Assessment (MOCA), 
which are more applicable for primary caregivers, have been 
shown to effectively screen for CI in ALS patients [224]. 
Some other neuropsychological assessment tools, such as 
Arrows and Colors Cognitive Test [237], Sydney Language 
Battery [238], Test for Reception of Grammar [239], Frontal 
Assessment Battery [240] and Dimensional Apathy Scale 
[241] can also be useful [226].

Neuroimaging techniques serve as an essential adjunct 
to diagnostics. While ALS patients without CI commonly 
display cerebral atrophy primarily in the primary motor cor-
tex, ALSci exhibit more widespread grey matter atrophy. 
This involves not only bilateral involvement of the primary 
motor cortex but also extends to frontotemporoparietal 
regions, the somatosensory area, limbic cortex, thalamus, 
striatum, pallidum, hippocampus, entorhinal cortex, cingu-
late cortex, amygdala, bilateral cerebellum, basal ganglia, 
and various other brain regions [225, 242]. In magnetic 
resonance imaging (MRI) studies of ALSci patients carry-
ing the C9orf72 mutations, an increased pattern of cortical 
and subcortical damage has been observed. Additionally, 
there is evidence of more extensive damage to the medi-
odorsal and pulvinar nuclei in ALSci, rather than an evenly 
distributed involvement of the thalamus [243]. This thalamo-
cortico-striatal atrophy pattern is specific for the C9orf72 
genotype. In addition to the current standard of care utilizing 
MRI scans, novel FDG-PET imaging has demonstrated the 
capability to differentiate between ALS-FTD, ALSci, and 
ALS without CI [244, 245]. In ALS-FTD there is a signifi-
cant FDG-hypometabolism in the frontal lobe compared to 
ALS without CI. Patients with ALSci show an intermediate 
metabolism compared to ALS without CI and ALS-FTD. 
Interestingly, ALS-FTD displays a distinctive pattern with 
a relative hypermetabolism in the cerebellum [245].

While the level of the neurodegeneration marker neuro-
filament light chain (NfL) in serum correlates with ALS 
phenotype and disease progression, studies have not found a 
significant correlation with CI in ALS [246]. Serum NfL lev-
els in patients with ALSci do not show a significant differ-
ence compared to ALS patients without CI. However, pTau 
levels are elevated in ALSci compared to ALS without CI 
in cerebrospinal fluid [247].

Moreover, genetic testing serves as a crucial tool for pre-
dicting the development of FTD symptoms in ALS patients, 

given that the genotype in familial ALS determines the dis-
ease phenotype [248–250]. Table 1 provides an overview of 
some ALS gene mutations, their frequency, and their asso-
ciation with the FTD spectrum.

Treatment of cognitive impairment in ALS

Currently there are only limited treatment possibilities for CI 
in ALS. Treatments generally follow the regime applied for 
other forms of CI, with a focus on occupational therapy and 
speech therapy. There is evidence suggesting that patients 
with bulbar symptoms may benefit from early access to 
communication devices, enhancing patient acceptance and 
proficiency with the device as cognitive and motor skills 
decline, thereby facilitating better interpersonal participation 
[251]. A clinical trial showed efficacy of dextromethorphan/
quinidine for treatment of pathological crying and laughing, 
a common feature in ALS-FTD and ALS as signs of pseu-
dobulbar affection [252]. In a small case series, pathological 
crying also responded well to the treatment with selective 
serotonin reuptake inhibitors (SSRI) [253].

Novel gene therapies using antisense oligonucleotides 
(ASOs) may show potential in the treatment not only of 
motor symptoms but also of CI in ALS patients [254–256]. 
Of the currently established ASOs (anti-SOD1 and anti-
FUS) only the FUS gene is currently a viable target linked 
to the ALS-FTD spectrum. There has been promising first 
data of ASOs targeting C9orf72 and with it, the most fre-
quent cause for familiar ALS-FTD. In a first-in-human trial 
conducted in 2022, a patient underwent intrathecal treatment 
with anti-C9orf72 ASOs, resulting in target engagement and 
a substantial reduction of PolyGP. However, levels of NfL 
and phosphorylated Neurofilament Heavy Chain (pNFH) in 
serum and cerebrospinal fluid did not exhibit a significant 
decrease [257]. Additionally, two clinical trials, one initiated 
by Biogen (https:// inves tors. biogen. com/ newsr eleas es/ news- 
relea se- detai ls/ biogen- and- ionis- annou nce- topli ne- phase-
1- study- resul ts) and the other by Wave Pharmaceuticals 
(https:// www. theph armal etter. com/ artic le/ wave- life- scien 
ces- endsw ve- 004- progr am), were terminated due to neuro-
toxicity and/or insufficient clinical efficacy.

CI in ALS is a common cause for increase of morbid-
ity in ALS patients, for which primary care givers should 
regularly screen to quickly adapt the necessary treatment 
options. While there is currently no direct treatment for CI in 
ALS, the emergence of novel gene therapeutics offers hope 
for the future, at least for familial cases. Considering the 
predictive value of the genotype in developing ALS-FTD, 
we suppose that genetic testing should be offered to every 
ALS patient. This approach aims to enhance disease man-
agement and, if applicable, facilitate appropriate treatment 
strategies. Further research is essential, as novel therapeutics 
may only be applicable to a fraction of ALS patients with the 

https://investors.biogen.com/newsreleases/news-release-details/biogen-and-ionis-announce-topline-phase-1-study-results
https://investors.biogen.com/newsreleases/news-release-details/biogen-and-ionis-announce-topline-phase-1-study-results
https://investors.biogen.com/newsreleases/news-release-details/biogen-and-ionis-announce-topline-phase-1-study-results
https://www.thepharmaletter.com/article/wave-life-sciences-endswve-004-program
https://www.thepharmaletter.com/article/wave-life-sciences-endswve-004-program
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right genotype and as the primary readout of studies was the 
ALSFRS-R, which does not reflect CI in patients.

Depression in ALS

Depression is highly prevalent among ALS patients, with a 
meta-analysis indicating that approximately 34% (27–41%) 
of individuals diagnosed with ALS experience depressive 
symptoms [258]. This increased frequency of depressive 
symptoms is also shared with the caregivers of patients. In 
a prospective cohort study involving 33 ALS patients and 
their families, it was observed that 13% of the patients and 
29% of the relatives experienced symptoms of depression 
after the diagnosis of ALS. Interestingly, there seems to be 
no correlation between physical disability and the frequency 
of depression and mental well-being in ALS patients [259, 
260]. However, this correlation is observed in caregivers of 
the patients. In this context, there is an increase in caregiver 
burden corresponding to the escalating physical disabilities 
associated with disease progression [261, 262]. This obser-
vation could not be confirmed in a study by Chen et al., 
where no correlations were found between the decrease in 
ALSFRS-R and the severity of depression in either patients 
or caregivers.

Depression not only negatively impacts QoL but is also 
associated with a shorter survival time [263]. This can be 
partly explained by an increase in loss of appetite and weight 
loss, which, in itself, is a negative prognostic factor for ALS 
[264]. Furthermore, ALS patients have a higher risk of sui-
cide than the general population, with a particularly pro-
nounced risk in the early days after diagnosis [265].

Pathophysiology of depression in ALS

The pathophysiology underlying depression in ALS patients 
is unfortunately poorly understood. Depression solely attrib-
uted to the diagnosis can only partially account for the prev-
alence, especially considering that ALS is a multi-system 
disorder affecting various parts of CNS. Currently, there are 
no available studies providing a conclusive explanation for 
depression in ALS. A study by Benbrika et al. indicated that 
patients with elevated cortical thinning at the time of diag-
nosis more frequently exhibited depressive or anxious symp-
toms. However, over the course of the study, there was no 
exacerbation of psychological symptoms despite an increase 
in cortical thinning [266].

Treatment of depression in ALS

Due to the heavy reduction in QoL treatment of depression 
in ALS is of high importance. Depression in ALS is usually 
treated with a combination of psychotherapy and pharmaco-
logical intervention. Although there is no clinical evidence 

Table 1  Overview of some ALS gene mutations, their gene locus, 
frequency, and association with the FTD spectrum [248–250]

ALS, amyotrophic lateral sclerosis; FTD, frontotemporal dementia; 
HSP, hereditary spastic paraplegia

Gene locus Frequency in 
ALS (%)

Clinical phenotype

C9orf72 9p21.3 40–50 ALS, ALS-FTD, FTD
SOD1 21q22 20–25 ALS
TARDBP 1p36.2 4–5 ALS, ALS-FTD, FTD
FUS 16p11.2 4–5 ALS, ALS-FTD, FTD
OPTN 10p13 2–3 ALS, ALS FTD
PFN1 17p13 1–2 ALS
VCP 9p13 1–2 ALS, ALS-FTD, FTD
ANG 14q11.2 1–2 ALS, ALS-FTD
TUBA4A 2q35 1–2 ALS, ALS-FTD
UBQLN2 Xp11  < 1 ALS, ALS-FTD, FTD
TAF15 17q11  < 1 ALS
EWSR1 22q12.2  < 1 ALS
hnRNPA1 12q13  < 1 ALS, ALS-FTD, FTD
hnRNPA2B 1 7p15  < 1 ALS, ALS-FTD, FTD
SETX 9q34.13  < 1 ALS
CREST 20q13.3  < 1 ALS
MATR3 5q31.2  < 1 ALS, ALS-FTD
ATXN2 12q24  < 1 ALS, ALS-FTD,
ELP3 8p21.1  < 1 ALS
SQSTM1 5q35  < 1 ALS, ALS-FTD, FTD
ALS2 2q33.1  < 1 ALS
VAPB 20q13  < 1 ALS
SIGMAR1 9p13.3  < 1 ALS, ALS-FTD, FTD
DCTN1 2p13  < 1 ALS
FIG4 6q21  < 1 ALS
SPG11 15q21.1  < 1 ALS, HSP
NEFH 22q12.2  < 1 ALS
NTE 19p13  < 1 ALS, HSP
PON1 7q21  < 1 ALS
DAO 12q22  < 1 ALS
CHRNA3, 15q24,  < 1 ALS
C19orf12 9q12  < 1 ALS
ALS3 18q21  < 1 ALS
ALS7 20p13  < 1 ALS
ALS6 6p25  < 1 ALS
ALS 16p12  < 1 ALS-FTD
TBK1 12q14.2  < 1 ALS, ALS-FTD, FTD
CCNF 16p13.3  < 1 ALS, FTD
NEK1 4q33  < 1 ALS
CHCHD10 22q11.23  < 1 ALS
ANXA1 10q22.3  < 1 ALS
C21orf2 21q22.3  < 1 ALS
TIA1 2p13.3  < 1 ALS
KIF5A 1q24.2  < 1 ALS, ALS-FTD
SMN 5q13  < 1 ALS
KIFAP3 12q13.3  < 1 ALS
CHGB 20p12.3  < 1 ALS
CHRNA4 20q13,  < 1 ALS
CHRNB4 15q24  < 1 ALS
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supporting the pharmacological treatment of depression in 
ALS, there is a general consensus on the use of SSRIs or 
tricyclic antidepressants. These medications have shown 
efficacy in managing depressive symptoms in patients with 
other major and potentially life-threatening comorbidities, 
such as cancer [267]. There is limited evidence for a benefit 
of cognitive behavioral therapy in ALS patients suffering 
from depression [268]. Gould et al. showed the feasibility of 
engaging people living with motor neuron disease in Accept-
ance and Commitment Therapy, an acceptance-based behav-
iour therapy, which was positively received by this particular 
population. Moreover, despite the expected deterioration in 
disease-related functioning and health status, anxiety levels 
and psychological QoL exhibited improvements over the 
6-month period. A fully powered randomized controlled trial 
is underway to evaluate the clinical and cost-effectiveness 
of Acceptance and Commitment Therapy for people living 
with motor neuron disease [269].

Despite experiencing similar rates of depressive symp-
toms as ALS patients, their caregivers receive, on average, 
less frequent treatment for depression, whether psychothera-
peutically or pharmacologically. This discrepancy should be 
considered by clinicians treating ALS patients, as caregiver 
burden is correlated with their depression and anxiety. Pro-
viding sufficient support to caregivers is crucial for enhanc-
ing patient well-being [270].

Future directions

CI continues to be a source for increased morbidity in ALS 
patients especially for patients suffering from ALS-FTD. 
However, more widespread awareness and more routinely 
performed genetic testing will allow faster diagnosis, thereby 
leading to faster access to the necessary support in the pri-
mary care setting. It remains to be seen how novel treatment 
possibilities affect the cognitive decline. With the current 
advent of gene therapies for several types of familiar ALS 
having the potential to significantly slow the progress of 
neurodegeneration there needs to be future research focused 
on the CI in the addition to the motor symptoms. Routinely 
testing, also in everyday practice, using the available bedside 
test or if possible self-reported questionnaires will allow for 
easy assessing of the ALS cohort and thereby facilitate the 
future clinical studies needed to slow CI.

Samra et al. discovered in a substantial cohort of patients 
with FTD that incorporating a Global Motor Score into the 
 CDR® plus NACC FTLD scale (one of the main rating scales 
currently used for FTD [271]) resulted in the development of 
a new  CDR® plus NACC FTLD-M scale. This adaptation led 
to a more precise assessment of disease severity compared 
to the original scale [272]. Inspired by their approach, one 
could consider employing principal component analysis to 
incorporate cognitive features into an expanded version of 

the ALS-FRS-R scale. This holistic approach would maybe 
enable a more comprehensive evaluation of disease severity 
in ALS patients, encompassing both motor and cognitive 
dimensions.

Psychiatric symptoms in fatal diseases are common but 
often underdiagnosed and thereby naturally undertreated. 
Regularly testing and assessing the need for psychological 
support of ALS patients and their caregivers is crucial for 
early recognition of the need for both medical and therapy-
based psychiatric treatment. However, with very limited evi-
dence for the effectiveness of using antidepressants in ALS, 
there needs to be future, if possible multicentric, clinical 
trials in this area of research. Improving the treatment of the 
psychological impact of an ALS diagnosis, for both patients 
and caregivers, can lead to an increase in QoL and a decrease 
in the burden of the disease.

Metabolic abnormalities and weight loss

Weight loss is a major challenge in handling ALS patients. 
More than half of patients report significant weight loss 
at the time of diagnosis [273, 274], with those presenting 
with a bulbar onset reporting a higher percentage loss of 
body weight [275]. Interestingly, weight loss has also been 
observed in presymptomatic gene carriers of ALS [276], 
with evidence suggesting that it can precede the onset of 
weakness by more than a decade [177, 277–279]. Weight 
stability is a prognostic factor for overall survival, and a 
decrease in body weight is strongly correlated with the risk 
of death in a dose–response relationship. This correlation 
holds true for weight loss before diagnosis, but neither body 
mass index (BMI) before nor at the point of diagnosis shows 
the same correlation [280]. For every 10% weight loss, there 
is an increase in mortality of 16.5–23%, with a median sur-
vival of 14.7–30.5 months for patients with weight loss and 
22.5–48.8 months for those without [275, 281]. This effect is 
particularly pronounced in female patients, who experience 
increased weight loss after diagnosis [282].

Physiology of weight loss in ALS

Weight loss in ALS results from various factors, broadly 
categorized into reduced caloric intake and increased energy 
expenditure. Dysphagia primarily contributes to weight loss 
in ALS, but other factors such as anorexia, depression, cog-
nitive impairment, polypharmacy, and difficulties in meal 
preparation due to weakness also can lead to reduced caloric 
intake in ALS patients [283]. Between 25 and 66% of ALS 
patients report a loss of appetite, resulting in weight loss 
independent of other factors like dysphagia [264, 284–286]. 
This loss of appetite correlates with disease progression, 
especially with the bulbar subscore of the ALSFRS-R, but 
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is independent of anthropometric measures such as weight, 
BMI, fat mass, or fat-free mass [284].

The reduction in caloric intake is exacerbated by hyper-
metabolism observed in 50–80% of ALS patients [287, 288]. 
Hypermetabolic ALS patients have an increased resting 
energy expenditure (REE) of approximately 1500 kcal/24 h 
compared to 1230 kcal/24 h in normal subjects [289, 290]. 
Additionally, ALS patients also experience increased energy 
expenditure due to weakened skeletal muscles, nonfunc-
tional muscular activity, and pseudobulbar motor activities 
[291]. Metabolic alterations in ALS may be partially attrib-
uted to mitochondrial dysfunction observed in SOD1 and 
C9orf72 mouse models [292, 293]. This dysfunction results 
in reduced ATP production and increased oxidative stress, 
contributing to the metabolic changes seen in the disease. 
Furthermore, there appears to be an impairment in glucose 
metabolism in ALS mouse models. Borges et al. showed 
that in SOD1 G93A mice the pentose phosphate pathway 
is impaired. The intermediate ribose 5-phosphate has been 
shown to be decreased [294].

In addition, a loss of metabolic flexibility was found in 
astrocytes of both C9orf72 and sporadic ALS patients [295]. 
This is attributed to a decrease in glycogen phosphorylase 
and phosphoglucomutase, resulting in a reduction of gly-
cogen metabolism during times of high energy demand. 
Besides glycogen metabolism, it has been demonstrated that 
glycolysis is impaired in ALS patients.

Borges et al. demonstrated reduced total and 1−13C labeled 
lactate and alanine levels in cortex and spinal cord of SOD1 
G93A mouse model using nuclear magnetic resonance 
spectroscopy. In their study, no reduction in 1−13C-labeled 
glucose was found, suggesting a decrease in glucose metabo-
lism [296]. In humans, autopsy analysis of 33 ALS patients 
showed TDP-43 pathology in the hypothalamus, with those 
having notably reduced BMI exhibiting TDP-43 pathol-
ogy in the lateral hypothalamic area [297], suggesting that 
pathology in this region may contribute to metabolic distur-
bances and weight loss in ALS.

Dupuis et al. conducted a combined mouse and human 
study and found that ALS is associated with alterations in 
the melanocortin system [195]. Despite the administration 
of pioglitazone, ALS patients in the study did not demon-
strate weight gain, implying potential disruptions in the 
hypothalamic melanocortin pathway. However, patients 
did show reduced glycaemia and liver enzyme levels, along 
with increased adiponectin levels, which are efficacy mark-
ers in the periphery. This suggests that ALS patients did 
not merely fail to respond to the drug. Pioglitazone typi-
cally suppresses hypothalamic neurons that produce proopi-
omelanocortin (POMC), thereby increasing food intake 
[298]. The authors suggested that the already diminished 
melanocortin tone in ALS may hinder the effectiveness of 
pioglitazone in silencing POMC neurons. In presymptomatic 

SOD1 G86R mice, Dupuis et al. found a decrease of POMC 
and an increase of endogenous melanocortin inhibitor 
agouti-related peptide, fitting to the loss of pioglitazone 
effect. Furthermore, the same group of authors found that 
melanin concentrating hormone (MCH)-positive neurons are 
affected in lateral hypothalamic area in both ALS patients 
and three ALS mouse models  (SOD1G86R,  SOD1G93A and 
B6-FusΔNLS1Ldup/Crl). Continuous intracerebroventricu-
lar delivery of MCH (1.2 µg/d) induced weight gain in male 
Sod1G86R mice, increasing food intake, restoring expression 
of the appetite-related neuropeptide AgRP (agouti-related 
protein), and altering the respiratory exchange ratio. The 
authors also observed pTDP-43 pathology and neurodegen-
eration in the lateral hypothalamic area in autopsy studies of 
17 sporadic ALS cases. These findings were suggestive that 
the loss of hypothalamic MCH neurons contributes to meta-
bolic changes, including weight loss and decreased appetite.

Treatment of non‑dysphagia‑related weight loss

Stabilizing the weight of ALS patients has been the main 
goal in treatment of metabolic changes in ALS. Non-invasive 
ventilation (NIV) has been shown to significantly reduce the 
REE in ALS patients, even in non-hypermetabolic patients 
exhibiting respiratory insufficiency due to ventilatory dys-
function [299]. This reduction in energy expenditure is pos-
tulated to be due to the elimination of the energy burden on 
inspiratory neck muscles. Loss of appetite has been inves-
tigated as a secondary outcome in a randomized controlled 
trial using THC compared to placebo. In this study, 27 ALS 
patients received 5 mg THC twice per day; however, there 
was no improvement in loss of appetite in the study group 
[300]. Weight loss and the consequent disease progression 
continue to pose significant challenges in the treatment of 
ALS patients, with currently available therapeutic options 
proving inadequate in addressing these issues. As of now, 
only the early implementation of NIV has been shown to 
counteract the increase in energy expenditure and should 
be evaluated as soon as patients show ventilatory affection.

Weight loss plays a crucial role in the progression of ALS 
and should be continuously monitored. Metabolic changes, 
such as an increased REE, aggravates the risk of malnutri-
tion, which is already present due to dysphagia and reduced 
caloric intake. Strict weight monitoring should be performed 
to adjust necessary treatments, such as an early use of NIV. 
Further research in the future is needed to better understand 
and be able to influence the metabolic part of the weight loss 
equation in ALS.

In summary, it is vital to assess whether energy intake is 
insufficient relative to energy expenditure in ALS patients. 
If this discrepancy exists, efforts should be made to augment 
energy intake, either through oral route or by considering 
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placement of a percutaneous endoscopic gastrostomy (PEG) 
tube.

Future directions

Hypermetabolism undoubtedly plays a crucial role in the 
pathogenesis of ALS. While significant strides have been 
made in understanding this issue over the past two decades, 
further research is needed to fully comprehend its impact on 
disease progression and whether it serves as a pivotal trigger 
for neurodegeneration. Translational studies are essential for 
the development of effective treatments targeting metabo-
lism in ALS.

Conclusion

ALS is a multisystem disorder characterized by neurode-
generation affecting both motor and non-motor regions of 
the brain. While motor symptoms are relatively well-known, 
non-motor symptoms remain enigmatic, often overlooked, 
and consequently undertreated. Despite their association 
with lower QoL, the understanding, diagnosis, and treat-
ment of these symptoms lag behind. Comprehensive aware-
ness and recognition of these non-motor symptoms in ALS 
are crucial for accurate diagnosis and effective intervention. 
This review underscores the importance of shedding light 
on these “less-explored” aspects of ALS, emphasizing their 
impact on QoL and the necessity for improved diagnostic 
tools. Addressing the existing knowledge gaps in non-motor 
symptoms of ALS, the review underscores the necessity for 
multicentric, prospective, and longitudinal studies to unravel 
their natural history. Additionally, the urgency for develop-
ing efficient, self-reported measures for fast diagnosis and 
monitoring of non-motor symptoms in clinical practice is 
highlighted, aiming to guide timely and tailored interven-
tions. The overarching goal is to enhance our understanding 
of non-motor symptoms in ALS and pave the way for more 
effective management strategies.
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