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Abstract
Background While retinal vessel changes are evident in the eyes of patients with relapsing–remitting multiple sclerosis 
(RRMS), changes in the vasculature of possible MS mimics such as primary Sjögren’s syndrome (pSS) remain to be deter-
mined. We investigated the potential of retinal optical coherence tomography (OCT) angiography (OCTA) as diagnostic tool 
to differentiate between patients with RRMS and pSS.
Methods This cross-sectional study included patients with RRMS (n = 36), pSS (n = 36) and healthy controls (n = 30). Par-
ticipants underwent clinical examination, assessment of visual acuity, retinal OCT, OCTA, and serum markers of glial and 
neuronal damage. We investigated the associations between OCTA parameters, visual functions, and serum markers. Eyes 
with a history of optic neuritis (ON) were excluded from analysis.
Results We observed a significant thinning of the combined ganglion cell and inner plexiform layer in the eyes of patients 
with RRMS but not with pSS, when compared to healthy controls. Retinal vessel densities of the superficial vascular complex 
(SVC) were reduced in both patients with RRMS and pSS. However, retinal vessel rarefication of the deep vascular complex 
(DVC) was only evident in patients with pSS but not RRMS. Using multivariate regression analysis, we found that DVC 
vessel loss in pSS patients was associated with worse visual acuity.
Conclusions Compared to patients with RRMS, rarefication of deep retinal vessels is a unique characteristic of pSS and 
associated with worse visual function. Assuming a disease-specific retinal vessel pathology, these data are indicative of a 
differential affliction of the gliovascular complex in the retina of RRMS and pSS patients.
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Introduction

Multiple sclerosis (MS) is a chronic autoimmune disorder 
characterized by inflammation, demyelination, and axonal 
loss in the central nervous system (CNS). Ocular mani-
festations, particularly optic neuritis (ON), are commonly 
observed in individuals with MS, affecting up to 70% of 
patients during the disease course  [1]. There are multiple 
diseases with similar ocular involvement acting as poten-
tial MS mimics, such as the primary Sjögren’s syndrome 
(pSS) [2]. PSS is an autoimmune disease characterized 
by the dysfunction of exocrine glands leading to dryness 
of the mouth and eyes [3]. The lack of a gold standard 
for diagnosis and diverse manifestations lead to delayed 
diagnosis of up to 10 years and recurrent misdiagnosis as 
MS [4–8]. Neurological involvement is common and its 
prevalence varies between 10 and 60% with up to 25% 
extra-glandular ocular manifestations [9, 10].

Optical coherence tomography (OCT) has been used 
extensively in the past and allows a non-invasive high-res-
olution visualization of retinal anatomy. Thinning of inner 
retinal layers including the peripapillary retinal nerve fiber 
layer (pRNFL) and the combined ganglion cell and inner 
plexiform layer (GCIP) is consistently observed in patients 
with MS. GCIP alterations have been associated with neu-
rodegenerative processes of the CNS and are indicative 
of a worse disease prognosis. In pSS, there is contradic-
tive literature concerning changes of the retinal architec-
ture. Both a lack of alterations [11, 12] and an atrophy 
of the whole posterior pole or inner retinal layers have 
been described  [6, 7, 13]. While changes of the retinal 
architecture can be visualized by OCT, optical coherence 
tomography angiography (OCTA) complements the origi-
nal technique by providing high-resolution images of the 
retinal vasculature based on the changes of reflectivity due 
to moving blood cells. Changes of retinal vessels in MS 
have been controversially discussed [14]; however, most 
studies show a reduction of the superficial vascular com-
plex (SVC), while the DVC remains unchanged [15–17]. 
OCTA data in patients with pSS are rare. Small cohort 
studies reported a reduction of the superficial (SVC) and 
deep (DVC) vascular complex in comparison to healthy 
individuals [12, 13, 18].

Since early detection and management of ocular com-
plications in MS and pSS are crucial for preventing irre-
versible damage, this study aimed to investigate the dif-
ferences between pSS and MS patients without history 
of optic neuritis (ON) in OCTA studies. Furthermore, we 
searched for the associations of retinal vessel changes and 
alterations of the retinal architecture, visual function, and 
markers of neuronal damage generating novel hypotheses 
of the underlying pathology.

Methods

Study design

This cross-sectional cohort study included 36 patients with 
pSS and 36 sex- and age-matched patients with RRMS as 
well as 30 healthy controls (HC). Patients with pSS were 
recruited at the Department of Neurology and the Depart-
ment of Otorhinolaryngology/Head and Neck Surgery, 
Klinikum rechts der Isar, TUM School of Medicine and 
Health, between 2020 and 2022. PSS diagnosis followed 
the 2016 ACR-EULAR protocol [19], a classification sys-
tem based on five items (antibody positivity, Schirmer’s test, 
ocular staining, salivary flow rate, and lymphocytic sialad-
enitis). Patients with secondary Sjögren’s syndrome were 
not enrolled in this study. Age- and sex-matched RRMS 
patients with a comparable portion of an ON history were 
retrospectively identified from an ongoing observational 
cohort study at the Department of Neurology on the natu-
ral course of RRMS (TUM-MS). RRMS diagnostic criteria 
were retrospectively revised according to the 2017 McDon-
ald consensus criteria [20]. Age- and sex-matched controls 
were recruited from healthy volunteers at the Department of 
Neurology. The primary objective of this study was to char-
acterize the alterations of the retinal vasculature in RRMS 
and pSS, and to evaluate the capacity of OCTA to differ-
entiate between RRMS and pSS. As secondary objectives, 
we investigated associations of the retinal vasculature and 
visual acuity, disability, and soluble markers associated with 
tissue damage. All participants underwent retinal OCT and 
OCTA examination, a thorough neurological check-up with 
assessment of the Expanded Disability Status Scale (EDSS), 
evaluation of the high-contrast (HCVA) and low-contrast 
visual acuity (LCVA), and blood sampling for analysis of 
serum levels of the neurofilament light chain (NfL) and of 
the glial fibrillary acidic protein (GFAP). We took an in-
depth medical history from all individuals, particularly as 
to a history of former ON.

We excluded subjects with a substantial eye disease 
affecting the retinal architecture or vasculature like dia-
betes, and refractory errors of more than 6 diopters. Eyes 
with insufficient OCT/OCTA quality were removed from 
our study.

Standard protocol approvals, registration, patient 
consent, and data availability

This study met STROBE guidelines [21], was approved by 
the ethics commission of the Technical University of Munich 
School of Medicine (166/16S, 2023-526-S-KH, 9/15 s), and 
complied with the Declaration of Helsinki. All participants 
and patients provided written informed consent. The data are 
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not publicly available due to privacy or ethical restrictions. 
Data can be shared in an anonymized way upon reasonable 
request by any qualified investigator.

OCT and OCTA analysis

Conventional OCT images, including examination of 
pRNFL and a 30° × 25° macular scan, were acquired as pre-
viously described [22]. To ensure adequate quality control, 
all images were checked according to the OSCAR-IB cri-
teria [23]. Retinal layer segmentation was performed auto-
matically by an in-built software algorithm (Eye Explorer, 
v2.5.4) and manually corrected if needed.

OCTA data were recorded by a spectral-domain OCT 
with angiography module (Heidelberg Engineering Spec-
tralis OCT2) under low-lighting conditions on both eyes 
of each individual, as previously summarized [15]. During 
examination, en face images and decorrelation signals were 
measured within a 2.9 × 2.9 mm region of interest, directly 
focusing on the fovea centralis. An active eye-tracking 
algorithm was incorporated to minimize motion artifacts. 
Vessel densities of the superficial (SVC) and deep (DVC) 
vascular complexes were assessed within a circle around 
the fovea between 0.8 mm and 2.9 mm eccentricity (area 
6.1  mm2) using the Erlangen Angio tool [24]. A MatLab 
algorithm (MathWorks, vR2019b) was employed to quantify 
the foveal avascular zone (FAZ), as previously outlined [15]. 
To achieve maximum reliability, OCTA images underwent 
strict quality control according to OSCAR-MP criteria [25]. 
Accordingly, OCTA images with obvious problems, insuf-
ficient signal strength of Q < 30, centration errors, segmenta-
tion algorithm failure, retinal pathologies, motion artifacts 
affecting more than 25% of the image area, and projection 
artifacts were excluded. Subclinical ON was assumed when 
the inter-eye difference of pRNFL and GCIP values as meas-
ured by OCT exceeded 5 and 4 µm, respectively [26].

Assessment of the visual function

Monocular visual testing included high-contrast (100%) and 
low-contrast (2.5%) visual acuity. Individuals were asked for 
the reproduction of alphabetic characters using retro-illumi-
nated Early Treatment Diabetic Retinopathy Study charts 
(EDTRS) at a two-meter distance. Visual measurement was 
performed in best-corrected refraction, and a minimum of 
three characters in the smallest read line was necessary to 
define visual acuity as the decimal of the Snellen fraction.

Analysis of blood samples

Serum specimens were stored at −  80 degrees in the 
Biobank of the Department of Neurology (Joint Biobank 

Munich in the framework of the German Biobank Node) 
until final use. Concentrations of serum NfL and GFAP 
were calculated using ultrasensitive single-molecule array 
(Simoa) technology on an HD-X analyzer (Simoa, Quan-
terix, NF light Simoa Assay Advantage Kit, GFAP Simoa 
Discovery Kit). Samples were processed according to the 
manufacturer’s instructions. Samples exceeding an intra-
assay coefficient of variation (CV) of 10% were excluded. 
Age-dependent z-score for Nfl was generated, as previ-
ously described [27].

Statistical analysis

Statistical analyses were performed using GraphPad Prism 
(v9.3.1). To account for inter-eye correlations, we applied 
the paired eye statistical approach [28]. Mean values of 
both eyes were used as one data point if data of both 
eyes were available. To evaluate the quantitative differ-
ences between two groups, we used the unpaired t test 
if data were normally distributed and a non-parametric 
Mann–Whitney U test if not. We performed an ordinary 
one-way analysis of variance (ANOVA) with Tukey’s mul-
tiple comparisons or a non-parametric Kruskal–Wallis test 
with Dunn’s multiple comparisons to outline statistical dif-
ferences of three groups (MS, pSS, and HC). We used 
multiple linear regression models, corrected for age and 
sex, to evaluate the associations between OCT or OCTA 
values on disease patterns, markers for tissue damage, and 
visual acuity. Data are provided as median (25–75% inter-
quartile range [IQR]) and respective estimates (ß-value) 
as regression parameters. An alpha of < 0.05 was accepted 
as significant.

Results

Study cohort characteristics

In this cross-sectional study, we enrolled 36 patients with 
pSS, 36 age- and sex-matched RRMS patients, and 30 HC. 
As depicted in Table 1, ages were comparable across all 
groups, and 97% of all participants were female. No patient 
with pSS and RRMS suffered from a clinical ON in the 
past. Patients with pSS had a higher EDSS than individu-
als with RRMS and a worse visual acuity as compared to 
HC. Besides diminished visual acuity, sensory impairment 
was the predominant neurological manifestation within the 
pSS cohort, while sensory and motor function was primarily 
affected in patients with RRMS (see Table 2). Subclinical 
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ON was found in one pSS and three RRMS patients. We 
found comparable serum levels and z-scores of NfL and 
GFAP across all three cohorts (Table 1).

Alterations of the retinal architecture 
and vasculature in RRMS and pSS

We excluded 3 of 204 eyes from OCT (RRMS 1, pSS 2, HC 
0) and 38 of 204 eyes from OCTA analysis (RRMS 16, pSS 
15, HC 7) due to poor image quality. In the first step, we 
applied OCT analysis to search for alterations of the retinal 
architecture across all three groups primarily in eyes without 
a subclinical ON (sON) history. As expected [29], patients 
with RRMS but not pSS revealed thinning of the pRNFL 
and GCIP as compared to HC in eyes without a sON history 
(Fig. 1A). There were no detectable changes in retinal layer 
thicknesses between RRMS and pSS. Thickness measures 
of deeper retinal layers were comparable across all groups 
(data not shown).

In the second step, we used OCTA to evaluate changes 
of the retinal vasculature. In our study, vessel densities of 

Table 1  Demographics

Values are provided as median (25–75% interquartile range). Kruskal–Wallis test was used to analyze age, 
sex, HCVA, LCVA, NfL and GFAP and the Mann–Whitney-U test for disease duration, EDSS and IT. 
Ordinary one-way ANOVA was performed for NfL z-score analysis
EDSS Expanded disability status scale, GFAP glial fibrillary acidic protein, HC healthy control, HCVA 
high-contrast visual acuity, IT immunotherapy, NfL neurofilament light chain, pSS primary Sjögren‘s syn-
drome, RRMS relapsing–remitting multiple sclerosis, LCVA low-contrast visual acuity
a HCVA: pHC,MS > 0.99; pHC,pSS = 0.10
b LCVA: pHC,MS > 0.99; pHC,pSS = 0.12
c nRRMS = 27,  npSS = 15,  nHC = 23
d nRRMS = 25,  npSS = 15,  nHC = 23

RRMS (n = 36) pSS (n = 36) HC (n = 30) p-value

Female, no. (%) 35 (97.2) 35 (97.2) 29 (96.7) 0.99
Age, years 54 (46–58) 55 (48–61) 51 (43–56) 0.12
Disease duration, years 11 (7–14) 16 (7–26) n.a 0.07
EDSS score 1.8 (1.0–2.0) 2.5 (2.0–3.4) n.a  < 0.0001
Immunotherapy (IT) no (%) 27 (75.0) 21 (58.3) n.a 0.21
- more than 1 IT 0 (0) 5 (24) n.a
- Azathioprine 0 (0) 2 (9.5) n.a
- Metothrexate 0 (0) 3 (14.3) n.a
- Glucocorticoids 0 (0) 6 (28.6) n.a
- Hydroxychloroquine 0 (0) 10 (47.6) n.a
- Rituximab 0 (0) 3 (14.3) n.a
- Ocrelizumab 3 (11.1) 0 (0) n.a
- Interferon beta 6 (20.0) 0 (0) n.a
- Fingolimod 6 (20.0) 0 (0) n.a
- Glatirameracetate 5 (18.5) 0 (0) n.a
- Dimethyl furamate 4 (14.8) 0 (0) n.a
- others 3 (11.1) 3 (14.3) n.a
HCVA NON 1.0 (0.7–1.1) 0.8 (0.7–0.9) 0.9 (0.7–1.1) 0.02a

LCVA NON 0.3 (0.2–0.4) 0.2 (0.2–0.3) 0.3 (0.2–0.4) 0.04b

NfL (pg/mL)c 10.9 (6.9–14.2) 9.7 (7.0–13.0) 10.4 (7.9–13.0) 0.71
NfL (z-score)c 0.3 (− 0.4–0.8) 0.2 (− 0.4–1.1) 0.7 (0.3–1.2) 0.52
GFAP (pg/mL)d 113 (82–129) 94 (72–122) 110 (78–135) 0.67

Table 2  Neurological impairment in patients with pSS and RRMS

relapsing–remitting multiple sclerosis (MS), primary Sjögren‘s syn-
drome (pSS)

pSS n = 36 RRMS n = 36

Visual function, no. (%) 32 (89) 23 (64)
Brainstem function, no. (%) 19 (53) 4 (11)
Muscle and motor function, no. (%) 12 (33) 19 (53)
Cerebellar function, no. (%) 10 (28) 11 (31)
Sensory system, no. (%) 31 (86) 20 (56)
Bowel and bladder function, no. (%) 14 (39) 6 (17)
Cognitive/cerebral function, no. (%) 6 (17) 9 (25)
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the SVC were reduced in patients with RRMS and by trend 
in pSS as compared to HC irrespective of a history of ON 
(Fig. 1B). In patients with pSS without sON but not RRMS 
we observed a moderate rarefication of vessel structures 
within in DVC as compared to healthy individuals. We 
did not observe an alteration of the FAZ in any cohort. 
Ten patients diagnosed with pSS were currently undergo-
ing hydroxychloroquine therapy for an average duration 
of 6 years. Despite a reduced inner nuclear layer (INL) 
in patients with hydroxychloroquine, we did not see any 
differences in OCT or OCTA measures between patients 
receiving hydroxychloroquine and those who were not (see 

supplemental Table 2). We did not recognize any differ-
ences in both OCT and OCTA measures when comparing 
eyes of RRMS and pSS patients and a possible history of 
sON (see supplemental Table).

Association of the retinal vasculature, disability, 
and neurodegeneration

In the last step, we searched for the associations between 
retinal vessel densities, visual disability, and serum mark-
ers of glial and neuronal damage. Focusing on visual acu-
ity, SVC and DVC measures in patients with pSS but not 
RRMS showed a significant correlation with low-contrast 
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Fig. 1  Changes of the retinal architecture and vasculature in RRMS 
and pSS. A pRNFL, GCIP and INL in HC, RRMS and pSS as cal-
culated by one-way ANOVA B) SVC, DVC and FAZ in HC, RRMS 
and pSS as calculated by Kruskal–Wallis test. (A + B) Data are shown 
as median (25–75% interquartile range), symbols show individual 
patient values. DVC deep vascular complex, FAZ foveal avascular 

zone, GCIP ganglion cell and inner plexiform layer, HC healthy con-
trol, INL inner nuclear layer, MS multiple sclerosis, pRNFL peripapil-
lary retinal nerve fiber layer, pSS primary Sjögren‘s syndrome, RRMS 
relapsing remitting multiple sclerosis, SVC superficial vascular com-
plex
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visual acuity (LCVA). The DVC was also associated with 
worse HCVA in pSS only (Fig. 2). There were no associa-
tions of EDSS or neurodegenerative markers with OCT or 
OCTA measures.

Discussion

In the current study, we found distinct changes in the retinal 
architecture and vasculature in patients with RRMS and pSS. 
Individuals with RRMS revealed atrophy of inner retinal 
layers (pRNFL, GCIP) and vessel rarefication within the 
SVC whereas vessel loss within both the SVC and DVC 
was evident in patients with pSS irrespective of changes in 
the retinal architecture. Our findings are consistent with the 
idea of a disease-specific retinal vessel pathology in RRMS 
versus pSS.

Prior studies on changes in the retinal thicknesses in pSS 
are controversial [6, 7, 11, 12, 30]. As has been reported 
[11, 12], we did not see changes in the average retinal layer 
thicknesses in patients with pSS. However, a reduction of 
the total macular RNFL  [6, 30] and the whole posterior 
pole [7] have been described. Further, antibody positivity, 
especially of anti-Sjögren’s syndrome type B (anti-SS-B) 
antibodies, was shown to be associated with inner retinal 
layer atrophy [6, 30] but was not measured in our study. 

As expected, we found a reduction of the SVC in patients 
with RRMS [15–17] and pSS [13]. The loss of deep retinal 
vessels, however, was only visible in patients with pSS and 
not in patients with RRMS. This findings are coherent with 
data from smaller pSS cohorts [12, 13, 18]. In our study, the 
vessel loss of both SVC and DVC in pSS was linked to low 
visual acuity which has not been described previously. In 
contrast to vision loss in RRMS patients [31], reduced visual 
acuity was not associated with inner retinal layer thinning 
in pSS suggesting a different underlying pathophysiology.

As shown by others [18], we did not find significant 
changes in the size of the FAZ. However, alterations in 
the retinal microvasculature have been previously linked 
to an increased size and reduced circularity of the FAZ in 
diabetic retinal ischemia in particular of the deep vessels 
[32]. In other connective tissue diseases like systemic lupus 
erythematosus, an increase in FAZ sizes is controversially 
discussed, but often assumed in connection with retinal 
ischemia [33]. Assuming a similar phenotype in pSS as in 
other connective tissue diseases, an increase in FAZ area 
should be investigated with a more sensitive approach using 
longitudinal intra-individual comparisons.

Studies have shown a dosage-dependent atrophy of inner 
retinal layers and the retina pigment epithelium due to 
hydroxychloroquine [34] while others did not find any layer 
differences [7, 11]. By applying OCTA, a small cohort study 
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found retinal vessel atrophy in some sectors of the deep vas-
cular complex and in the superior sector of the superficial 
complex in pSS patients under hydroxychloroquine treat-
ment [35] while others could not find any differences [18]. 
Further, patients with various autoimmune diseases showed 
an increase in FAZ as well as decreased para-/perifoveal 
vessel densities in patients taking hydroxychloroquine for 
more than 5 years [36] while others saw an increase in ves-
sel densities [37]. Despite the exclusion of patients under 
hydroxychloroquine, pSS patients still exhibited a reduced 
vessel density [12] like our cohort which is why we assume 
a hydroxychloroquine-independent effect.

We did not see any differences in serum NfL or GFAP in 
neither pSS nor RRMS in comparison to healthy control. In 
pSS, studies have shown normal NfL levels during remis-
sion and an association of NfL with active disease [38, 39]. 
Since the pSS patients in our cohort did not show signs of 
active disease, normal serum NfL levels in our study were 
consistent with prior reports. In contrast, elevated NfL levels 
in RRMS are indicative of disease activity and have demon-
strated responsiveness to immunotherapy [40, 41]. Notably, 
RRMS exhibits a less pronounced age-related increase in 
NfL levels compared to healthy individuals and other neuro-
degenerative diseases [42]. Compared to typical RRMS stud-
ies, our cohort, with an advanced median age of 54 years, 
demonstrated a relatively benign disease course (median 
EDSS 1.8). Additionally, participating patients reported 
neither recent relapses nor relapse-independent progression 
and 75% received immunotherapy. Similar results have been 
found for GFAP levels in RRMS [43]. Considering this, our 
findings seem in line with the literature.

Different hypotheses have been proposed to explain the 
pathophysiological mechanisms behind superficial retinal 
vessel loss in MS. These include primary and secondary 
effects of either altered metabolic states of retinal cells or 
relapse-independent inflammatory processes. Firstly, inner 
retinal layers, like the GCIP and the RNFL, are supplied 
with oxygen by the SVC [44]. Acute ON [15] and retro-
grade axonal degeneration due to inflammation in the vis-
ual pathway [45, 46] lead to atrophy of inner retinal layers. 
The reduced oxygen demand might consecutively cause a 
rarefication or decreased perfusion of superficial vessels. 
Secondly, research in our group has linked inflammatory 
processes in the CNS to ON-independent superficial vessel 
loss [47]. Therefore, we suspect that inflammation-related 
mechanisms might be responsible for triggering significant 
alterations in the retinal microvasculature independent of 
relapses.

The pathophysiology behind pSS is complex and not fully 
understood [48, 49]. It involves the activation of cytokines 
like interferons, leading to B- and later T-cell activation 
and infiltration in particular of exocrine glands. It has been 
shown in the past that vision-threatening ocular involvement 

in pSS is associated with systemic disease manifestations 
like nephritis, peripheral neuropathy and vasculitis [9]. 
There are no data on retinal histology in ocular manifesta-
tions in pSS; however, nerve biopsies in peripheral neuropa-
thy have found evidence of perivascular inflammatory infil-
trates and other vessel abnormalities including (necrotizing) 
vasculitis [50]. Further it has been shown that anti-Sjögren’s 
syndrome type A (anti-SSA) antibodies are associated with 
vasculitis [51], in particular retinal vasculitis, as shown in 
a case report based on fluorescence angiography [52], and 
are more commonly observed in central nervous system 
manifestations [53]. In our study, we observed a loss of 
both superficial and deep retinal vessels without significant 
alterations of the retinal layer architecture itself. We also 
saw an association of vascular changes and not layer atrophy 
with impaired visual function. Taking this into account, we 
suspect a primarily vascular pathology in patients with pSS.

Our study has several limitations. Our samples sizes are 
limited, and we conducted an exploratory analysis without 
replication in a second. Therefore, we cannot rule out any 
false positive results. Especially pSS is a rather rare dis-
ease and larger cohorts have not been published so far. Fur-
thermore, our study contains only cross-sectional data. A 
longitudinal study with a larger sample size is necessary to 
determine changes during the disease course. Additionally, 
neurological assessments of patients with pSS relied solely 
on comprehensive clinical examinations, lacking supple-
mentary electrophysiological diagnostics or imaging. Con-
sequently, a differentiated perspective on pSS patients with 
central in contrast to peripheral nervous system involvement 
is not provided and should be the subject of further studies. 
Differential diagnosis takes place in early stages of disease 
therefore data on differences during disease onset or early 
ocular manifestations are necessary. In accordance with 
the female predominance of pSS, this study only provides 
limited data on findings in male patients with pSS. A large 
male cohort would be necessary to evaluate sex differences 
in OCT and OCTA measures in pSS. Further, pre-existing 
conditions affecting the visual system like diabetes were 
gathered through a comprehensive medical history only. An 
impact of undiscovered comorbidities on our data cannot 
be ruled out. Moreover, we were not able to include MRI 
findings or further instrumental diagnostic procedures like 
visual evoked potentials, visual field testing or electroneu-
rography into our analysis. Also, we did not use the EULAR 
Sjögren Syndrome Patient Reported Index (ESSDAI) [54] 
to quantify disease burden which impairs comparisons with 
other studies involving pSS. However, the ESSDAI com-
prises only two neurological of 12 items: CNS, including 
ocular involvement, and peripheral nervous system. There-
fore, we chose the EDSS to facilitate the comparison with 
MS patients and better captivate the neurological burden 
of disease. Furthermore, OCTA is extremely susceptible 
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to imaging artifacts, in particular in patients with impaired 
vision. In this study, OCTA examinations were conducted 
by experienced technicians and underwent rigorous quality 
control [25]. OCTA only provides data on vessel perfusion 
and not morphology. Therefore, concerning reduced vessel 
densities, we cannot differentiate between true vessel loss, 
wall thickening or constriction.

In conclusion, a distinct atrophy of retinal vessels can be 
observed during MS and pSS suggesting different underlying 
disease mechanisms. After validation in larger, longitudi-
nal cohorts, OCTA might allow for differential diagnosis of 
RRMS and pSS.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00415- 024- 12414-0.
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