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Abstract
Objective  To evaluate the performance of serum neurofilament light chain (NfL) and cerebrospinal fluid (CSF) phosphoryl-
ated neurofilament heavy chain (pNfH) as diagnostic biomarkers for the differentiation between motor neuron disease (MND) 
and multifocal motor neuropathy (MMN).
Methods  This retrospective, monocentric study included 16 patients with MMN and 34 incident patients with MND. A 
subgroup of lower motor neuron (MN) dominant MND patients (n = 24) was analyzed separately. Serum NfL was measured 
using Ella automated immunoassay, and CSF pNfH was measured using enzyme-linked immunosorbent assay. Area under 
the curve (AUC), optimal cutoff values (Youden’s index), and correlations with demographic characteristics were calculated.
Results  Neurofilament concentrations were significantly higher in MND compared to MMN (p < 0.001), and serum NfL 
and CSF pNfH correlated strongly with each other (Spearman’s rho 0.68, p < 0.001). Serum NfL (AUC 0.946, sensitivity 
and specificity 94%) and CSF pNfH (AUC 0.937, sensitivity 90.0%, specificity 100%) performed excellent in differentiating 
MND from MMN. Optimal cutoff values were ≥ 44.15 pg/mL (serum NfL) and ≥ 715.5 pg/mL (CSF pNfH), respectively. 
Similar results were found when restricting the MND cohort to lower MN dominant patients. Only one MMN patient had 
serum NfL above the cutoff. Two MND patients presented with neurofilament concentrations below the cutoffs, both featur-
ing a slowly progressive disease.
Conclusion  Neurofilaments are valuable supportive biomarkers for the differentiation between MND and MMN. Serum NfL 
and CSF pNfH perform similarly well and elevated neurofilaments in case of diagnostic uncertainty underpin MND diagnosis.

Keywords  Neurofilaments · Motor neuron disease · Amyotrophic lateral sclerosis · Multifocal motor neuropathy · 
Biomarker · Diagnostic performance

Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegen-
erative disorder characterized by motor neuron (MN) loss 
in the primary motor cortex, brainstem, and spinal cord. 
Patients typically suffer from progressive weakness of vol-
untary muscles due to lower motor neuron degeneration 
and increased muscle tone due to upper motor neuron loss 
[1, 2]. Because of its heterogeneous phenotypic presenta-
tion, in particular regarding disease phenotypes without 

clinically apparent upper motor neuron signs, the diagnosis 
oftentimes can be challenging leading to a diagnostic delay 
of 10 to 16 months [3, 4]. Until recently the diagnosis of 
ALS according to the revised El Escorial criteria (2000) 
and Awaji criteria (2008) relied on clinical signs of upper 
and lower motor neuron dysfunction possibly supported by 
electrophysiological signs of lower motor neuron dysfunc-
tion and the exclusion of mimicking diseases [4, 5]. With 
the introduction of the Gold Coast criteria in 2019, the pres-
ence of progressive motor impairment with lower motor neu-
ron dysfunction in at least two body regions is sufficient to 
diagnose ALS [6]. This increased the diagnostic sensitivity 
especially in lower MN dominant ALS and the ALS variant 
progressive muscular atrophy (PMA) with pure lower motor 
neuron affection [7]. Nevertheless, the distinction between 
ALS and common mimicking diseases such as inflammatory 
polyneuropathies remains complex. Of the inflammatory 
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polyneuropathies, multifocal motor neuropathy (MMN) pre-
sents with pure, progressive, focal motor impairment and, 
therefore, constitutes a plausible differential diagnosis to 
ALS/MND. MMN is a rare disorder with a prevalence of < 2 
per 100 000. As pathophysiological correlate of peripheral 
nerve demyelination, an antibody-mediated attack of the 
nodes of Ranvier and/or the paranodal region (nodopathy/
paranodopathy) is presumed [8, 9]. Accordingly, serum IgM 
antibodies to ganglioside GM1 (anti-GM1 antibodies) are 
present in about half of the cases of MMN, but they are not 
specific and occur in healthy controls as well as in ALS [10, 
11]. The characteristic electrophysiological finding of MMN 
is motor conduction blocks outside of typical entrapment 
sites. However, conduction blocks can be absent or elude 
routine nerve conduction studies due to proximal location 
[9, 12]. First-line treatment of MMN is repeated infusions 
of intravenous immunoglobulins (IVIg) [13, 14], and in case 
of insufficient treatment response, other immunomodulatory 
substances are used. Especially in the absence of anti-GM1 
antibodies and inconclusive electrophysiological studies, 
MMN can be confounded with a lower MN dominant ALS 
or PMA with pivotal implications regarding prognosis and 
treatment options.

The development of (fluid) biomarkers to increase diag-
nostic accuracy has been an essential objective in ALS 
research in the recent past and the Airlie House guidelines 
recommended that biomarkers should be included as a best 
practice for clinical trial design [15]. As one of the most 
promising biomarkers, neurofilaments (Nf) and their per-
formance in distinguishing ALS from ALS mimics have 
been studied extensively. Nf are cylindrical cytoskeletal 
proteins that consist of four subunits: neurofilament light 
chain, middle chain, heavy chain and α-internexin [16, 
17]. They are expressed solely in neurons and are con-
sidered as markers of axonal damage, as their expression 
in axons is particularly high. Neurofilament light chain 
(NfL) is the most abundant and most soluble subunit with 
stable concentrations in biofluids making measurements 
more reliable compared to the other subunits. Phospho-
rylated neurofilament heavy chain (pNfH), on the other 
hand, contains abundant phosphorylation sites, which are 
important for structural stability and protect the protein 
from degradation. Small amounts of Nf are constantly 
released into cerebrospinal fluid (CSF) and blood in an 
age-dependent manner, but concentrations increase to a 
various extent in different neurological conditions includ-
ing traumatic, inflammatory, and degenerative disorders 
[18, 19]. Especially in rapidly progressive diseases such 
as HIV-associated dementia, Creutzfeldt–Jakob disease or 
amyotrophic lateral sclerosis CSF Nf concentrations are 
high [18]. While their diagnostic and prognostic value in 
ALS nowadays is undisputable [20], different studies have 
reported a diagnostic sensitivity ranging from 76–100% 

and a specificity of 75–92% [21–24] depending on the 
composition of the respective control cohort. To detail the 
diagnostic value of neurofilaments, it is necessary to define 
the target population carefully and focus on conditions 
with similar clinical characteristics to MND. Therefore, 
the aim of this study was to evaluate the performance of 
serum NfL and CSF pNfH as diagnostic biomarkers for the 
differentiation between MND and MMN.

Methods

Study design and participants

This retrospective, monocentric study included patients with 
the diagnosis of MMN or MND, who underwent Nf sam-
pling in CSF and serum at the Department of Neurology at 
Hannover Medical School (Hannover, Germany) between 
2008 and 2022. Participants aged 18 years and over pre-
sented consecutively in an in-/outpatient setting either for 
primary diagnostic evaluation of suspected motor neuropa-
thy or to confirm or reevaluate a presumed MND or MMN 
diagnosis. MMN was diagnosed based on the European 
Federation of Neurological Societies/Peripheral Nerve Soci-
ety (EFNS/PNS) criteria from 2010 [14]. Briefly, presence 
of a slowly progressive, focal, asymmetric limb weakness 
without sensory abnormalities was mandatory, and respon-
siveness to immunomodulatory treatment was evaluated as 
supportive. From the total cohort of 48 cases with an initial 
MMN diagnosis in n = 9 cases, CSF sampling was not per-
formed in our clinic, leaving n = 39 potentially eligible cases. 
A subset of MMN patients had received immunomodulatory 
treatment previous to sample collection and no CSF sam-
pling was performed (n = 6). The diagnosis of MND was 
prompted by an experienced MND specialist neurologist 
according to the revised El Escorial criteria, the PLS (pri-
mary lateral sclerosis) 2020 consensus diagnostic criteria 
[25], and the Gold Coast criteria (in cases with PMA) [6]. 
As numbers of MND patients exceeded MMN patients, we 
performed backwards selection of MND patients starting in 
October 2022, which was concluded, when the year 2020 
and a similar number of potentially eligible MND patients 
compared to MMN patients was reached (n = 38). In detail, 
from a total cohort of n = 169 cases with MND diagnosis 
(October 2022 until January 2020), in n = 38 cases, neurofil-
ament sampling was performed (potentially eligible cases). 
A subset of MND patients had received immunomodulatory 
treatment due to suspected inflammatory polyneuropathy 
(n = 5), but CSF and serum sampling had been performed 
before treatment initiation in these cases. This study report 
was structured following the “Standards for Reporting Diag-
nostic accuracy studies” (STARD) updated in 2015 [26].
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Clinical parameters

Participant and disease characteristics (sex, body mass index 
(BMI), age at sampling, time of disease onset, site of disease 
onset, Medical Research Council (MRC) sum score, ALS 
Functional Rating Scale revised (ALSFRSr), electrophysi-
ological testing, anti-GM1 antibody testing, final diagno-
sis, immunomodulatory treatment, clinical follow up) were 
retrieved from medical records. Functional evaluation (MRC 
sum score [27], ALSFRSr [28]) was performed during the 
same inpatient visit as sample collection or within 12 weeks 
thereafter. The rate of change in ALSFRSr (ALSFRSr slope) 
was used to determine the rate of disease progression at 
baseline for MND patients. This was calculated as decline 
in 48-ALSFRSr score divided by the number of months 
between symptom onset and ALSFRSr assessment (with an 
interval of at least three months) [29]. To compare severity 
between the two diseases, an MRC sum score was calculated 
by assessing eight muscle groups bilaterally. The muscle 
groups comprised shoulder abductors, elbow flexors, wrist 
extensors, thumb abductors, hip flexors, knee extensors, foot 
and big toe dorsiflexors, resulting in a maximum score of 80 
points (0–5 points per muscle group and side).

To further narrow down the study population to patients 
with a likely MMN differential diagnosis, a subset of lower 
MN dominant MND patients was defined: for attribution 
to the lower MN dominant MND subgroup, electrophysi-
ological signs of active lower MN denervation needed to be 
present in two or more regions in the absence of prolonged 
central motor conduction time, and clinical pyramidal tract 
signs (spastic increase in muscle tone, clonic deep tendon 
reflexes, extensor plantar response, Hoffmann reflex). Pre-
served deep tendon reflexes in a paretic limb were present in 
all but one MND patients and did not constitute an exclusion 
criterion for the lower MN dominant MND subgroup.

Sample collection Nf quantification

Paired CSF and serum samples were obtained by lumbar 
puncture and consecutive venipuncture performed during 
routine clinical workup at the Department of Neurology, 
Hannover Medical School, Hannover, Germany between 
2008 and 2022. Blood and CSF samples were collected in 
serum separator tubes and polypropylene centrifuge tubes, 
respectively. Serum was centrifuged at 3500 rpm for 10 min, 
CSF was centrifuged at 900 rpm for 15 min, both at 4 °C, 
and the supernatant was aliquoted into sterile microtubes for 
storage at -80 °C within 2 h. Samples were thawed, aliquoted 
into polypropylene tubes, refrozen and shipped on dry ice to 
Neurochemistry Laboratory at Ulm University, Ulm, Ger-
many in 2022 and 2023, where NfL and pNfH analyses were 
performed.

NfL in serum was measured using Ella automated immu-
noassay system (bio-techne GmbH, Minneapolis, USA), while 
pNfH in CSF was measured using enzyme-linked immuno-
sorbent assay (Sandwich ELISA, BioVendor R&D, Karasek, 
Czech Republic) according to the manufacturer’s instruc-
tions. The range of the Ella automated immunoassay was 
2.7–10.29 pg/mL with a sensitivity of 1.1 pg/mL. For pNfH, 
the calibration range was 62.5–4000 pg/mL and the CSF was 
diluted threefold. Six MMN patients and one MND patient 
had CSF pNfH concentrations below the detection limit of the 
assay. These samples were assigned the concentration of the 
lower calibration curve limit (188 pg/mL). Regarding serum 
NfL, one MMN patient had concentrations below the detection 
limit of the assay, here, the extrapolated value (simple plex 
runner software) was used for analyses.

Statistical analyses

Statistical analyses were performed using IBM SPSS Statistics 
version 29 (IBM, Armonk, NY, USA). Normal distribution 
was assessed visually by quantile–quantile plot analysis and 
by Kolmogorov–Smirnov test. Apart from age at sample col-
lection, data were not normally distributed. Heteroscedasticity 
was tested using Levene’s test, which revealed that variances 
of Nf concentrations were not homogenous between MMN 
and MND patients. Accordingly, non-parametric tests were 
chosen for analyses including Nf concentrations. Regarding 
age, BMI, and MRC sum score, variances between MMN and 
MND patients were homogenous, so that parametric tests were 
applied. Descriptive statistics were calculated and depicted as 
number, percentage, median and range or mean and stand-
ard deviation. Mann–Whitney U test and t test for independ-
ent sampling were used to determine differences in metric 
variables between two groups, as appropriate. Chi-squared 
and Fisher’s exact tests were used to determine associations 
between categorical variables. Bivariate correlations were 
studied by means of Pearson or Spearman rank correlation 
coefficient. Receiver operating characteristic (ROC) curves 
were generated to evaluate the performance of NfL and pNfH 
to distinguish between MMN and MND. The area under the 
(ROC) curve (AUC) was composed and an AUC of > 0.9 was 
considered as excellent, an AUC of > 0.8 was considered as 
good performance. Youden’s index highest value and lowest 
value of closest-to-top-left analysis were used to determine 
the optimal cutoff for serum NfL and CSF pNfH as well as 
sensitivity and specificity. For all analyses, significance levels 
were set at p < 0.05 (two-tailed).
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Results

Participant characteristics

A total of 39 MMN patients and 38 MND patients were 
identified as potentially eligible. Out of 28 eligible MMN 
patients, n = 16 serum and n = 10 CSF samples had been 
preserved and were analyzed. Thirty-four MND patients 
were confirmed eligible and included in the analyses (for 
the detailed participant flow see Fig. 1).

Table 1 shows the characteristics of MND and MMN 
participants. The MND cohort included one patient diag-
nosed with PMA, five patients diagnosed with PLS, and 

one patient with ALS-FTD (frontotemporal dementia). 
Genetic testing was performed in 12 MND patients, a 
C9orf72 hexanucleotide repeat expansion was found in 
two, mutations in SOD1, FUS and FIG4 in one patient 
each. Of the MMN patients, eleven (68.8%) had character-
istic conduction blocks in the electrophysiological evalua-
tion, five (31.3%) were anti-GM1 antibody positive. There 
were no significant differences regarding gender or BMI 
between all MND patients, lower MN dominant MND 
patients and MMN patients. MND patients were signifi-
cantly older at CSF/serum sampling compared to MMN 
patients, while MMN patients had a significantly longer 
disease duration. MRC sum score as exploratory disease-
spanning measure of motor impairment did not differ 

Fig. 1   Participant flow. a Flow of participants from screening until 
inclusion and number of serum and CSF samples analyzed. b Cross-
tabulation of the clinical diagnosis by Nf concentrations. Dotted 
boxes constitute false positives and false negatives, whereas boxes 
with solid border represent true positives and true negatives apply-

ing the estimated cutoffs. MMN multifocal motor neuropathy, MND 
motor neuron disease, CIDP chronic inflammatory demyelinating 
polyneuropathy, CSF cerebrospinal fluid, MN motor neuron, NfL 
neurofilament light chain, pNfH phosphorylated neurofilament heavy 
chain
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Table 1   Participant characteristics

Significant p values are printed in bold type
MND motor neuron disease, MN motor neuron, MMN multifocal motor neuropathy, BMI body mass index, std standard deviation, min minimum, 
max maximum, MRC Medical Research Council, ALSFRSr ALS Functional Rating Scale revised, NfL neurofilament light chain, CSF cerebro-
spinal fluid, pNfH phosphorylated neurofilament heavy chain

MND, all n = 34 Lower MN dominant 
MND n = 24

MMN n = 16 p p p
All MND 
versus 
MMN

Lower MN 
MND versus 
MMN

Lower MN 
MND versus 
remaining MND

Female N (%) 14 (41.2) n = 34 11 (45.8) n = 24 8 (50.0) n = 16 0.697 0.796 0.529
BMI (kg/cm2), 

mean (std)
26.4 (5.6) n = 34 26.19 (5.37) n = 24 29.5 (5.5) n = 16 0.070 0.070 1.000

Age at sampling 
(years), 
median (min–
max)

62 (40–77) n = 34 63 (40–77) n = 24 55 (31–77) n = 16

Age at sampling 
(years), mean 
(std)

61.47 (8.65) 62.04 (9.50) 53.00 (12.45) 0.007 0.013 0.559

Disease 
duration at 
sampling 
(months), 
median (min–
max)

9 (2–72) n = 33 9 (2–27) n = 23 29.5 (6–216) n = 16 0.005 0.002 0.105

MRC sum score 
at sampling, 
median (min–
max)

77 (12–80) n = 28 77 (12–80) n = 21 77 (64–80) n = 16

MRC sum score 
at sampling, 
mean (std)

72.00 (14.57) 71.48 (15.44) 74.25 (5.69) 0.558 0.500 0.749

ALSFRSr at 
sampling, 
median (min–
max)

40 (20–47) n = 32 39.5 (20–47) n = 22 0.704

ALSFRSr 
slope (points/
month), 
median (min–
max)

0.51 (0.13–
5.33)

n = 32 0.67 (0.13–
3.00)

n = 22 0.025

Site of onset, 
spinal N (%)

24 (70.6) 20 (83.3) 0.019

Immune therapy 
before sam-
pling N (%)

5 (14.7) 5 (20.8) 6 (37.5) 0.535

Serum NfL (pg/
mL), median 
(min–max)

81.00 (22.00–
605.00)

n = 31 78.50 (22.00–
382.00)

n = 22 15.95 (4.25–
118.00)

n = 16  < 0.001  < 0.001 0.334

Serum NfL (pg/
mL), mean 
(std)

122.16 (119.08) 104.00 (84.09) 22.62 (26.73)

CSF pNfH (pg/
mL), median 
(min–max)

1867.50 
(169.00–
7653.00)

n = 30 1872.00 
(169.00–
7653.00)

n = 21 188.00 
(< 188.00–
564.00)

n = 10  < 0.001  < 0.001 0.722

CSF pNfH (pg/
mL), mean 
(std)

2429.50 
(2046.84)

2505.43 
(2100.57)

283.50 (150.41)
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between the groups. MND patients (whole cohort as well 
as lower MN dominant subgroup) had a median ALSFRSr 
of 40 and did not differ with regard to age and disease 
duration. However, ALSFRSr slope was steeper in lower 
MN dominant MND patients and spinal onset was also 
more frequent in this subgroup. All MND patients who had 
received immunomodulatory therapy on the suspicion of 
an inflammatory motor neuropathy were assigned to the 
lower MN dominant subgroup. Four had received three 
to five cycles of IVIg, and one had received intravenous 
methylprednisolone. Of the pretreated MMN patients, all 
six had received IVIg over a period of 1 year to 16 years, 
one patient had additionally been treated with mycophe-
nolate mofetil and one patient with azathioprine, each over 
a period of one year at blood sampling.

Nf concentrations and correlations

Serum NfL and CSF pNfH concentrations were signifi-
cantly higher in MND patients compared to MMN patients 
(p < 0.001) (Fig. 2). The same applied if lower MN dominant 
MND patients were compared to MMN patients (p < 0.001). 
Between lower MN dominant MND patients and the remain-
ing MND patients, there were no significant differences in 
serum NfL and CSF pNfH concentrations.

Serum NfL correlated strongly with CSF pNfH in the 
whole cohort (MND and MMN patients combined, Spear-
man’s rho 0.796, p < 0.001, n = 37). In the MND cohort, Nf 
in serum and CSF correlated more strongly in the cohort of 
MND cases with lower and upper MN signs (Spearman’s 
rho 0.714, p = 0.047, n = 8) compared to the lower motor 

neuron dominant cases (Spearman’s rho 0.643, p = 0.03, 
n = 19). Both, serum NfL and CSF pNfH correlated with age 
in the MMN but not the MND cohort. In the MND cohort, 
no correlation was found between Nf and disease duration or 
ALSFRSr. However, there was a near significant association 
observed between Nf and ALSFRSr slope and MRC sum 
score. In the MMN cohort, CSF pNfH showed a significant 
positive correlation with MRC sum score (Table 2).

Diagnostic performance of Nf

Serum NfL in MMN versus MND

The ROC curve for serum NfL had an AUC of 0.946, con-
firming an excellent ability of serum NfL to differentiate 
between MND and MMN (p < 0.001; 95% confidence inter-
val (CI) 0.856–1.035). A cutoff of ≥ 44.15 pg/mL gave a 
sensitivity of 93.5% and a specificity of 93.7% for iden-
tifying patients with MND (Fig. 3a). After limiting the 
MND cohort to lower MN dominant MND patients, AUC 
decreased to 0.938 (p < 0.001, CI 0.833—1.042). The same 
cutoff of ≥ 44.15 pg/mL resulted in a sensitivity of 95.5% 
and a specificity of 93.7% for identifying patients with MND 
(Fig. 3c).

CSF pNfH in MMN versus MND

The ROC curve for CSF pNfH showed an excellent abil-
ity to differentiate between MND and MMN (AUC 0.937, 
CI 0.856–1.017, p < 0.001). The optimal cutoff was esti-
mated as ≥ 715.50  pg/mL, which gave a sensitivity of 
90.0% and 100% specificity for identifying patients with 
MND (Fig. 3b). In the lower MN dominant MND cohort, 
CSF pNfH had a similar AUC of 0.919 (p < 0.001, CI 
0.808–1.030) corresponding to a very good discriminatory 
value. The same cutoff of ≥ 715.50 pg/mL yielded a sensitiv-
ity of 90.5% and a specificity of 100% (Fig. 3d).

Characterization of MND patients below and MMN 
patients above the estimated cutoffs

Appling the estimated cutoff, there was only one patient 
diagnosed with MMN with a serum NfL concentration 
above 44.15 pg/mL (118 pg/mL). This patient was anti-
GM1 antibody positive (low serum titer) and had conduc-
tion blocks (left median and ulnar nerve) supporting the 
diagnosis of MMN. The patient was male, aged 57 years 
at the time of sampling and presented with minor dis-
tal pareses of the upper extremities (MRC sum score 78 
points). Regarding comorbidities, he exhibited a BMI of 
34.3 and had been diagnosed with diabetes mellitus type 2. 
Nerve conduction studies detected slight sensory involve-
ment in the lower extremity nerves possibly indicative for 

Fig. 2   Neurofilament concentrations in MMN versus MND. Depicted 
are median and range for serum NfL and CSF pNfH concentrations. 
Each grey/black dot represents an individual MMN/MND patient. 
MND patients had significantly higher Nf concentrations compared 
to MMN patients (p < 0.001). a Serum NfL in MMN versus MND. b 
CSF pNfH in MMN versus MND. MMN multifocal motor neuropa-
thy, MND motor neuron disease, NfL neurofilament light chain, CSF 
cerebrospinal fluid, pNfH phosphorylated neurofilament heavy chain, 
***p < 0.001
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diabetic polyneuropathy. During treatment with IVIg, the 
patient experienced a subjective improvement of muscle 
strength and MRC sum score remained stable (77 points 
after 16 months of treatment). CSF pNfH in this patient was 
measurable, but below the estimated cutoff of ≥ 715.50 pg/
mL. None of the ten MMN patients with preserved CSF 
samples had pNfH values above the estimated cutoff.

Two MND patients presented with serum NfL values 
below the estimated cutoff. They were 68 years (male) and 
57 years (female) old at sampling and both had a slowly 
progressive MN disease: the male patient reported a sta-
ble disease over a period of three years with an ALSFRSr 
remaining above 40 points and an isolated atrophic paresis 
of the left upper extremity. He received no immunomod-
ulatory treatment, but used commercially available tau-
roursodeoxycholic acid as supplement and participated in 
an interventional clinical trial. Anti-GM1 antibodies and 
conduction blocks were absent in this patient, but he pre-
sented with ubiquitously increased deep tendon reflexes. The 
female patient was diagnosed with the clinical MND variant 
of PLS, had a disease duration of 23 months at sampling 
and an ALSFRSr slope of 0.21 points/month. The same 
two MND patients also had CSF pNfH values below the 
estimated cutoff. A third MND patient presented with CSF 
pNfH < 715.50 pg/mL. This patient was male, aged 69 years 
at sampling, and presented with the clinical MND variant 

of PMA. Disease duration at sampling was four months and 
ALSFRSr slope was 1.18 points/month. Serum NfL was not 
measured due to technical issues. However, in a subsequent 
analysis, seven months later in a different laboratory, serum 
NfL concentration was estimated 307 pg/mL, suggesting an 
analytical error during the first analysis of CSF pNfH.

Discussion

In this retrospective diagnostic accuracy study including 
50 MMN and MND patients, serum NfL and CSF pNfH 
performed excellent in differentiating MND from one of its 
most challenging mimicking diseases, MMN.

Diagnostic performance of neurofilaments was better than 
previously reported in ALS for serum/plasma NfL [21–23, 
30, 31] and CSF pNfH [30–33]. The refinement of the target 
population by limiting MND mimics to MMN patients and 
excluding for example demyelinating polyneuropathies may 
have improved diagnostic performance. However, Kläppe 
et al. reported a similar AUC for CSF pNfH and a slightly 
better AUC for serum NfL in differentiating ALS from ALS 
mimics including among others (motor) neuropathies, myo-
pathies, spinal stenosis, and neuroborreliosis [34]. So far, 
only one study evaluated diagnostic performance of plasma 
and CSF NfL in MMN versus MND and reported AUCs of 

Table 2   Correlations between neurofilament concentrations and participant characteristics

Significant correlations are printed in bold type
MND motor neuron disease, BMI body mass index, MRC Medical Research Council, ALS amyotrophic lateral sclerosis, ALSFRSr ALS Func-
tional Rating Scale revised, NfL neurofilament light chain, CSF cerebrospinal fluid, pNfH phosphorylated neurofilament heavy chain, MMN mul-
tifocal motor neuropathy

MND Serum NfL CSF pNfH

Coefficient p n Coefficient p n

Age at sampling 0.093 0.681 31 (− 0.100) 0.600 30
BMI at sampling 0.317 0.083 31 0.297 0.112 30
disease duration (− 0.189) 0.317 30 (− 0.117) 0.545 29
MRC sum score (− 0.341) 0.095 25 (− 0.371) 0.068 25
ALSFRSr (− 0.137) 0.477 29 (− 0.102) 0.605 28
ALSFRSr slope 0.203 0.290 29 0.332 0.084 28
Serum NfL 1.000 31 0.626  < 0.001 27
CSF pNfH 0.626  < 0.001 27 1.000 30

MMN Serum NfL CSF pNfH

Coefficient p n Coefficient p n

Age at sampling 0.717 0.002 16 0.632 0.050 10
BMI at sampling 0.203 0.450 16 0.232 0.519 10
disease duration (− 0.332) 0.209 16 (− 0.270) 0.450 10
MRC sum score 0.236 0.379 16 0.770 0.009 10
Serum NfL 1.000 16 0.683 0.030 10
CSF pNfH 0.683 0.030 16 1.000 10
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0.9 and 0.94, respectively. The study included only n = 8 
MMN patients [23]. In our study, diagnostic performance of 
serum NfL and CSF pNfH was equivalent, which is in line 
with the literature [30, 34–36]. This was further supported 
by a strong positive correlation of serum NfL and CSF pNfH 
(Spearman’s rho 0.796).

In our study, discriminative ability of serum NfL and CSF 
pNfH decreased only slightly, when a subgroup of lower 
MN dominant MND patients was defined and compared to 
MMN patients. Neurofilament concentrations did not differ 
significantly between the two MND groups, while ALSFRSr 
slope was higher (median 0.67 versus 0.30 points/month) in 

Fig. 3   ROC curves for the evaluation of diagnostic accuracy of serum 
NfL and CSF pNfH to discriminate MND from MMN a ROC curve 
of serum NfL in all MND patients (n = 32) versus MMN patients 
(n = 16). b ROC curve of CSF pNfH in all MND patients (n = 30) 
versus MMN patients (n = 10). c ROC curve of serum NfL in lower 
MN dominant MND patients (n = 23) versus MMN patients (n = 16). 

d ROC curve of CSF pNfH in lower MN dominant MND patients 
(n = 21) versus MMN patients (n = 10). MND motor neuron disease, 
MMN multifocal motor neuropathy, NfL neurofilament light chain, 
CSF cerebrospinal fluid, pNfH phosphorylated neurofilament heavy 
chain
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the lower MN dominant subgroup. Previous studies found 
a positive correlation of CSF NfL concentrations with the 
extent of lower MN involvement measured by electromyo-
graphy [24], and there is vast evidence for their unfavorable 
association with disease progression and survival [17, 20, 
24, 37–39]. It is, therefore, surprising that Nf concentrations 
were not increased in this subgroup. However, there were 
less patients with bulbar onset (4 out of 24 versus 6 out of 
10) in the lower MN dominant subgroup, which may have 
counterbalanced increased Nf concentrations [30, 38]. Also, 
the association between Nf concentrations and involvement 
of upper versus lower motor neurons is controversial [17].

The estimated optimal serum NfL cutoff (≥ 44.15 pg/
mL) for diagnosing MND was lower than reported earlier 
[36, 40] or compared to studies including various mimick-
ing diseases [21, 22, 30]. More recent studies (Kläppe et al.: 
cutoff 56.4 pg/mL, Verde et al.: cutoff 49–62 pg/mL [34, 
41]) as well as studies focusing on selected, well-character-
ized mimics (Gille et al.: 55 pg/mL versus hereditary spas-
tic paraplegia [40]) found similar cutoffs. For CSF pNfH, 
our optimal cutoff of ≥ 715.50 pg/mL was well in the range 
of previously reported cutoffs (Kläppe et al.: 726 pg/mL; 
Poesen et al.: 768 pg/mL; Steinacker et al.: 560 pg/mL; Chen 
et al.: 437 ng/L; Li et al.: 395 pg/mL, Li et al.: 1104 pg/mL 
[32–34, 42–44]). Of note, the one MMN patient with serum 
NfL above the optimal cutoff presented with comorbid 
diabetes mellitus type 2. In a large population-based study 
conducted in the United States, patients with diabetes mel-
litus exhibited higher serum NfL concentrations compared 
to non-diabetic participants [45], resembling the Swiss-
atrial fibrillation study [46]. Further, NfL concentrations are 
increased in patients who develop diabetic neuropathy [47]. 
Thus, high serum NfL concentrations may have been the 
result of comorbid diabetes mellitus (and possibly diabetic 
neuropathy) in this patient, and diabetes should be taken into 
account as confounding variable when applying neurofila-
ments as diagnostic biomarkers. Both MND patients with 
serum NfL and CSF pNfH values below the cutoffs featured 
a slowly progressive disease with an ALSFRSr slope < 0.25 
points/month. As serum NfL and CSF pNfH are strongly 
associated with disease progression [18, 30, 34, 36–38, 48], 
relatively benign disease courses as the ones described above 
may not match the estimated cutoffs and be rated as false 
negatives.

Surprisingly, we did not find a correlation of Nf concen-
trations with age or ALSFRSr slope in our cohort though 
significance was slightly missed for ALSFRSr slope and 
CSF pNfH. Even though Nf correlate with age in healthy 
controls and other neurological diseases [49, 50], the evi-
dence for MND patients is inconclusive [38, 51, 52] and it 
has been postulated that the massive elevation of Nf in MND 
extinguishes the mild elevation due to age in MND [17]. 
Accordingly, in the MMN group, there was a significant 

positive correlation between age and serum NfL/CSF pNfH. 
For the same reason, the imbalance in age between MND 
and MMN patients in our cohort should not have affected 
our analyses.

Most studies found no correlation between Nf concentra-
tions and functional measures such as ALSFRSr and MRC 
scores [31, 41, 48, 53–55], which is in line with our find-
ings in our MND cohort. Regarding ALSFRSr slope, signifi-
cances might have been missed in our study due to the low 
number of included patients. But there was a trend toward a 
positive correlation between ALSFRSr slope and CSF pNfH, 
and patients with particularly high or low Nf concentrations 
(as described for the two MND patients below the cutoff) 
presented with accordingly fast or slow disease progression.

Regarding the sensitivity of the ELISA assays for detec-
tion of neurofilaments, the high sensitivity Ella automated 
immunoassay used for detection of serum NfL exhibits a 
detection limit of 1.1 pg/mL, which exceeds earlier ELISA 
assays [56]. However, sensitivity falls short of the widely 
used SIMOA assay with a sensitivity below pg/mL concen-
trations [57]. For samples that are expected to have high 
NfL concentrations, as it is the case in motor neuron dis-
ease, ELISA assays seem to be sufficient. Accordingly, in 
all serum samples, even the samples derived from MMN 
patients with lower neurofilament concentrations, NfL 
concentrations were above the detection limit. CSF neuro-
filament concentrations are about 40-fold higher compared 
to serum concentrations [18], making ELISA assays suffi-
ciently sensitive methods for their quantification.

The main strength of this study is the refinement and 
careful definition of the target population by focusing on 
MMN as one of the most challenging mimics of lower 
MN dominant MND. To date, to the best of our knowl-
edge, only two studies evaluated diagnostic performance 
of Nf in MMN including three [58] and eight [23] patients, 
respectively. Only the latter compared Nf concentrations 
to MND patients. Here, we were able to analyze CSF/
serum Nf concentrations of a comparably large cohort of 
16 MMN patients. The limitations of this study include its 
retrospective and monocentric design and the low number 
of participants, due to which further subgroup analyses 
were not feasible. Further, some of the CSF/serum sam-
ples had been stored for several years (maximum 14 years) 
and underwent one or two freeze–thaw cycles before Nf 
measurement. However, previous studies found no altera-
tion of CSF Nf concentrations depending on freezer stor-
age time [30] or the number of freeze–thaw cycles [59]. 
To compare overall disease severity between diseases, we 
calculated an MRC sum score, which is not validated in 
MND and does not comprise bulbar function or respiratory 
impairment. Therefore, conclusions derived from disease 
severity correlations are limited. Clinical characteristics 
differed between MMN and MND patients, in particular, 
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MMN patients were younger and had longer disease dura-
tion compared to MND patients. As discussed above, the 
difference in age should not have affected our analyses. 
Regarding disease duration, Nf concentrations have been 
shown to be relatively stable throughout the course of 
MND [40, 41, 60, 61] suggesting that disease duration 
may not have a significant impact on diagnostic accuracy 
of Nf in MND. However, we cannot exclude that disease 
duration may impact Nf concentrations in MMN and limit 
diagnostic accuracy in early disease stages. Moreover, 
clinical characteristics (gender, site of onset, ALSFRSr) of 
our MND cohort were similar to three recently published 
large German ALS cohorts [37, 62, 63]. Even though 
MND patients in our cohort were younger—most likely 
due to inclusion at time of diagnosis and not later during 
the disease course—our results should be applicable to 
the German ALS/MND population. However, as source of 
potential bias, selection bias has to be considered, as we 
recruited patients exclusively at a tertiary referral hospital, 
which might have led to an overestimation/underestima-
tion of disease severity and Nf concentrations. Further, it 
would have been desirable to evaluate a complementary 
role of Troponin T and Creatine Kinase MB isoenzyme for 
the differential diagnosis of MND and MMN, especially 
as recent studies suggest that these biomarkers represent 
lower motor neuron involvement and correlate with bulbar 
involvement [63, 64]. However, this was out of the scope 
of this study.

In conclusion, this study provides evidence that Nf are 
useful biomarkers to distinguish MMN from MND. While 
serum NfL and CSF pNfH performed equally well, caution 
has to be exercised with regard to comorbidities poten-
tially influencing Nf concentration. Even though high Nf 
concentrations in serum and CSF should not be consid-
ered absolute, high Nf concentrations in case of diagnostic 
uncertainty would make MND diagnosis very likely.
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