Skip to main content

Advertisement

Log in

Efgartigimod in the treatment of Guillain–Barré syndrome

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Guillain–Barré Syndrome (GBS) is caused by immunoglobulin G (IgG) autoantibodies. Efgartigimod, a human IgG antibody Fc fragment that acts as a natural ligand for the FcRn, can increase IgG degradation, which thus may be a promising therapeutic drug for GBS.

Case presentation

The two patients presented with postinfectious and acute flaccid paralysis. On admission, they were bedridden. Nerve conduction studies indicated peripheral neuropathy. GBS was suspected and they are treated with two doses of efgartigimod (10 mg/kg) within 5 days. Their muscle strength improved gradually and 4 weeks after the initial dose, they could walk independently. Following the first dose, Patient 1 complaint of muscle soreness, which subsided the next morning. Patient 2 was intubated due to respiratory failure the day after the initial dose, and did not report other adverse effects.

Discussion

In GBS patients, two doses of efgartigimod (10 mg/kg) were effective in rapidly improving muscle strength, with a satisfactory safety profile. The findings suggest a potential role for efgartigimod in modifying the disease process in GBS patients.

Conclusion

Efgartigimod seems effective and safe in the treatment of GBS. This study indicates the potential role of efgartigimod as a novel treatment option for GBS. Well-designed clinical trials should be conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data underlying this article are available in the article and in its online supplementary material.

References

  1. Shahrizaila N, Lehmann HC, Kuwabara S (2021) Guillain-Barré syndrome. Lancet (London, England) 397(10280):1214–1228. https://doi.org/10.1016/s0140-6736(21)00517-1

    Article  CAS  PubMed  Google Scholar 

  2. Yuki N, Susuki K, Koga M, Nishimoto Y, Odaka M, Hirata K et al (2004) Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome. Proc Natl Acad Sci USA 101(31):11404–11409. https://doi.org/10.1073/pnas.0402391101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Illa I, Ortiz N, Gallard E, Juarez C, Grau JM, Dalakas MC (1995) Acute axonal Guillain-Barré syndrome with IgG antibodies against motor axons following parenteral gangliosides. Ann Neurol 38(2):218–224. https://doi.org/10.1002/ana.410380214

    Article  CAS  PubMed  Google Scholar 

  4. Koga M, Takahashi M, Yokoyama K, Kanda T (2015) Ambiguous value of anti-ganglioside IgM autoantibodies in Guillain-Barré syndrome and its variants. J Neurol 262(8):1954–1960. https://doi.org/10.1007/s00415-015-7806-4

    Article  CAS  PubMed  Google Scholar 

  5. (1997) Randomised trial of plasma exchange, intravenous immunoglobulin, and combined treatments in Guillain-Barré syndrome. Plasma exchange/sandoglobulin Guillain-Barré syndrome trial group. Lancet (London, England). 349(9047):225–30.

  6. Donofrio PD, Berger A, Brannagan TH 3rd, Bromberg MB, Howard JF, Latov N et al (2009) Consensus statement: the use of intravenous immunoglobulin in the treatment of neuromuscular conditions report of the AANEM ad hoc committee. Muscle Nerve 40(5):890–900. https://doi.org/10.1002/mus.21433

    Article  CAS  PubMed  Google Scholar 

  7. Patel A, Lynch F, Shepherd SA (2020) Newer immunotherapies for the treatment of acute neuromuscular disease in the critical care unit. Curr Treat Options Neurol 22(3):7. https://doi.org/10.1007/s11940-020-0616-8

    Article  PubMed  Google Scholar 

  8. Burakgazi AZ (2019) Immunoglobulin treatment in neuromuscular medicine. J Clin Neuromuscul Dis 20(4):182–193. https://doi.org/10.1097/cnd.0000000000000235

    Article  PubMed  Google Scholar 

  9. Szczeklik W, Wawrzycka K, Włudarczyk A, Sega A, Nowak I, Seczyńska B et al (2013) Complications in patients treated with plasmapheresis in the intensive care unit. Anaesthesiol Intensiv Ther 45(1):7–13. https://doi.org/10.5603/ait.2013.0002

    Article  Google Scholar 

  10. Walgaard C, Jacobs BC, Lingsma HF, Steyerberg EW, van den Berg B, Doets AY et al (2021) Second intravenous immunoglobulin dose in patients with Guillain-Barré syndrome with poor prognosis (SID-GBS): a double-blind, randomised, placebo-controlled trial. Lancet Neurol 20(4):275–283. https://doi.org/10.1016/s1474-4422(20)30494-4

    Article  CAS  PubMed  Google Scholar 

  11. Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7(9):715–725. https://doi.org/10.1038/nri2155

    Article  CAS  PubMed  Google Scholar 

  12. Newland AC, Sánchez-González B, Rejtő L, Egyed M, Romanyuk N, Godar M et al (2020) Phase 2 study of efgartigimod, a novel FcRn antagonist, in adult patients with primary immune thrombocytopenia. Am J Hematol 95(2):178–187. https://doi.org/10.1002/ajh.25680

    Article  CAS  PubMed  Google Scholar 

  13. Ulrichts P, Guglietta A, Dreier T, van Bragt T, Hanssens V, Hofman E et al (2018) Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J Clin Investig 128(10):4372–4386. https://doi.org/10.1172/jci97911

    Article  PubMed  PubMed Central  Google Scholar 

  14. Howard JF Jr, Bril V, Burns TM, Mantegazza R, Bilinska M, Szczudlik A et al (2019) Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis. Neurology 92(23):e2661–e2673. https://doi.org/10.1212/wnl.0000000000007600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Howard JF Jr, Bril V, Vu T, Karam C, Peric S, Margania T et al (2021) Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol 20(7):526–536. https://doi.org/10.1016/s1474-4422(21)00159-9

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki S, Uzawa A, Murai H (2022) Efgartigimod for generalized myasthenia gravis with or without anti-acetylcholine receptor antibodies: a worldwide and Japanese perspective. Expert Rev Clin Immunol 18(12):1207–1215. https://doi.org/10.1080/1744666x.2022.2136167

    Article  CAS  PubMed  Google Scholar 

  17. Broome CM, McDonald V, Miyakawa Y, Carpenedo M, Kuter DJ, Al-Samkari H et al (2023) Efficacy and safety of the neonatal Fc receptor inhibitor efgartigimod in adults with primary immune thrombocytopenia (ADVANCE IV): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet (London, England) 402(10413):1648–1659. https://doi.org/10.1016/s0140-6736(23)01460-5

    Article  CAS  PubMed  Google Scholar 

  18. Goebeler M, Bata-Csörgő Z, De Simone C, Didona B, Remenyik E, Reznichenko N et al (2022) Treatment of pemphigus vulgaris and foliaceus with efgartigimod, a neonatal Fc receptor inhibitor: a phase II multicentre, open-label feasibility trial. Br J Dermatol 186(3):429–439. https://doi.org/10.1111/bjd.20782

    Article  CAS  PubMed  Google Scholar 

  19. Misawa S, Kuwabara S, Sato Y, Yamaguchi N, Nagashima K, Katayama K et al (2018) Safety and efficacy of eculizumab in Guillain-Barré syndrome: a multicentre, double-blind, randomised phase 2 trial. Lancet Neurol 17(6):519–529. https://doi.org/10.1016/s1474-4422(18)30114-5

    Article  CAS  PubMed  Google Scholar 

  20. Breiner A, Barnett C, Bril V (2014) INCAT disability score: a critical analysis of its measurement properties. Muscle Nerve 50(2):164–169. https://doi.org/10.1002/mus.24207

    Article  PubMed  Google Scholar 

  21. Ren K, Yang A, Lu J, Zhao D, Bai M, Ding J et al (2022) Association between serum low-density neutrophils and acute-onset and recurrent Guillain-Barré syndrome. Brain Behav 12(1):e2456. https://doi.org/10.1002/brb3.2456

    Article  CAS  PubMed  Google Scholar 

  22. Kleyweg RP, van der Meché FG, Schmitz PI (1991) Interobserver agreement in the assessment of muscle strength and functional abilities in Guillain-Barré syndrome. Muscle Nerve 14(11):1103–1109. https://doi.org/10.1002/mus.880141111

    Article  CAS  PubMed  Google Scholar 

  23. Vanhoutte EK, Draak TH, Gorson KC, van Nes SI, Hoeijmakers JG, Van der Pol WL et al (2015) Impairment measures versus inflammatory RODS in GBS and CIDP: a responsiveness comparison. J Peripher Nerv Syst: JPNS 20(3):289–295. https://doi.org/10.1111/jns.12118

    Article  PubMed  Google Scholar 

  24. Blumberg LJ, Humphries JE, Jones SD, Pearce LB, Holgate R, Hearn A et al (2019) Blocking FcRn in humans reduces circulating IgG levels and inhibits IgG immune complex-mediated immune responses. Sci Adv 5(12):eaax9586. https://doi.org/10.1126/sciadv.aax9586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pyzik M, Sand KMK, Hubbard JJ, Andersen JT, Sandlie I, Blumberg RS (2019) The neonatal Fc receptor (FcRn): a misnomer? Front Immunol 10:1540. https://doi.org/10.3389/fimmu.2019.01540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jaffry M, Menkes DL, Shaikh A, Mandava K, Kothari O, Jaffry K et al (2023) Neonatal Fc receptor inhibitor therapeutics in neuromuscular disease. J Clin Neuromuscul Dis 24(4):188–198. https://doi.org/10.1097/cnd.0000000000000451

    Article  PubMed  Google Scholar 

  27. Hughes RA, Swan AV, van Doorn PA (2014) Intravenous immunoglobulin for Guillain-Barré syndrome. Cochrane Database Syst Rev 2014(9):Cd002063. https://doi.org/10.1002/14651858.CD002063.pub6

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhao F, Wang J, Zhang J, Pang X, Huang S, Chang X et al (2021) Pain in acute motor axonal neuropathy. Muscle Nerve 64(6):739–743. https://doi.org/10.1002/mus.27414

    Article  PubMed  Google Scholar 

  29. Sand KM, Bern M, Nilsen J, Noordzij HT, Sandlie I, Andersen JT (2014) Unraveling the interaction between FcRn and albumin: opportunities for design of albumin-based therapeutics. Front Immunol 5:682. https://doi.org/10.3389/fimmu.2014.00682

    Article  CAS  PubMed  Google Scholar 

  30. Fokkink WR, Walgaard C, Kuitwaard K, Tio-Gillen AP, van Doorn PA, Jacobs BC (2017) Association of albumin levels with outcome in intravenous immunoglobulin-treated Guillain-Barré syndrome. JAMA Neurol 74(2):189–196. https://doi.org/10.1001/jamaneurol.2016.4480

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Shanxi Science and Technology Department under grant no. 20210302123245 and Health Commission of Shanxi Province under grant no.2019034.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Wei Zhang and Huiqiu Zhang wrote the first draft of the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Junhong Guo or Wei Zhang.

Ethics declarations

Conflicts of interest

None of the authors have any financial and conflict of interest to disclose.

Ethical approval

This report has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All the patients provided written informed consent according to the Declaration of Helsinki.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Ma, J., Feng, Y. et al. Efgartigimod in the treatment of Guillain–Barré syndrome. J Neurol 271, 3506–3511 (2024). https://doi.org/10.1007/s00415-024-12321-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-024-12321-4

Keywords

Navigation