
Vol.:(0123456789)

Journal of Neurology 
https://doi.org/10.1007/s00415-024-12319-y

ORIGINAL COMMUNICATION

Variants in mitochondrial disease genes are common causes 
of inherited peripheral neuropathies

Tomas Ferreira1  · Kiran Polavarapu2  · Catarina Olimpio1,3  · Ida Paramonov4  · Hanns Lochmüller2,4,5,6,7  · 
Rita Horvath1 

Received: 13 February 2024 / Revised: 8 March 2024 / Accepted: 8 March 2024 
© The Author(s) 2024

Abstract
Background Peripheral neuropathies in mitochondrial disease are caused by mutations in nuclear genes encoding mito-
chondrial proteins, or in the mitochondrial genome. Whole exome or genome sequencing enable parallel testing of nuclear 
and mtDNA genes, and it has significantly advanced the genetic diagnosis of inherited diseases. Despite this, approximately 
40% of all Charcot-Marie-Tooth (CMT) cases remain undiagnosed.
Methods The genome-phenome analysis platform (GPAP) in RD-Connect was utilised to create a cohort of 2087 patients 
with at least one Human Phenotype Ontology (HPO) term suggestive of a peripheral neuropathy, from a total of 10,935 
patients. These patients’ genetic data were then analysed and searched for variants in known mitochondrial disease genes.
Results A total of 1,379 rare variants were identified, 44 of which were included in this study as either reported pathogenic 
or likely causative in 42 patients from 36 families. The most common genes found to be likely causative for an autosomal 
dominant neuropathy were GDAP1 and GARS1. We also detected heterozygous likely pathogenic variants in DNA2, MFN2, 
DNM2, PDHA1, SDHA, and UCHL1. Biallelic variants in SACS, SPG7, GDAP1, C12orf65, UCHL1, NDUFS6, ETFDH 
and DARS2 and variants in the mitochondrial DNA (mtDNA)-encoded MT-ATP6 and MT-TK were also causative for mito-
chondrial CMT. Only 50% of these variants were already reported as solved in GPAP.
Conclusion Variants in mitochondrial disease genes are frequent in patients with inherited peripheral neuropathies. Due to 
the clinical overlap between mitochondrial disease and CMT, agnostic exome or genome sequencing have better diagnostic 
yields than targeted gene panels.

Keywords Peripheral neuropathies · CMT · Mitochondrial disease · Genome-phenome analysis platform (GPAP) · Rare 
variants · Genetic heterogeneity

Introduction

Inherited peripheral neuropathies or Charcot-Marie-Tooth 
disease (CMT) is a group of closely related disorders affect-
ing the motor and sensory neurones of the peripheral nervous 

system. With an estimated prevalence of 40 individuals per 
100,000, CMT is among the most common hereditary neuro-
muscular disorders. CMT is categorised into demyelinating 
and axonal subtypes, based on the primary mechanism of 
degeneration [1, 2].
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CMT typically presents in the first or second decade 
of life, but the age of onset can vary widely, ranging from 
early infancy to late adulthood. Typical symptoms include 
symmetrical distal weakness and atrophy, sensory loss, foot 
deformities (pes cavus or planus, hammer toes, and claw-
ing fingers), and reduced or absent tendon reflexes. Senso-
rineural hearing loss and phrenic nerve mediated respiratory 
insufficiency have also been reported. For the vast majority 
of patients, these symptoms are painless and, although pro-
gressively debilitating, not life threatening [3].

CMT exhibits significant genetic heterogeneity, with over 
100 causative genes identified to date, and can be inherited 
through several different modes of inheritance, including 
autosomal dominant, autosomal recessive, X-linked, and 
mitochondrial. These genes encompass a wide range of func-
tions, including those involved in peripheral nerve struc-
ture, myelin production, axonal transport, and mitochondrial 
dynamics [4, 5]. This genetic diversity contributes to the 
significant phenotypic variability observed in CMT, with 
variations in age of onset, disease progression, severity of 
symptoms, and specific clinical features. Understanding the 
underlying genetic subtypes and their associated phenotypic 
variations is crucial for accurate diagnosis, prognosis, and 
personalised management strategies. Clinical diagnosis is 
complex and often elusive, focusing on clinical presenta-
tion, neurophysiological tests, genetic and molecular tests, 
and previously on nerve biopsy. The introduction of next-
generation sequencing (NGS) technology has significantly 
advanced the genetic diagnosis of inherited rare diseases in 
recent years [6]. Despite this, in approximately 40% of all 
CMT cases a genetic diagnosis is not identified [7].

The normal functioning of neurons and their long axons 
is dependent on healthy mitochondria, which play critical 
roles in axonal transport, energy production, calcium buffer-
ing, and other essential cellular functions. The distribution 
of mitochondria along peripheral axons is regulated by a 
continuous process associated with mitochondrial fusion 
and fission, which is collectively known as mitochondrial 
dynamics [8]. Disruptions to mitochondria have been 
increasingly recognised as a cause of peripheral nerve dys-
function. In keeping with this, a third of patients with mito-
chondrial disorders develop peripheral neuropathy [9–11]. 
Peripheral neuropathies in mitochondrial disease are typi-
cally the result of mutations in genes that are either nuclear 
encoded, and whose products are subsequently transported 
to the mitochondria, or in the mitochondrial genome itself.

Reanalysis of existing sequencing data provides an 
opportunity to enhance the diagnostic yield by leveraging 
improved bioinformatics pipelines and updated literature 
[12–29]. Previous studies have demonstrated that data rea-
nalysis or re-evaluation can significantly increase the diag-
nostic yield, depending on the timing of the initial analysis 
and the interval before reanalysis. The American College 

of Medical Genetics and Genomics (ACMG) has outlined 
guidelines for variant-level re-evaluation and case-level 
reanalysis of genomic test results [30]. Keeping phenotypic 
descriptions comprehensive and up to date is recommended, 
as it can improve the specificity of the phenotype and con-
tribute to increased diagnostic success for unsolved cases.

The RD-Connect Genome-Phenome Analysis Platform 
(GPAP) is an online platform (accessible at https:// platf orm. 
rd- conne ct. eu/) designed to facilitate the analysis of genome-
phenome data for rare disease (RD) diagnosis and gene dis-
covery [31]. The platform includes heterogeneous datasets, 
contributed by various clinical researchers, generated in 
different clinical centres and genomic facilities. To ensure 
consistency and standardisation across all patients and their 
relatives, the GPAP platform incorporates a mechanism for 
submitting pseudonymised phenotypic data using recognised 
ontologies and standards including the Human Phenotype 
Ontology (HPO) [32], the Orphanet Rare Disease Ontology 
(ORDO) [33], and the Online Mendelian Inheritance in Man 
database (OMIM) [34]. By harmonising the information 
using these ontologies, the GPAP enhances interoperability 
and facilitates comprehensive analysis by standardised pipe-
lines. WES/WGS raw data (fastq files) are also processed 
through a standardised pipeline making sequencing results 
between different facilities, kits, etc., better comparable.

In our study we aimed to identify a genetic diagnosis 
on a cohort of patients with possible inherited peripheral 
neuropathy, with particular focus on mitochondrial genes 
through the RD-Connect Platform.

Methods

Selection criteria

A total of 10,935 individuals (patients and relatives) were 
visible to all registered and authorised users on the RD-Con-
nect GPAP platform in January 2023. Clinicians uploading 
patient genomic records on the platform are asked to phe-
notypically characterise the individuals through HPO terms. 
We compiled a list of HPO terms commonly associated with 
inherited neuropathies to create a virtual peripheral neuropa-
thy cohort within GPAP (see Supplemental Materials for 
the complete list). A search for individuals within the plat-
form with any of these HPO terms resulted in 2087 patients 
forming our inherited peripheral neuropathy cohort, but not 
all of these patients have been diagnosed with peripheral 
neuropathy as a symptom like distal weakness or areflexia 
could have a different cause (e.g. distal myopathy) (Fig. 1).

https://platform.rd-connect.eu/
https://platform.rd-connect.eu/
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Target gene selection

To identify potential genes of interest to target, a com-
prehensive list of genes associated with mitochondrial 
disorders was compiled. The list was assembled in two 
ways. The first component included a high-evidence gene 
panel for mitochondrial disorders obtained from Genomics 
England PanelApp (Mitochondrial disorders panel v.4.0). 
We selected only the high-evidence panel (‘green list’), 
excluding the medium-evidence (‘amber list’) and low-evi-
dence panels (‘red list’), to ensure the reliability of patho-
genicity associations in the included genes. The second 
component involved a thorough review of the literature, 
where we included nuclear-encoded genes consistently 
reported to be involved in mitochondrial pathways. This 
way the target panel contained all known human disease 
genes encoding mitochondrial proteins including nuclear 
genes with involvement of mitochondrial function/dynam-
ics or mutations in the mtDNA. The full list of genes is 
shown in Supplemental Materials.

Whole exome sequencing (WES) reanalysis 
and reinterpretation

The cohort was created virtually, as previously described 
[35–37]. The data were reanalysed using a centralised, auto-
mated analysis, and filtering approach developed within 
the RD-Connect GPAP. Variants were filtered for those (a) 
located in genes associated with mitochondrial diseases 
(see list in Supplemental Materials), (b) Genome Aggre-
gation Database (gnomAD) allele frequency of < 0.005, (c) 
internal RD-Connect GPAP allele frequency of < 0.02, (d) a 
HIGH or MODERATE putative effect prediction, as defined 
by SnpEFF, a genetic variant annotation and functional 
effect prediction toolbox, and (e) having zygosity compat-
ible with the inheritance patterns of the gene (based on 
OMIM database) in which the variants were observed. Vari-
ants classified as benign or likely benign in ClinVar were 
excluded from further analysis. For single nucleotide vari-
ants (SNVs), a Combined Annotation Dependent Depletion 
(CADD) score above 20 was used as an additional criterion 

Fig. 1  Study algorithm – high-
lighting the steps taken in the 
study process
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for pathogenicity assessment. It is important to note that 
base insertions, deletions, and duplications did not generate 
CADD scores and were evaluated using literature search and 
online tools such as ClinVar. In addition to consulting Clin-
Var and the ACMG guidelines, we also considered relevant 
literature surrounding each variant, when available, to fur-
ther inform our assessment. In total, 1379 variants of interest 
were identified in 959 patients, of which 1326 variants were 
excluded for the following reasons: (a) previously reported 
as benign; (b) low pathogenicity prediction, as indicated by 
a CADD score of less than 20; (c) annotated in GPAP as 
solved with alternative genetic diagnosis; (d) incompatible 
inheritance pattern; (e) incompatible phenotype or non-neu-
ropathic phenotype on further phenotype analysis; (f) incom-
plete HPO list resulting in ambiguous clinical diagnosis; 
and (g) conflicting reports of pathogenicity of variant in the 
literature. Additionally, we excluded variants of uncertain 
significance, where interpretation was not possible due to 
insufficient information. With this approach we aimed to 
maximise the chance that the included variants were likely 
to be causative.

Results

Cohort description

Of the 10,935 individuals on GPAP, a cohort of 2087 
patients was created for those that had at least one HPO 
term suggestive of a possible neuropathic phenotype. Within 
this cohort, 1379 variants were identified in 959 patients. Of 

the 959 patients, 507 were male (52.87%), 415 were female 
(43.27%), and for 37 (3.86%) their gender was not reported.

Of the 1379 variants, 984 were heterozygous, 262 
homozygous, 125 putative compound heterozygous, and 
8 were located in the mitochondrial genome. Forty-four 
variants in 42 patients were found to be either previously 
reported as causative or identified here as likely to be causa-
tive of the patient’s disease. Approximately half of these 
cases (50%) had already been marked as solved in GPAP. 
Heterozygous variants were only considered to be poten-
tially causative in genes with known autosomal dominant or 
X-linked dominant inheritance. Variants in genes with auto-
somal recessive inheritance were only considered causative 
if homozygous or compound heterozygous. Contact has been 
attempted with the involved centres to establish whether a 
causative variant has been identified, or to discuss the vari-
ant of interest.

Variants identified in mitochondrial disease genes

The 44 included variants comprised 18 heterozygous, 14 
homozygous, 4 putative compound heterozygous, and 8 
mitochondrial variants (Tables 1, 2, 3). The genes respon-
sible for each inheritance mode are shown in Fig. 2. These 
variants were present in 42 patients from 36 families, con-
tributed by a total of 14 different GPAP submitter groups; 
a total of 322 HPO terms were registered, with an aver-
age of 6 terms per patient. The number of registered terms 
ranged from a minimum of 1 to a maximum of 16. Of the 
42 patients included, 21 were male (50%), 20 were female 
(48%), and 1 patient’s gender was unknown (2%).

Table 1  - Pathogenic and 
likely pathogenic heterozygous 
nuclear variants causing 
autosomal dominant CMT 
in the virtual peripheral 
neuropathy cohort generated in 
GPAP

Patient Sex Gene Variant Protein

P1 Male DNA2 c.2593dupT p.Ser865PhefsTer21
P2 Female DNA2 c.2593dupT p.Ser865PhefsTer21
P3 Female DNA2 c.2167G > A p.Val723Ile
P4 Male DNM2 c.1291dupG p.Val431GlyfsTer52
P5 Male DNM2 c.1291dupG p.Val431GlyfsTer52
P6 Male GARS c.647A > G p.His216Arg
P7 Male GARS c.1415A > G p.His472Arg
P8 Female GARS c.1528A > C p.Lys510Gln
P9 Female GARS c.1528A > C p.Lys510Gln
P10 Female, aunt of P11 GDAP1 c.571C > T p.Arg191Ter
P11 Male GDAP1 c.571C > T p.Arg191Ter
P12 Female, mum of P11 GDAP1 c.571C > T p.Arg191Ter
P13 Female GDAP1 c.617_618insG p.Lys207GlufsTer4
P14 Female MFN2 c.823C > T p.Arg275Trp
P15 Male MFN2 c.1126A > G p.Met376Val
P16 Female PDHA1 c.1019G > A p.Arg340His
P17 Male SDHA c.91C > T p.Arg31Ter
P18 Female UCHL1 c.260_261dupGG p.Asn88GlyfsTer28
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We also identified 7 patients with HPO terms represent-
ing a peripheral neuropathy and heterozygous pathogenic or 
likely pathogenic SPG7 mutations. The role of SPG7 het-
erozygous variants in the aetiology of neuropathies is cur-
rently disputed. To gain a better insight whether this associa-
tion is real, we tested the frequency of heterozygous SPG7 
variants in our neuropathy cohort, compared to the wider 
GPAP. We found that 1.097% (120 of 10,935) of GPAP par-
ticipants harbour pathogenic or likely pathogenic heterozy-
gous SPG7 variants, while only 0.240% (5 out of 2,087) 
of our neuropathy cohort. Consequently, this finding does 
not support the role of heterozygous SPG7 mutations in the 
aetiology of mitochondrial neuropathies. It is worth noting 
that RD-Connect is made up of mostly affected individuals 

and not healthy controls; therefore, it is not accurately dem-
onstrating the prevalence of reportedly pathogenic heterozy-
gous SPG7 mutations in a healthy population.

Discussion

In this study, our aim was to investigate the occurrence of 
mitochondrial disease genes in patients with CMT. “Mito-
chondrial CMT” has been previously reported to be caused 
by a number of mitochondrial disease genes [5], suggest-
ing a link between mitochondrial dysfunction and neuropa-
thies. While certain forms of mitochondrial CMT, such as 
MFN2, SANDO, and MNGIE, are well documented, and 
have been detected by candidate gene sequencing in the past, 
the mechanism leading to a predominant neuropathy in some 
individuals remains unclear.

To explore the potential presence of additional mito-
chondrial forms of CMT, we conducted a search using RD-
Connect GPAP. We created a virtual cohort of patients clas-
sified by HPO terms typical for CMT and we searched for 
causative variants in all known mitochondrial disease genes. 
Our search identified 1,379 variants in 93 genes affecting a 
total of 959 patients. Further analysis showed that only 44 of 
these variants, in 16 disease genes, were potentially causa-
tive affecting 42 patients in 36 families. In addition to some 
known variants in genes already known to be associated 
with neuropathy such as GDAP1, GARS1, DNM2, MFN2, 
SACS, C12orf65, SPG7, SDHA, PDHA1, and MT-ATP6, we 

Table 2  Pathogenic and likely 
pathogenic homozygous 
and presumed compound 
heterozygous nuclear variants 
causing autosomal recessive 
CMT in the virtual peripheral 
neuropathy cohort generated in 
GPAP

Patient Sex Gene Variant Protein

Homozygous
 P19 Male C12ORF65 c.96_99dupATCC p.Pro34IlefsTer25
 P20 Female, sib of P19 C12ORF65 c.96_99dupATCC p.Pro34IlefsTer25
 P21 Male C12ORF65 c.96_99dupATCC p.Pro34IlefsTer25
 P22 Male DARS2 c.259G > A p.Asp87Asn
 P23 Male ETFDH c.1130 T > C p.Leu377Pro
 P24 Male GDAP1 c.715C > T p.Leu239Phe
 P25 Female GDAP1 c.786delG p.Phe263LeufsTer22
 P26 Male GDAP1 c.712 T > G p.Trp238Gly
 P27 Male NDUFS6 c.320_323delCAAA p.Thr107LysfsTer40
 P28 Male SACS c.7273C > T p.Arg2425Ter
 P29 Female SACS c.2182C > T p.Arg728Ter
 P30 Female SACS c.6634_6637delACAA p.Thr2212SerfsTer7
 P31 Male UCHL1 c.629_631delGAG p.Gly210del
 P32 Female, sib of P31 UCHL1 c.629_631delGAG p.Gly210del

Compound heterozygous
 P33 Female SPG7 c.1045G > A p.Gly349Ser

SPG7 c.1529C > T p.Ala510Val
 P34 Female SPG7 c.1454_1462delGGC GGG AGA p.Arg485_Glu487del

SPG7 c.1529C > T p.Ala510Val

Table 3  Pathogenic and likely pathogenic mitochondrial DNA vari-
ants causing CMT in the virtual peripheral neuropathy cohort gener-
ated in GPAP

Patient Gender Gene Variant Protein

P35 Female, sib of 
P36

MT-ATP6 m.8993 T > C p.Leu156Pro

P36 Female MT-ATP6 m.8993 T > C p.Leu156Pro
P37 Female MT-ATP6 m.9176 T > C p.Leu217Pro
P38 Male, sib of P40 MT-ATP6 m.9185 T > C p.Leu220Pro
P39 Male MT-ATP6 m.9185 T > C p.Leu220Pro
P40 Male MT-ATP6 m.9185 T > C p.Leu220Pro
P41 Male MT-ATP6 m.9185 T > C p.Leu220Pro
P42 Male MT-TK m.8344A > G N/A
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detected some variants in unexpected genes such as DNA2, 
NDUFS6, ETFDH, SDHA, DARS2 and UCHL1, and MT-
TK highlighting that neuropathy presents more widely in 
mitochondrial disease.

Mutations of SPG7 are predominantly autosomal reces-
sive; however, heterozygous SPG7 mutations have also been 
reported in association with diverse clinical manifestations 
such as optic atrophy, spastic paraplegia, and peripheral neu-
ropathy [38]. The putative role of these heterozygous SPG7 
variants in the aetiology of neuropathies remains contro-
versial. In an attempt to elucidate this association further, 
we assessed the frequency of heterozygous SPG7 variants 
within our neuropathy cohort. We observed a reduced fre-
quency of heterozygous SPG7 mutation carriers within our 
cohort compared to the rest of the samples we could access 
in GPAP. This decreased prevalence in our neuropathy 
cohort does not support the pathogenic role of heterozygous 
SPG7 mutations in the aetiology of mitochondrial neuropa-
thies. However, we detected biallelic SPG7 variants in 3 
patients suggest the association of SPG7 with autosomal 
recessive peripheral neuropathy.

By exploring the genetic landscape of peripheral neu-
ropathies and identifying potential causative variants in 
genes with mitochondrial mechanisms, we contribute to a 
deeper understanding of the molecular mechanisms underly-
ing this complex disease. Our findings underscore the util-
ity of large-scale data analysis and the value of reanalysing 
exome/genome data over time as new genetic associations 
are reported and NGS technologies evolve. We also empha-
sise the importance of comprehensive phenotypic characteri-
sation of patients by clinicians to assist future cohort studies 
and increase the yield of a genetic diagnosis.

Whole exome sequencing (WES) has emerged as a 
valuable diagnostic tool [18], but even with its applica-
tion, a substantial number of patients remain undiagnosed. 
The diagnostic yield from WES varies depending on the 

setting and inclusion criteria, ranging from 15 to 60% 
[39]. To address this diagnostic gap, before performing 
new genomic testing (whole genome sequencing, RNA 
sequencing, proteomics, etc.), expert reanalysis of WES 
data holds promise for identifying missed or newly dis-
covered genetic variants [18, 40].

This study has important limitations that should be 
acknowledged. Firstly, there is a possibility of missed 
patients due to incomplete or incorrect HPO term entry 
by the uploading clinician. Although efforts were made to 
ensure accurate phenotypic characterisation, variations in 
data entry may have resulted in some patients being inadvert-
ently excluded from the analysis. Secondly, gene segregation 
could not be performed in cases where only index patient 
data were available, as opposed to a trio. Attempts were 
made to contact all centres whose variants were included 
in this study to ascertain if the patient had been previously 
diagnosed or to discuss the variant identified. Moreover, the 
platform does not currently enable the efficient cohort-search 
feature for mitochondrial encoded genes, meaning it was 
necessary to select individual variants within the mitochon-
drial genome, which could lead to potential omissions.

Additionally, despite the potential benefits of reanalysis, 
several challenges and limitations need to be considered. 
The interpretation of variants can be complex and may 
vary between different laboratories or databases, lead-
ing to discrepancies in variant classification. Updates 
in variant databases and evolving guidelines for variant 
interpretation also demand regular re-evaluation of pre-
viously reported variants. Furthermore, the identification 
of disease-causing genes or variants may require func-
tional studies or additional evidence beyond bioinformatic 
analysis. Lastly, the dynamic nature of genetic research 
requires continuous data monitoring and re-evaluation 
as new genetic associations, and disease mechanisms 
emerge. Despite these challenges, reanalysis provides an 

Fig. 2  Prevalence of mitochondrial disease genes in the neuropathy cohort per inheritance pattern
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opportunity to enhance diagnostic yield and contribute to 
the evolving understanding of rare diseases, ultimately 
improving patient care and management.

In conclusion, inherited neuropathies are rare and 
complex disorders affecting the peripheral nerves, and 
mitochondria play a crucial role in the disease. This study 
shows how frequently is CMT caused by mutations in 
primary mitochondrial disease genes. This study demon-
strates the potential of RD-Connect as a powerful tool for 
unravelling the underlying causes of rare diseases, includ-
ing inherited neuropathies, and highlights the importance 
of international collaboration to improve the diagnosis and 
treatment of rare diseases.
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