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Abstract
Tauopathies are a heterogeneous group of neurologic diseases characterized by pathological axodendritic distribution, 
ectopic expression, and/or phosphorylation and aggregation of the microtubule-associated protein TAU, encoded by the gene 
MAPT. Neuronal dysfunction, dementia, and neurodegeneration are common features of these often detrimental diseases. 
A neurodegenerative disease is considered a primary tauopathy when MAPT mutations/haplotypes are its primary cause 
and/or TAU is the main pathological feature. In case TAU pathology is observed but superimposed by another pathological 
hallmark, the condition is classified as a secondary tauopathy. In some tauopathies (e.g. MAPT-associated frontotemporal 
dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD)) 
TAU is recognized as a significant pathogenic driver of the disease. In many secondary tauopathies, including Parkinson's 
disease (PD) and Huntington's disease (HD), TAU is suggested to contribute to the development of dementia, but in others 
(e.g. Niemann-Pick disease (NPC)) TAU may only be a bystander. The genetic and pathological mechanisms underlying 
TAU pathology are often not fully understood. In this review, the genetic predispositions and variants associated with both 
primary and secondary tauopathies are examined in detail, assessing evidence for the role of TAU in these conditions. We 
highlight less common genetic forms of tauopathies to increase awareness for these disorders and the involvement of TAU 
in their pathology. This approach not only contributes to a deeper understanding of these conditions but may also lay the 
groundwork for potential TAU-based therapeutic interventions for various tauopathies.

Keywords Genetic tauopathy · MAPT · TAU  · Primary tauopathy · Secondary tauopathy · Alzheimer’s disease

Introduction

Tauopathies are a group of clinically, morphologically, and 
biochemically heterogeneous neurodegenerative diseases 
characterized by cognitive decline and dementia [1, 2]. 
They share the common neuropathological characteristic 

of deposits or ectopic presence of the microtubule-asso-
ciated protein TAU in the brain [3]. TAU is encoded by 
the MAPT (microtubule associated protein TAU) gene 
on chromosome 17q21, there are six different isoforms 
of TAU expressed in the human brain as a result from 
alternative splicing of exons 2, 3, and 10 [4, 5]. Human 
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TAU protein comprises four areas: an N-terminal projec-
tion domain, a proline-rich domain, a microtubule-binding 
domain (MBD), and a C-terminal domain. These can form 
either three isoforms, each with four microtubule-binding 
repeats, referred to as 4R TAU, or three isoforms lacking 
the second repeat, referred to as 3R TAU. Another high-
molecular weight-isoform of TAU (“big TAU”) is mainly 
expressed in the human peripheral nervous system, but 
its pathological relevance is underexplored [6, 7]. Under 
physiological conditions, TAU is predominately present 
in the axon of neurons [8]. In tauopathies, TAU is hyper-
phosphorylated and accumulates in the soma, eventually 
aggregating as neurofibrillary tangles (NFTs) [1, 9].

Primary tauopathies are diseases where either the pres-
ence of TAU filaments or ectopic presence of (phospho-
rylated) TAU is the main or sole known abnormality, or 
where TAU pathology is the major driver of neurodegen-
eration [10]. The spectrum of these primary tauopathies 
comprise e.g. MAPT-associated-Frontotemporal Demen-
tia (FTD), Pick’s disease (PiD), Progressive Supranu-
clear Palsy (PSP), and Corticobasal Degeneration (CBD). 
MAPT mutations associated with neurodegenerative dis-
eases may play a role in enhancing TAU aggregation, dis-
ruption of TAU protein structure, and/or interfering with 
mRNA splicing of MAPT [11, 12]. Approximately 30% of 
primary tauopathy cases were reported with family history 
of dementia or primary tauopathy [13, 14].

In contrast, in secondary tauopathies TAU pathology 
likely develops in response to other pathogenic events. 
Here, no pathogenic mutation can be found in MAPT itself, 
TAU is not considered the primary pathogenic cause, or 
TAU’s exact contribution to disease progression is unclear 
[2, 12]. In Alzheimer’s disease (AD), the most common 
form of dementia, both Amyloid-β (Aβ) and TAU drive 
the pathology, as oligomeric Aβ as well as TAU mislo-
calization, phosphorylation and aggregation can also be 
faithfully modelled in mice and human neurons [15–17]. 
Examples of other secondary tauopathies include Hunting-
ton’s disease (HD), Lewy body dementia (LBD), Parkin-
son's disease (PD), Niemann-Pick disease type C (NPC), 
Down syndrome (DS), and myotonic dystrophy (DM) [12]. 
For many secondary tauopathies, the (genetic) trigger is 
well established, but the disease mechanism finally lead-
ing to TAU pathology and neuronal dysfunction is often 
unclear. As genetic risk factors and the corresponding 
pathomechanisms may contribute to TAU-related demen-
tias, understanding genetic and rare tauopathies may be 
the key for elucidating the pathogenic cascades also of 
more common tauopathies such as AD. In the following 
sections, we will briefly introduce primary and secondary 
tauopathies with a focus on genetic diseases and discuss 
mechanisms of action.

Primary tauopathies

Primary tauopathies comprise diverse neurologic disorders 
classified as Frontotemporal Lobar Degeneration (FTLD) 
with TAU-pathology, referred to as FTLD-TAU [1, 18, 
19]. These disorders are characterized by the abnormal 
aggregation and/or accumulation of TAU protein primar-
ily within neurons or glial cells [20, 21]. The specific type 
of tauopathy determines the affected cell types and con-
tributes to the variability of clinical symptoms [22–25]. 
Most commonly, these conditions lead to clinical dementia 
syndromes, typically with an onset before the age of 65 
[19, 26]. Primary tauopathies can be categorized using 
various criteria, such as their sporadic or familial nature 
based on mutations in the MAPT  gene, or by the pre-
dominant TAU isoforms involved, resulting in 3R, 4R, or 
3R/4R tauopathies [1, 18, 21].

Up to 30% of primary tauopathy cases appear to be 
familial, while the majority are sporadic [13, 14, 20]. In 
familial cases, an autosomal dominant inheritance pattern 
is predominant, with mutations mainly identified in three 
genes (C9orf72, GRN, or MAPT). Each of these genes con-
tributes causatively to familial cases, with roughly equal 
prevalence, accounting for 5–10% each [13, 27, 28]. In 
most cases, there is no convincing evidence for differences 
between different populations/ethnic groups with respect 
to specific mutations causing neurodegenerative primary 
and secondary tauopathies [29], but differences in sporadic 
forms of tauopathies were described, in particular with 
respect to biomarkers for AD and mild cognitive decline 
[30]. The genetic profiles of some tauopathies, i.e. FTD, 
PSP, CBD, PD, might show differences across ethnic 
groups, since the MAPT gene has two haplotypes (H1 and 
H2). H1 haplotypes are found in all ethnic groups and are 
associated with various neurodegenerative disorders. On 
the other hand, H2 haplotypes are primarily found in Euro-
peans and southwest Asians and are linked to a reduced 
risk of developing neurodegenerative disorders [31].

The following section provides an overview of selected 
primary tauopathies and their (potential) genetic causes.

MAPT‑related frontotemporal dementia 
with Parkinsonism‑linked to chromosome 17 
(MAPT‑related FTD/FTDP‑17)

Over 50 mutations have been discovered so far in 
the MAPT gene, most of which lead to the manifesta-
tion of the MAPT-related FTD phenotype. This neuro-
degenerative disorder is also classified among the 4R 
primary tauopathies (although in a few isolated cases, 
3R TAU was predominant), and is characterized by a clear 
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genetic origin: The disease-causing mutations, including 
missense and splicing variants, affect exonic and intronic 
regions of  MAPT  [32, 33]. Missense mutations often 
impact TAU's interaction with microtubules, leading to 
enhanced TAU aggregation. Such mutations are com-
monly localized in the microtubule binding domain, while 
others in the C-terminus disrupt TAU's ability to bind 
to microtubules, influencing axonal transport or micro-
tubule assembly [34, 35]. Splicing mutations in intron 10 
shift the isoform ratio towards 4R, resulting in its over-
production and assembly in TAU filaments [36, 37].

The type and location of the mutations determine 
whether MAPT-associated FTD results from a loss of 
function (LoF) or a toxic gain of function (GoF) by the 
assembly of TAU filaments [37–40]. The presence of 
filamentous TAU deposition serves as a hallmark in all 
tauopathies. Notably, in Mapt-KO mice, minimal pheno-
typic manifestations are evident, with only mild behav-
ioral anomalies, such as hyperexcitability, and subtle 
cellular-level impairments like compromised long-term 
depression [34, 35]. A toxic GoF may occur when an 
excessive amount of TAU resulting from elevated 4R 
ratios overwhelms the available binding sites on microtu-
bules, thereby resulting in the assembly of unbound TAU 
in filaments [41, 42].

TAU is a natural therapeutic target for MAPT-related 
FTD, and an attractive target for related tauopathies such 
as AD, as there is a strong correlation between the amount 
of NFTs and cognitive decline, and Mapt-KO mice are 
healthy. So far, however, TAU-based therapies have not 
shown clinical efficacy [43]. Currently pursued strategies 
include decreasing total levels of TAU via immunologi-
cal removal, genetic suppression via antisense oligomers 
(which are also used for splicing modulation) or micro-
RNAs, inhibition of posttranslational modifications, and 
more recently also specifically targeting TAU interaction 
motifs or expressing proteins inducing TAU degradation 
(reviewed e.g. in Self and Holtzman [44], for a new TAU 
interaction motif inhibitor see Roth et al. [45] and for 
TRIM11-mediated TAU reduction see Zhang et al. [46]). 
In particular for AD there is considerable academic and 
industrial interest in developing TAU-based therapies, 
which may also be helpful in other (genetic) tauopathies, 
in particular for those where TAU is the main disease 
driver, e.g. PSP, CBD, AGD and PiD as listed below.

In conclusion, the diverse mutations within the MAPT 
gene associated with disease reveal a complex genetic 
basis for MAPT-related FTD, with some mutations poten-
tially leading to a loss of TAU’s canonical MT-binding 
function, and others causing a toxic GoF, both resulting 
in TAU filament assembly.

Progressive supranuclear palsy (PSP)

PSP is a mainly sporadic 4R tauopathy, with familial cases 
making up less than 5% of affected patients. Genetic vari-
ations (such as the H1 and H2 haplotype, which will be 
discussed in further detail below) within the MAPT gene 
were suggested to confer increased risk for PSP [47, 48]. 
Although more than ten other risk loci, including genes 
like STX or MOBP (for a complete list, see Table 5 in Wen 
et al. [49]), have been identified for PSP, the importance of 
MAPT mutations remains central, with 15 such mutations 
identified in PSP patients. Patients with MAPT mutations 
face an earlier onset of disease compared to those linked 
e.g. to LRRK2 or DCTN1 mutations [14, 49].

PSP affects both gray and white matter, with TAU 
inclusions found in specific brain regions, including 4R 
TAU-based neurofibrillary tangles and globular inclusions, 
which are histologically difficult to distinguish from Pick 
bodies [50]. Distinctive features such as TAU-positive 
tufted astrocytes and coiled bodies were also observed 
[51] (for review see Götz et al. [1]).

The clinical presentation of PSP exhibits numerous 
similarities with Parkinson's disease, making the specific 
diagnosis of PSP challenging. Common motor impair-
ments, such as impaired balance and spontaneous falls, 
are frequently observed and occur early. Additionally, cog-
nitive changes and a variety of other symptoms have been 
documented. Unlike Parkinson's disease, tremor is not a 
characteristic feature of PSP. In contrast, PSP patients 
often display unique symptoms like vertical gaze palsy, 
which are not typically observed in Parkinson's patients 
[52].

Epigenetic factors like methylation impact MAPT expres-
sion in PSP patients. Notably, CpG1 hypomethylation in 
MAPT intron 0 was found in frontal cortices of PSP patient 
brains, increasing MAPT mRNA. Furthermore, a genome-
wide methylation study revealed a cluster of differential 
methylation probes in the chromosomal region chr.17q21.31, 
which includes MAPT, the major risk gene for PSP [53] 
(for review see Debnath et al. [54]). In addition to MAPT, 
specific single nucleotide polymorphisms (SNPs) have been 
implicated in PSP pathology, contributing to prolonged dis-
ease duration and subcortical pathology. These SNPs are 
associated with the TRIM11 gene and intron 3 of SLC2A13 
which is in close proximity of LRRK2. LRRK2 is associ-
ated with an enhanced survival rate in PSP [55]. Notably, 
case–control GWAS studies highlight MAPT as the key risk 
locus for PSP with the strongest effect size [54, 56, 57].

A main feature of PSP in most patients is L-DOPA non-
responsive parkinsonism (referred to as PSP-P) [26, 58]. 
Richardson syndrome (PSP-RS) shows an independent 
spectrum of symptoms including postural instability and 
subcortical dementia [59].
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A recent development in the realm of PSP is the emer-
gence of a subtype defined as protracted course PSP (PC-
PSP), characterized by a longer disease duration, slower 
clinical progression and anatomically restricted neuro-
pathological symptoms [59]. Further research is needed 
to understand this syndrome in more detail, as only a 
limited number of cases have been identified and studied 
thus far, which is not yet sufficient for genotype–pheno-
type studies.

Corticobasal degeneration (CBD)

CBD, categorized as a sporadic 4R primary tauopathy, 
shares significant neuropathological and etiological 
parallels with PSP [20, 26]. Clinically, more than 50% 
of CBD cases initially present with apraxia in one arm, 
often accompanied by a gait disorder affecting motor 
function. Behavioral changes and speech disorders were 
also reported, as well as symptoms such as ideomotor 
apraxia, dementia, clumsiness of the limbs, early tremors, 
and the alien-limb phenomenon. Progressive development 
includes asymmetric, unilateral parkinsonism, cognitive 
decline, and gait impairment. Additional features in CBD 
patients consist of myoclonus and sensory disturbance. 
Typically, at least one parkinsonism symptom is evident 
in CBD [60].

Similar to the observations in PSP, CBD was linked 
to a limited number of identified MAPT mutations (most 
commonly p.G389R and p.N410H) as causative fac-
tors [26, 61]. In CBD patients, TAU-positive structures 
are more widely distributed, impacting both white and 
gray matter [62, 63]. CBD primarily affects the cerebral 
cortex and basal ganglia, and, similar to accumulations of 
4R TAU in PSP, these accumulations are found in neurons 
and glial cells [20, 64]. Unlike in PSP, NFTs are rare in 
CBD, while pretangles are a common hallmark in the cer-
ebral cortex and subcortical nuclei of CBD patients. Pre-
tangles, initially defined as non-fibrillary TAU deposits 
in neurons in Alzheimer's disease, represent an early stage 
in the pathological process of TAU protein accumulation, 
often considered precursors to the more advanced and 
fully formed NFTs, which are highly aggregated TAU 
protein clumps found in neurons [18, 65]. One of the most 
distinct pathologies in CBD is the presence of astrocytic 
plaques, particularly abundant in the cerebral cortex [1, 
66].

To unravel CBD's genetic basis, more genotype–phe-
notype studies are required, complicated by its rarity 
and substantial pathological and etiological overlap with 
other tauopathies. Nevertheless, among the identified risk 
genes, MAPT  is the most prevalent and important one 
associated with CBD [14, 67].

Genetic factors shared in PSP and CBD

In both PSP and CBD, the overrepresentation of the H1 hap-
lotype of Chromosome 17 (where the MAPT gene is located) 
is a significant genetic risk factor for PSP and CBD. The 
risk is attributed to a linkage disequilibrium caused by a 
900 kb inversion of H1 that occurred 3 million years ago, 
resulting in two haplotypes: H1 and H2. So far, a total of five 
haplotypes and subhaplotypes have been identified that are 
significantly associated with an increased risk of PSP mani-
festation. These include haplotype H2, as well as the H1 
subhaplotypes H1c, H1d, H1g, and H1o. Notably, H1c and 
H1d also contribute to CBD risk, emphasizing the shared 
genetic background of both disorders [48, 68, 69]. For other 
haplotypes (H1b, H1e H1h, H1m, H1r and H1q), no sig-
nificant association with an increased risk was found [70].

The H1 haplotype elevates MAPT gene expression by 1.5 
times compared to H2, particularly for 4R isoforms [71]. 
This enhances the accumulation of pathological TAU, and 
hence potentially also TAU toxicity. Despite being consid-
ered a risk factor, the H1 haplotype also promotes protec-
tive effects, influencing the alternative splicing of exon 10 
to favor the formation of more 3R TAU isoforms [48, 69, 
70, 72]. It is worth noting that H1 may be associated with 
a reduced regional gray matter volume in healthy carriers 
perhaps increasing the risk of developing sporadic cases of 
tauopathies such as PSP or CBD [73]. The MAPT H2 hap-
lotype has a confirmed protective effect and reduces CBD 
risk significantly, but no MAPT haplotypes were directly 
associated with any TAU pathology measures [48].

In conclusion, the H1 haplotype on Chromosome 17, 
along with its subhaplotypes, represents a significant genetic 
risk factor for both PSP and CBD, highlighting the shared 
genetic background of these disorders, with complex effects 
on TAU pathology and isoform regulation.

Pick’s disease (PiD)

Pick's disease (PiD) is distinguished as the sole primary 
3R tauopathy (see below for secondary 3R tauopathies). 
Here, hyperphosphorylated filaments, exclusively composed 
of the 3R TAU isoforms, undergo further transformation 
increasing insolubility and aggregation, eventually forming 
structures known as Pick bodies, which represent the most 
distinctive hallmark of PiD [1, 74], despite rare reports of 
significant neuronal 4R-TAU accumulation [75]. Addition-
ally to the Pick bodies, also cortical atrophy predominantly 
found in the frontal and temporal poles is a common neuro-
pathological finding [76]. Since TAU aggregates/Pick bodies 
are the main and most important pathological event of PiD, 
it is classified as a primary tauopathy [77].

Clinical symptoms in PiD vary based on cortical atro-
phy location. In cases where the temporal lobe is affected, 
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Klüver-Bucy syndrome may arise, impacting behavior with 
symptoms like dietary changes or visual agnosia among oth-
ers. Notably, this syndrome can also be triggered by trauma 
to the temporal lobe [76, 78]. Conversely, pathology in the 
frontotemporal lobe may give rise to frontal lobe syndrome, 
encompassing a spectrum of symptoms ranging from behav-
ioral changes and memory deficits to language disorders and 
mutism [76].

PiD is a relatively rare tauopathy, and familial cases of the 
disease are infrequent, with the majority of instances being 
sporadic. Some hereditary PiD cases are associated with 
missense mutations and small deletions in the MAPT gene, 
such as the G272V, ∆K281, and Q336H mutations [79–81]. 
The MAPT H2 haplotype is associated with an increased risk 
of PiD, while the H1b and H1f haplotypes of MAPT appear 
to be protective [82]. Isolated cases of PiD have been associ-
ated with mutations in the PSEN1 gene [83–85].

In summary, PiD is characterized by TAU aggregates 
called Pick bodies and cortical atrophy in frontal and tem-
poral poles resulting in diverse clinical symptoms. Familial 
PiD cases are rare, some associated with MAPT mutations, 
increased risk linked to the H2 haplotype of MAPT, and iso-
lated cases linked to PSEN1 mutations.

Argyrophilic grain disease (AGD)

In contrast to the other primary tauopathies discussed thus 
far, Argyrophilic Grain Disease (AGD) lacks a well-defined 
clinical profile, largely due to its substantial overlap with 
other neuropathologies and the considerable heterogene-
ity inherent to the disease itself [86]. Similar to PSP or 
CBD, the overrepresentation of the MAPT H1 haplotype is 
observed in AGD [87]. Also, rare MAPT mutations relevant 
for AGD (e.g. S305I and S305S), as well as DNA copy num-
ber variations at 17p13.2 have been found [88–90]. AGD is 
a sporadic age-related tauopathy, it becomes more prevalent 
as individuals age, affecting approximately 40% of people 
aged between 90 and 100 years. Additionally AGD occurs 
in 25% of AD cases, contributing to the overall pathol-
ogy [91–93]. The question arises whether AGD should be 
categorized as a neurological pathology or as a by-product of 
brain ageing, especially considering the prevalence of AGD 
hallmarks in the brains of healthy adults above 60 years old 
[86]. Although AGD falls within the 4R tauopathies, its 
hallmarks significantly diverge from those of PSP or CBD. 
AGD is distinguished by the presence of argyrophilic gran-
ules, from which it derives its name, as well as comma-
shaped dendritic protrusions predominantly consisting of 
phosphorylated 4R Tau, which are crucially involved in the 
main neuropathologic features, the so-called “coiled bod-
ies”, oligodendroglial TAU inclusions that go along with 
“ballooned” neurons [87, 94]. Primarily found in the hip-
pocampus, amygdala, and adjacent temporal cortex, AGD 

less frequently affects regions such as the basal ganglia, 
brainstem nuclei, or cerebellum, which are more commonly 
involved in PSP or CBD [86]. AGD may exhibit a strong 
correlation with individuals experiencing late-onset promi-
nent psychiatric symptoms. It is suspected to be a significant 
and isolated risk factor for psychiatric hospitalization and 
even completion of suicide [86].

For a comprehensive exploration of additional primary 
4R tauopathies and their specific brain-related pathologies, 
refer to works by Chung et al. [20], Götz et al. [95], or Irwin 
[26].

Other/rare primary tauopathies

In addition to the main primary tauopathies discussed above, 
there are other distinct tauopathies with underexplored 
genetic backgrounds. One such example is globular glial 
tauopathy (GGT), found within the TAU-positive FTLD-
spectrum, representing less than 10% of FTLD-TAU cases 
[96]. For this assumed non-familial 4R tauopathy, only 
few cases have been linked to MAPT mutations (p.K317N, 
p.P301L) [97, 98]. The ageing-related TAU astrogliopa-
thy (ARTAG) is rarely an isolated finding, but rather a co-
pathology in ageing, with pathologic accumulation of abnor-
mally phosphorylated 4R-TAU in astrocytes [24]. MAPT 
haplotypes (as well as APOE genotypes) do not have a sig-
nificant effect on the presence of ARTAG, and other genetic 
causes for the development of the disease have not yet been 
sufficiently examined [99]. In the mixed 3R + 4R primary 
age-related tauopathy (PART), AD-type NFTs occur pro-
gressively in the absence of Amyloid co-pathology [100]. 
The cognitive impairment in PART seems to be mainly cor-
related to comorbid pathologies like cerebrovascular disease, 
but also typical MAPT-related FTD mutations like p.R406W 
and p.V337M are reported in PART pathogenesis [101, 102]. 
The MAPT H1 haplotype is again considered a strong risk 
factor for PART [103]. Interestingly, PART demonstrates 
that TAU dysfunction alone is sufficient to cause neurode-
generation, importantly contributing to the emergence of the 
term ‘primary tauopathies’ [104]. An overview of the pri-
mary tauopathies discussed here with regard to their genetic 
risk factors is given in Table 1.

Secondary tauopathies

The distinction between primary and secondary tauopathy 
is determined by whether the abnormal changes in TAU 
protein are the predominant pathology and likely the driver 
of disease or a co-pathology and possibly secondary to a 
TAU-independent disease cause. If pathological TAU for-
mation develops in response to other pathogenic events 
and is not considered the driver of the disease, the term 



 Journal of Neurology

Ta
bl

e 
1 

 P
rim

ar
y 

ta
uo

pa
th

ie
s w

ith
 b

rie
f c

lin
ic

al
 d

es
cr

ip
tio

n,
 g

en
et

ic
 fa

ct
or

s, 
an

d 
m

aj
or

 p
at

ho
lo

gy

D
is

ea
se

 e
nt

ity
C

lin
ic

 d
es

cr
ip

tio
n/

pa
th

ol
og

ic
al

 o
ve

rv
ie

w
G

en
et

ic
 e

tio
lo

gy
Pr

im
ar

y 
pa

th
ol

og
y

Re
fe

r-
en

ce
s/

ov
er

vi
ew

A
ge

in
g-

re
la

te
d 

TA
U

 a
str

og
lio

pa
th

y 
(A

RT
A

G
)

M
aj

or
ly

 fo
un

d 
in

 in
di

vi
du

al
s a

bo
ve

 th
e 

ag
e 

of
 6

5.
 

C
om

m
on

 c
o-

pa
th

ol
og

y,
 fo

un
d 

in
 >

 65
%

 o
f p

rim
ar

y 
ta

uo
pa

th
y 

ca
se

s

M
AP

T,
 A

Q
P4

A
str

oc
yt

ic
 le

si
on

s/
Th

or
ns

ha
pe

d 
as

tro
cy

te
s

[2
4]

[1
05

]

A
rg

yr
op

hi
lic

 g
ra

in
 d

is
ea

se
 (A

G
D

)
M

os
t c

om
m

on
 n

eu
ro

de
ge

ne
ra

tiv
e 

di
se

as
e 

af
te

r A
D

. 
N

o 
co

m
m

on
 c

lin
ic

al
 p

re
se

nt
at

io
n 

or
 p

he
no

ty
pe

 
as

so
ci

at
ed

. I
nc

re
as

ed
 ri

sk
 in

 o
ld

er
 a

ge
s

M
AP

T
A

rg
yr

op
hi

lic
 g

ra
in

s e
sp

ec
ia

lly
 w

ith
in

 d
en

dr
ite

s a
nd

 
sp

in
es

[1
06

]

C
or

tic
ob

as
al

 d
eg

en
er

at
io

n 
(C

B
D

)
A

ve
ra

ge
 d

is
ea

se
 o

ns
et

 is
 6

4 
ye

ar
s, 

w
or

se
ni

ng
 in

 
m

ot
or

 fu
nc

tio
n 

an
d 

be
ha

vi
or

al
 c

ha
ng

es
 in

 p
at

ie
nt

s
M

AP
T

4R
 T

A
U

 a
cc

um
ul

at
io

n 
an

d 
pr

et
an

gl
es

 fo
un

d 
in

 
ne

ur
on

s a
nd

 g
lia

l c
el

ls
[1

07
]

[6
4]

[6
0]

G
lo

bu
la

r g
lia

l t
au

op
at

hy
 (G

G
T)

A
ve

ra
ge

 d
is

ea
se

 o
ns

et
 is

 6
7 

ye
ar

s. 
G

G
T 

m
an

ife
sts

 
in

 th
re

e 
di

sti
nc

t s
ub

ty
pe

s, 
ea

ch
 c

ha
ra

ct
er

iz
ed

 b
y 

a 
un

iq
ue

 sy
m

pt
om

at
ic

 p
ro

fil
e.

 S
ym

pt
om

s i
nc

lu
de

 
be

ha
vi

or
al

 c
ha

ng
es

, c
og

ni
tiv

e 
im

pa
irm

en
t, 

an
d 

pa
rk

in
so

ni
sm

M
AP

T
W

hi
te

 m
at

te
r d

eg
en

er
at

io
n 

fe
at

ur
in

g 
gl

ob
ul

ar
 a

str
o-

cy
tic

 in
cl

us
io

ns
 p

re
va

ils
 a

cr
os

s a
ll 

su
bt

yp
es

[9
6]

[9
7]

M
AP

T-
re

la
te

d 
FT

D
/fr

on
to

te
m

po
ra

l d
em

en
tia

 
w

ith
 P

ar
ki

ns
on

is
m

-1
7 

(F
TD

P-
17

)
H

et
er

og
en

eo
us

 c
lin

ic
al

 p
re

se
nt

at
io

n,
 b

ut
 e

xh
ib

its
 

ty
pi

ca
l d

em
en

tia
 sy

m
pt

om
s l

ik
e 

pr
og

re
ss

iv
e 

co
gn

i-
tiv

e 
de

cl
in

e,
 c

ha
ng

es
 in

 b
eh

av
io

r, 
m

em
or

y 
lo

ss

M
AP

T
A

cc
um

ul
at

io
n 

of
 fi

la
m

en
to

us
 a

nd
 h

yp
er

ph
os

ph
or

yl
-

at
ed

 T
A

U
 u

su
al

ly
 in

 b
ot

h 
ne

ur
on

s a
nd

 g
lia

l c
el

ls
[1

08
]

[1
09

]

Pr
og

re
ss

iv
e 

su
pr

an
uc

le
ar

 p
al

sy
 (P

SP
)

M
ot

or
 im

pa
irm

en
t, 

m
an

y 
si

m
ila

rit
ie

s w
ith

 P
ar

ki
n-

so
n’

s d
is

ea
se

 (n
o 

tre
m

or
), 

sp
ec

ifi
c 

PS
P 

di
ag

no
si

s 
ch

al
le

ng
in

g

M
AP

T,
 L

RR
K

2,
 D

C
TN

1
A

str
oc

yt
ic

 p
la

qu
es

 e
sp

ec
ia

lly
 in

 th
e 

ce
re

br
al

 c
or

te
x

N
FT

s/
tu

fte
d 

as
tro

cy
te

s a
nd

 c
oi

le
d 

bo
di

es
[5

2]
[1

10
]

[5
5]

Pr
im

ar
y 

ag
e-

re
la

te
d 

ta
uo

pa
th

y 
(P

A
RT

)
B

el
on

gs
 to

 A
lz

he
im

er
-ty

pe
 n

eu
ro

fib
ril

la
ry

 d
eg

en
er

a-
tio

n,
 la

ck
in

g 
A

β-
pl

aq
ue

s
M

AP
T

N
FT

s i
nd

ist
in

gu
is

ha
bl

e 
fro

m
 th

e 
ea

rly
 st

ag
es

 o
f A

D
[1

02
]

[1
00

]
Pi

ck
's 

di
se

as
e 

(P
iD

)
C

lin
ic

al
 p

re
se

nt
at

io
n 

hi
gh

ly
 d

ep
en

de
nt

 o
n 

co
rti

-
ca

l a
tro

ph
y 

lo
ca

tio
n 

ei
th

er
 re

su
lti

ng
 in

 K
lü

ve
r-

B
uc

y 
sy

nd
ro

m
e 

or
 fr

on
ta

l l
ob

e 
sy

nd
ro

m
e.

 M
an

y 
co

m
m

on
 sy

m
pt

om
s w

ith
 o

th
er

 d
em

en
tia

 ty
pe

s a
s 

m
em

or
y 

de
fic

its
 o

r b
eh

av
io

ra
l c

ha
ng

es

M
AP

T,
 P

SE
N

1
Pi

ck
 b

od
ie

s
[7

4]
[8

2]



Journal of Neurology 

secondary tauopathy is used [12, 18]. In many tauopathies 
considered secondary tauopathies, TAU is the most impor-
tant co-pathology and may be critical to the developing 
neurodegeneration, e.g. for AD [111], which makes a clear 
distinction in some cases disputable. The genetic factors 
leading to TAU pathology as well as the pathomechanis-
tic connections between the primary pathology and TAU in 
secondary tauopathies are often not fully understood. This 
section provides an overview of the most relevant second-
ary tauopathies and the state of the art on the relationship 
between genetic predispositions and TAU pathology in the 
respective diseases.

Alzheimer's disease (AD)

The classification of primary and secondary tauopathies 
can be challenging, as it is the case for Alzheimer’s disease. 
There are two main hypotheses behind the pathophysiology 
of the disease: the Amyloid hypothesis and the TAU hypoth-
esis. The former hypothesis posits that the accumulation of 
Aβ oligomers is the main driver of the disease [112]. Muta-
tions in the Amyloid precursor protein (APP), the precur-
sor molecule whose proteolysis generates Aβ [113], or in 
Presenelin-1 or Presenelin-2, which comprise the catalytic 
domain of APP-protease γ-secretase [114], lead to increased 
or aberrant production and accumulation of Aβ-42. This is 
assumed to trigger a cascade leading to senile plaque forma-
tion, synaptic injury, oxidative stress, and altered cellular/
enzymatic activities [115]. The hypothesis suggests that 
imbalance between Aβ production and clearance triggers 
TAU hyperphosphorylation and accumulation into NFTs 
[116]. According to the Aβ hypothesis, AD should be clas-
sified as a secondary tauopathy, since NFT formation is 
downstream of Amyloid pathology.

The TAU hypothesis on the other hand suggests a central 
role of TAU protein in driving the pathophysiology of AD. 
This hypothesis postulates that the (clinical) disease begins 
when TAU becomes hyperphosphorylated, leading to TAU 
dysfunction, e.g. due to TAU disassociation from and sub-
sequent destabilization of the microtubules [117]. Hyper-
phosphorylated TAU missorts to somatodendritic compart-
ments of neurons and aggregates into NFTs, culminating in 
disrupted axonal transport, synaptic loss, and neuronal death 
[9, 118]. In this hypothesis, TAU phosphorylation could also 
drive Aβ generation within afflicted neurons [119]. This 
would reclassify AD as a primary tauopathy where TAU is 
the main driver, and not just a mere bystander, of the disease. 
This hypothesis has recently been challenged by Aβ-based 
therapies, which showed a significant deceleration of disease 
progression also in sporadic AD cases [120], but it cannot 
be excluded that Aβ is only a modulator and not the primary 
disease driver.

However, the presence of both Amyloid plaques and TAU 
tangles is the defining feature of AD, giving rise to more 
holistic theories such as the neuroinflammation theory. Here, 
the persistent activation of the brain's microglia has been 
shown to exacerbate both Amyloid and TAU-related pathol-
ogy, potentially playing a central role in the development of 
the disease [121]. Nonetheless, differential diagnosis of AD 
from other primary tauopathies, and primary tauopathies 
from each other can be challenging, as e.g. misdiagnosis 
of FTD as AD and vice versa is not uncommon. In prin-
ciple, primary tauopathies can be distinguished based on 
the TAU isoforms present in the tangles, but these differ-
ences can only be seen in brain aggregates, making ante 
mortem distinction difficult [122]. A recent study reported 
several specific post-translational modifications (PTMs) 
on soluble TAU that can serve as signatures to distinguish 
between tauopathies. These include phosphorylation on 
Serine 184 coupled with phosphorylation on Serine 185 in 
the case of 3R-tauopathies, and ubiquitination on Lysine 
343 in the case of 4R-tauopathies, but also more specific 
acetylation on Lysine 311 specific for Pick’s disease, ubiq-
uitination on Lysine 369 specific for corticobasal degenera-
tion, and ubiquitination on Lysine 31, 317, and 267 coupled 
with phosphorylation on Serine 262 specific for AD [123]. 
Unveiling these soluble TAU PTMs will help immensely 
in establishing fluid biomarkers and evaluating drug targets 
for tauopathies.

Although not more than 5–10% of AD cases are def-
initely caused by a single genetic mutation and MAPT 
mutations are generally not linked to familial forms of 
AD, more than 70 other genetic regions associated with 
AD have been identified [124] (extensively reviewed by 
Andrews et al. [125]). Several AD risk genes can influ-
ence TAU accumulation and phosphorylation. Apolipo-
protein E4 (APOE4) raises TAU levels in the human brain 
and induces phosphorylation of TAU in human neurons, 
the APOE ε4 allele is considered the strongest risk fac-
tor for the development of AD and a lower age of onset 
[126]. APP also affects the accumulation of TAU, with 
the expression of APP increasing the number of phospho-
rylated TAU aggregates [127]. Other well-researched risk 
factors are mutations in both presenilin genes (PSEN1 
and PSEN2), which increase TAU phosphorylation 
and aggregation [128]. New machine learning-based 
approaches are of particular importance for the detection 
of genetic disease associations, such as the recent discov-
ery of two new AD associated loci SH3BP4 and SASH1, 
which also show significant epistatic interactions with 
APOE. [129]. In contrast, however, there are also protec-
tive genetic factors that reduce the risk of and represent a 
resilience to AD (reviewed in detail in Seto et al. [130]). 
These findings enable new, promising approaches for AD 
therapy options, as a recent study showed that Tripartite 
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motif-containing protein 11 (TRIM11) is downregulated 
in AD and that AAV-based viral delivery of TRIM11 con-
fers strong protection against TAU pathology in several 
mouse models [46]. However, it is still mostly unknown 
how genetic risk factors can influence the progression 
and transmission of TAU pathology. A less known genetic 
risk factor for AD, FRMD4A, has been shown to affect 
TAU secretion, and is thought to modulate TAU release as 
well as cell-to-cell transmission in AD via the FRMD4A-
cytohesin-Arf6 presynaptic vesicle pathway [131].

While for rare (genetic) tauopathies epigenetic stud-
ies are largely missing (but see chapter PSP for MAPT 
promoter hypomethylation), for the mainly sporadic AD 
and PD, epigenetic factors are certainly involved, and 
may play a disease-modifying role also in other (genetic) 
tauopathies, e.g. modifying the age of onset or severity 
of symptoms, and also be consequence of gene mutation 
(as e.g. discussed here for myotonic dystrophy, which 
changes splicing in a wide-spread fashion, see below). 
While this is outside the scope of this review, epigenetics 
in AD and other tauopathies are reviewed in Zimmer-
Bensch and Zempel [2]. In AD, global DNA hypometh-
ylation in postmortem tissue, also confirmed by monozy-
gotic twin studies, but also differential methylation of 
specific genes like ANK1, MCF2L, STK32C, LRRC8B, 
MAP2, and S100B, all associated with neuronal function, 
as well as methylation changes at key AD risk genes such 
as APP and ADAM17 have been reported, but also other 
epigenetic changes and also changes in factors upstream 
of TAU pathology (e.g. CDK5, GSK-3 beta) [2].

While naturally therapeutic strategies for AD are pri-
marily focused on Amyloid-beta (with some clinical suc-
cess) and TAU, the range of biological, pharmacological 
and psychological treatments spans conformation specific 
antibodies over treating underlying diabetes and inflam-
mation as well as exercise and social activities, with liter-
ally billions invested in clinical studies and industry- and 
academia-based research [44]. Apart from highly disease-
specific interventions, there is reasonable hope that treat-
ment of underlying problems like e.g. obesity, diabetes 
or heart disease which is beneficial to prevent/delay the 
onset of Alzheimer’s or dementia in general, may also 
delay or slightly alleviate genetic forms of tauopathies.

In sum, elucidating the complete cascade of AD pathol-
ogy, and distinguishing it from other primary tauopathies 
is still challenging. While TAU-based therapeutic strate-
gies are certainly valid (see e.g. Al Kabbani et al. [132]), 
more insights in the future will help to develop better 
biomarkers to differentially diagnose and monitor these 
diseases, and will unveil more specific and genetically 
validated therapeutic targets.

Lewy body dementia (LBD)

Lewy body dementia (LBD) comprises both dementia with 
Lewy bodies (DLB) and Parkinson’s disease (PD). PD is 
histopathologically characterized by the progressive loss 
of dopaminergic neurons in the substantia nigra. The main 
pathological hallmark of PD is the formation of Lewy bodies 
(LBs) consisting of crowded organelles, lipid membranes, 
and aggregated α-synuclein in the remaining neurons [133, 
134]. TAU pathology (e.g. ectopic expression, aggregation, 
phosphorylation) is frequently observed in the synucle-
inopathies PD and DLB, but a clear cause-effect between 
misfolded protein aggregates and neurodegeneration has not 
been demonstrated [67]. After the discovery of co-localiza-
tion of α-synuclein and TAU [135], many studies explored 
the mechanisms of how TAU contributes to the pathophysi-
ology of PD. Around 80% of PD patients develop Parkin-
son’s disease dementia (PDD) during their disease course 
[136]. AD-type pathology, i.e. NFTs, and Aβ plaques, are 
positively correlated with cognitive impairment in PDD 
[137, 138]. Hence, TAU is potentially a protagonist in the 
development of dementia following PD.

Mutations in the leucine-rich repeat kinase 2 (LRRK2) 
are the most common genetic cause of Parkinson’s disease. 
LBs, the major feature of idiopathic PD (iPD), are not found 
in all LRRK2 PD cases, suggesting that in LRRK2-associated 
PD there is another driver of the disease. Strikingly, TAU 
pathology (AD-type TAU tangles and/or abnormal TAU 
phosphorylation) is found in the majority of LRRK2 PD 
cases [139]. This suggests a relationship between LRRK2 
mutations and the development of TAU pathology. Muta-
tions in LRRK2 are also associated with pathologically con-
firmed primary tauopathies, such as PSP or CBD [140]. In 
addition, certain MAPT mutations are reported to be rare 
causes of primary tauopathies considered as atypical par-
kinsonism syndromes (e.g. PSP and CBD) [67]. The MAPT 
H1/H1 haplotype, which is associated with increased risk of 
some primary tauopathies (especially PSP), has been associ-
ated with PD as well [138, 141]. Even though homozygosity 
for the MAPT haplotype H1 is associated with increased risk 
for PD, a recent post-mortem study could not identify a link 
between the H1/H1 associated overexpression of MAPT and 
PD status [142]. Many other genes may be risk factors for 
PD because the proteins they encode interact with TAU, and 
mutations in these genes have been described to affect TAU 
pathology in PD cases. The most common of these genes 
include, among many others with lower frequency, PINK1 
[143], SNCA [144], GBA [145], and PARK7 [146] (see also 
Vacchi et al. [147] for a comprehensive overview).

Dementia with Lewy Bodies (DLB) is clinically similar 
to PD and characterized by the accumulation of aggregated 
α-synuclein in Lewy bodies and associated with loss of 
nigrostriatal dopaminergic neurons. Additional pathologies 



Journal of Neurology 

include hyperphosphorylated TAU and AD-like neurofibril-
lary tangles [148]. There is no sharp distinction between 
PDD and DLB in terms of neuropathology, the most sig-
nificant difference between phenotypes PDD and DLB is the 
degree of AD-like pathology in terms of plaque deposition, 
which is higher in DLB than PDD [149, 150]. A substantial 
proportion of DLB patients have abnormal values for the 
biomarkers CSF Aβ42, total TAU, and phosphorylated TAU, 
a profile which is more common in DLB compared to PD/
PDD, and associated with more severe cognitive impair-
ment in DLB [151]. Especially the Casp2-generated TAU 
fragment Δtau314 (a soluble form of TAU) is connected 
to dementia in DLB. Levels of Δtau314 are around twice 
as high in DLB relative to PD, which could hint towards 
a TAU-based or TAU-related mechanism for synaptic dys-
function underlying dementia in DLB [152]. Many genetic 
variants are associated with DLB (reviewed in Outeiro et al. 
[148] and Tolea et al. [153]). The strongest and most rep-
licated ones are the APOE ε4 allele (also the strongest risk 
factor for AD) and GBA, both likely involved in the mecha-
nism of LB pathology formation and/or spread [148, 154, 
155]. Other reported risk genes of DLB are SNCA, SCARB2,

PSEN1, PSEN2, and MAPT [156, 157]. Although over-
representation of the MAPT p.A152T variant, H1/H1 hap-
lotype, and H1g subhaplotype are considered potential risk 
factors for DLB, overall current evidence suggests that 
MAPT variations may only have a minor role in DLB [67]. 
Strikingly, a recently discovered new risk loci, BIN1, was 
significantly associated with increased NFT pathology in 
DLB [158]. Loss of BIN1 is known to impair synaptic trans-
mission and promotes the propagation of TAU pathology 
[159, 160].

In genetic forms of DLB/PD, epigenetic factors may 
play a role in disease modifications, but are likely not the 
driving force of disease progression. In sporadic DLB/PD, 
however, epigenetic changes may be disease drivers, and 
give interesting hints towards disease mechanisms. While 
MAPT methylation can be both increased and decreased, the 
genes/loci responsible for the expression of α-synuclein and 
PGC1-α (key factor in mitochondrial biogenesis) are hypo- 
and hypermethylated, respectively (for review see Zhang 
et al. [161]), indicating a crucial role for α-synuclein but 
also mitochondria in DLB/PD. As mitochondrial function 
must be critically involved in the genetic forms of PD asso-
ciated with mitochondrial genes, and the (epi-) genetic and 
histopathological evidence pointing towards α-synuclein, 
bolstering of mitochondria and targeting alpha-synuclein 
are natural targets. While mitochondrial bolstering (e.g. via 
MitoQ and Q10) were unsuccessful in clinical studies (see 
Borsche et al. [162] for review), α-synuclein-based treat-
ments show considerable effects, and trials are ongoing 
[163]. Naturally, gene therapy approaches are considered for 
genetic forms of PD (with clinical trials ongoing for GBA1 

or LRRK2), but conventional treatments (e.g. levodopa) and 
deep brain stimulation are effective and the most widely used 
treatment also for PD [164].

Collectively, both DLB and PD are defined by widespread 
α-synuclein pathology, but AD-like TAU pathology might as 
well contribute to the development of dementia.

Niemann‑Pick disease type C (NPC)

The rare lysosomal storage disorder Niemann-Pick disease 
type C (NPC) is caused by mutations in the NPC1 (95%) 
or NPC2 (5%) gene. Patients present with progressive neu-
rodegeneration, resulting clinically in vertical supranuclear 
palsy, dysarthria, and dysphagia [165]. This is very different 
from Niemann-Pick disease type A or B, which usually are 
more associated with liver and lung involvement and have 
not been associated with TAU pathology to date [166]. His-
topathologically, NPC is primarily characterized by exten-
sive accumulation of cholesterol in several tissues, including 
the brain [167]. Brains of adult NPC patients exhibit AD-
like TAU protein hyperphosphorylation and neurofibrillary 
tangles [165, 168]. Despite parallels concerning cognitive 
impairment and cellular pathology of NPC and AD, genetic 
variants and polymorphisms in NPC1 and NPC2 are not 
directly associated with elevated AD risk in the Chinese 
population [169], and NPC1/2 variants did not confer sus-
ceptibility for several Tauopathies (PD, FTLD-TAU, PSP) 
[170, 171]. Pathomechanistically, functional TAU protein is 
critical to the induction of autophagy in NPC1 deficiency. 
The hyperphosphorylation of TAU leads to a progres-
sive loss of its normal protein function and impairs both 
autophagic flux and induction in NPC1-deficient models, 
but not in healthy cells [172]. This suggests a bidirectional 
mode of action, where disturbances in cellular cholesterol 
metabolism may promote TAU pathology, but abnormal 
TAU also alters neuronal cholesterol homeostasis, leading to 
a vicious cycle eventually resulting in cholesterol accumula-
tion and NFT formation [173, 174]. Thus, pathogenic NPC1 
and NPC2 mutations are the causative agents for NPC but 
do not represent a general risk factor for other tauopathies. 
In fact, both MAPT knockout and MAPT haploinsufficiency 
were associated with decreased survival in mice mimicking 
NPC [175, 176]. This indicates that TAU may even have a 
protective role in NPC, which contrasts TAUs usual role of 
a disease-driving factor in other tauopathies.

Down syndrome (DS)

Down syndrome/trisomy 21 (DS) is a multisystemic dis-
order caused by an extra copy of a critical region on or the 
entire chromosome 21. DS is associated with developmen-
tal delay, intellectual disability, and characteristic mor-
phological and syndromic features, but is also considered 



 Journal of Neurology

a form of genetically determined AD [177]. First clinical 
symptoms in terms of cognitive decline often appear in the 
fourth decade of life with a > 90% lifetime risk to develop 
dementia [178, 179]. DS patients have a high prevalence 
of AD-like dementia with Aβ and TAU pathology. Regions 
where TAU often accumulates in tauopathies (e.g. medial 
and basal temporal lobe) show high levels of cortical atrophy 
[179]. The distribution of Aβ plaques and NFTs is observed 
to be very similar in DS and AD, but the density is greater 
in DS [180, 181]. Recently, neuropathological differences 
between DS and sporadic AD have been reported, including 
the morphology of Aβ plaques and the distribution of NFTs 
[182, 183]. Genetically, the cause of early onset dementia 
in DS is a 1.5-fold increase in Aβ production and early Aβ 
plaque disposition due to the localization of the APP gene 
on the triplicated chromosome 21 [178, 184]. The increased 
expression of not only APP, but also others of the more 
than 310 genes on chromosome 21 may contribute to and 
likely modulate AD-like dementia pathology in the diverse 
DS phenotypes [185, 186]. A functional link between DS 
and AD is the overexpression of DYRK1A protein due to 
the extra copy of the DYRK1A gene on chromosome 21 
(which also maps to the critical region of AD). DYRK1A 
is a kinase that potentially phosphorylates or interacts with 
several proteins, e.g. transcription factors, and also medi-
ates hyperphosphorylation of TAU [187]. Despite classifica-
tion of DS as a secondary tauopathy due to predominant Aβ 
pathology, TAU is a significant predictor of cognitive and 
functional decline in DS-related dementia, independent of 
Aβ deposition [188]. Neurofibrillary TAU already occurs 
in individuals with DS as early as Braak stages I-II (with 
very low Amyloid burden), not only in stages III-VI with 
higher Amyloid burden [189]. Strikingly, overproduction of 
Aβ leads to an upregulation of DYRK1A levels and subse-
quent TAU phosphorylation, making DYRK1A a potential 
key molecule in the vicious cycle of Aβ production and TAU 
hyperphosphorylation in DS [190, 191]. Increased dosage 
of DYRK1A regulates alternative splicing of the MAPT 
gene in DS by phosphorylating the alternative splicing fac-
tor (ASF), preventing it from facilitating exon 10 inclusion. 
This correlates to a relative increase in 3R-TAU levels, lead-
ing to imbalance of 3R - and 4R-TAU in DS brain, facilitat-
ing formation of neurofibrillary degeneration and making 
DS a rare example of a 3R-predominant tauopathy [192]. 
The inhibition of DYRK1A (e.g. with CX-4945) potentially 
suppresses the aberrant phosphorylation of TAU, therefore 
this may be a strategy for disease modification in DS [193, 
194]. DYRK1A inhibitors are also investigated as potential 
candidates to counteract AD, targeted DYRK1A inhibition 
rescued the AD-typical phenotype in several models (Dros-
ophila, APP/PS1 mice) [195, 196]. A recent study associates 
TAU pathology in DS with the retromer complex system, as 
pathogenic TAU negatively correlates with retromer proteins 

and cathepsin-D activity, which might contribute TAU accu-
mulation. This suggests the retromer complex as another 
potential regulator of pathogenic TAU in DS [197]. In sum, 
dementia in DS is mainly caused by increased expression 
of APP and other genes present in the DS-critical region of 
chromosome 21 (e.g. DYRK1A). TAU is indirectly impacted 
via APP/Aβ and directly via DYRK1A (due to aberrant 
splicing and phosphorylation) and possibly others, making it 
a likely disease driver. Hence, TAU-based therapeutic strate-
gies may be beneficial also in DS.

Myotonic dystrophy (DM)

The neurodegenerative disease Myotonic dystrophy is 
found in two manifestations, Myotonic dystrophy Type 1 
and 2 (DM1 and DM2). DM1 is a multisystemic neuromus-
cular disease with cognitive dysfunction [198]. In DM1, 
CTG microsatellite repeat expansion in the 3’ untranslated 
region of dystrophia myotonica protein kinase (DMPK) gene 
induces the expression of toxic RNA aggregates (nuclear 
foci), which is thought to cause aberrant splicing of various 
genes, leading to multisystemic symptoms in various tis-
sues, including heterogeneous brain involvement [199, 200]. 
NFTs in DM1 show a preferential accumulation of the 0N3R 
TAU isoform due to a modified splicing pattern of MAPT, 
mainly characterized by the reduced inclusion of exons 2 
and 3 [201–203]. Altered splicing of MAPT exon 10, likely a 
consequence of a gain of embryonic lethal abnormal vision-
like RNA-binding protein-3 (ETR3/CELF2) function, occurs 
[202, 204]. The dysregulation of alternative splicing possi-
bly leads to pathologic TAU protein accumulation/NFTs and 
might be a critical pathological characteristic in the brain 
of DM1 patients [200, 205]. The TAU pathology in DM1 
patients is highly variable and different to the one in AD 
[206]. The cognitive phenotype in DM1 is caused by nuclear 
foci and resulting aberrant splicing of not only MAPT, but 
numerous other pre-messenger RNAs (reviewed by López-
Martínez et al. [207]). Noteworthy, abnormal expression of 
BIN1 was reported in DM1, which may be associated with 
NFT pathology (similar to DLB) [205, 208]. The distribu-
tion of neuropathological changes does not correlate with 
the length of CTG repeats in the DMPK gene, which favors 
a more multifactorial pathomechanism in DM1 [209]. This is 
also indicated by the discovery of a widespread Lewy body 
pathology in DM1 in addition to TAU pathology, which 
does not follow the Braak classification [210]. The extent 
to which TAU contributes to neuronal pathology in DM1 is 
uncertain because TAU missplicing also occurs in non-TAU 
proteinopathies, and neurodegeneration in DM1 cannot be 
clearly linked to aberrant TAU [203]. Overall, due to the fre-
quent observation of NFTs in DM1 brains and a clear genetic 
cause (DMPK mutation), DM1 can be classified a secondary 
tauopathy, despite the apparent missplicing of MAPT.
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In general, DM2 is more a muscle disease with less mul-
tisystem and central nervous system involvement compared 
to DM1. However, the cognitive impairment is comparable 
to DM1 but much less severe [211]. Genetically, it is caused 
by an unstable CCTG repeat expansion in the nucleic acid-
binding protein (CNBP) gene [212]. Histopathology in DM2 
has consistently shown TAU pathology in the brain similar 
to that in DM1 patients [213], justifying a classification as a 
genetic secondary tauopathy, but detailed pathomechanistic 
studies are still lacking.

Huntington’s disease (HD)

The autosomal dominant neurodegenerative disorder Hun-
tington’s disease (HD) is characterized by severe motor, 
cognitive and psychiatric deficits in its final disease stage. 
Causative is an expanded CAG repeat in exon 1 of the HTT 
gene, leading to the expression of abnormally modified hun-
tingtin (HTT) protein, which aggregates in nearly all cells of 
the body of HD patients and is the primary pathogenic event 
in HD [214, 215]. The mutant HTT protein interacts with 
β-tubulin and binds to microtubules. Since HD patients show 
brain-wide aggregated TAU inclusions, HD is classified as 
a secondary tauopathy [216]. The haplotype of MAPT influ-
ences the clinical picture in HD, patients with the H2 MAPT 
haplotype present a more rapid cognitive decline compared 
to the H1 carriers, indicating a disease driving role for TAU 
in HD [217, 218]. Hence, therapeutic approaches for the 
treatment of HD besides targeting HTT comprise targeting 
of TAU similar to AD, including modulation of MAPT gene 
expression, inhibition of TAU aggregation, targeting hyper-
phosphorylated TAU, and TAU immunotherapies [219]. Dif-
ferential regulation of MAPT exons 2, 3 and 10 was observed 
in various brain regions in HD [220]. An imbalance of TAU 
isoforms (especially the 4R/3R ratio) in favor of the 4R 
isoform due to altered MAPT splicing (increased exon 10 
inclusion) is reported in HD similar to a subset of primary 
tauopathies. Yet, little is known about the implications of 
TAU in the pathophysiology of HD and whether pathogenic 
HTT mutations lead to dysregulation of TAU, as HTT and 
TAU do not directly interact with each other [221]. Potential 
indirect connections between mutant HTT and dysregulated 
TAU include various TAU kinases, the serine/arginine-rich 
splicing factor 6 (SRSF6), and the DNA/RNA binding fused 
in sarcoma protein (FUS) [222]. Evidence for an important 
role of TAU in the neurodegenerative pathology of HD is 
the recent finding that passive immunization against phos-
phorylated TAU decreases Amyloid fibrils and huntingtin 
oligomers in mice [223]. Although TAU may be a driver 
of pathogenic changes in HD as it is hyperphosphorylated 
already in early disease stages, modulation of TAU expres-
sion in HD mice does not influence the progression of the 
HD phenotypes [224, 225]. For review on the implications 

of TAU dysregulation in HD see Mees et al. [222] and Salem 
and Cicchetti [217]. In sum, while there is evidence for a role 
of TAU as a contributor or even disease driver, it may not be 
an ideal therapeutic target for HD.

Other/rare secondary tauopathies

There are other hereditary diseases that can be classified as 
genetic tauopathies and are likely secondary as the genetic 
cause of these diseases has not been shown to be directly 
related to TAU physiology or pathology. Most of these disor-
ders are rare and sparsely studied, providing no evidence of 
a link of the underlying disease-causing gene-mutations and 
the observed TAU pathology. However, for some cases, there 
are compelling indications for a link between disease cause 
and TAU abnormalities. Among these are familial British 
(FBD) and familial Danish dementia (FDD), neurodegen-
erative conditions considered hereditary types of cerebral 
Amyloid angiopathy (CAA). This disease spectrum is mostly 
caused by APP mutations and predominantly characterized 
by Aβ pathology [226, 227]. In some cases of CAA, there 
is significant TAU pathology, such as TAU aggregation in 
brains of FBD/FDD affected individuals [228]. Causative for 
FBD/FDD are mutations on the human integral membrane 
protein 2B (ITM2b) gene, encoding BRI2, leading to produc-
tion of 34 amino acids non-Aβ Amyloids that are neurotoxic 
[227]. Strikingly, mutant BRI2 contributes to changes in 
TAU metabolism and synaptic dysfunction [229], the BRI-
CHOS domain of the protein inhibits Aβ aggregation and 
regulates the initiation of the Amyloid cascade, including 
truncation of TAU [230]. Another example is the neurode-
velopmental Christianson Syndrome, which is caused by 
loss-of-function mutations in the X-linked SLC9A6 gene, 
encoding for the endosomal Na + /H + exchanger 6 (NHE6). 
NHE6 knockout human neurons show elevated phosphoryl-
ated and sarkosyl-insoluble TAU [231]. The TAU and Aβ 
aggregation in Christianson Syndrome may be preceded by 
early lysosome defects, which suggests linkages between 
endolysosomal dysfunction and AD-like neurodegenera-
tion and is in line with basic studies on this pathway [232, 
233]. Some genes are suspected or confirmed to contribute 
to TAU pathology, but are definitely not the sole cause of the 
known disease. These include for example the tuberous scle-
rosis complex-1 (TSC1) gene, which in recent years has been 
associated with TAU pathology in frontotemporal demen-
tia and Alzheimer's disease, where loss-of-function TSC1 
inclusions lead to an increase of TAU burden [234–236]. 
In addition, diseases not previously described as genetic 
tauopathies can be (re-)classified as such once patients with 
TAU pathology are reported. Most recently, this is the case 
for ocular pharyngeal muscular dystrophy, where mutations 
of the PABPN1 gene cause loss-of-function of the poly(A) 
RNA binding protein, which has been demonstrated to 
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cause accumulation of pathological TAU [237]. Pathogenic 
mutations in the prion protein gene (PRNP) cause genetic 
Creutzfeldt-Jakob disease (gCJD), a disease that shares 
several neuropathological features with other neurogenetic 
disorders like AD and PD, including TAU pathology [238]. 
TAU was identified as a regulator of PRNP-transcription and 
actively upregulates the expression of the gene product cel-
lular prion protein (PrPc) [239]. Additionally, PRNP muta-
tions are known to be a rare cause in the FTD spectrum, in 
line also with overlapping clinical features of prion disease 
and FTD [240]. Similarly, the rare Gerstmann-Sträussler-
Scheinker disease (GSS), a neurodegenerative disease with 
severe dementia and late-stage neurodegeneration, is trig-
gered by pathogenic variants of the PRNP gene [241]. TAU 
deposits can be detected in different brain regions of GSS 
patients [242].

The transactivation response DNA binding protein 
43 kDa (TDP-43) is a RNA-binding protein of which ubiq-
uitylated aggregates are observed in the neurons of ALS and 
FTLD patients [243]. There are some hints for pathomecha-
nistic links between TDP-43 proteinopathies (comprising 
e.g. familial FTLD with TDP-43 pathology (FTLD-TDP), 
caused by mutations in GRN or C9orf72 hexanucleotide 
repeat expansion) and tauopathies, as e.g. the TAU tubu-
lin kinases TTBK1/2 promote accumulation of patho-
logical TDP-43 [244]. Recently, concurrent TAU pathol-
ogy in FTLD-TDP with TDP-43 pathology was observed 
[245]. There is also an association of TDP-43 pathology 
with increased TAU burden and worsened p-TAU aggrega-
tion [246]. However, despite TAU pathology in subtypes 
of FTLD-TDP, there is no evidence yet for genetic factors 
impacting TAU accumulation in this spectrum of diseases. In 
patients affected by frontotemporal dementia and/or amyo-
trophic lateral sclerosis-6 (FTDALS6), caused by mutations 
in the Valosin-containing protein (VCP), there is also TAU 
pathology and deposition of pathologic TDP-43. However, 
in this case the disease-causing VCP mutation p.Asp395Gly 
is linked to the aggregation propensity of TAU, as it impairs 
the TAU disaggregase activity of VCP, making it a potential 
new therapeutic target for AD and other tauopathies [247].

Amyotrophic lateral sclerosis-Parkinsonism/Dementia 
complex-1 is a rare neurodegenerative disease with NFT 
pathology primarily found among Chamorros, the indig-
enous people of Guam. Not only SNPs in MAPT, but also 
the T1482I variant in the TRPM7 gene (encoding for the ion 
channel TRPM7) may confer susceptibility to disease devel-
opment [248]. The resulting mutant TRPM7 shows increased 
sensitivity to intracellular  Mg2+- a remarkable gene-envi-
ronment relationship, as the incidence of the disease has 
been associated to long-term exposure to a  Mg2+ -deficient 
environment (see also chapter below) [249]. Interestingly, 
recent findings provide a mechanistic link between loss of 
TRPM7 and promoted Aβ degradation in AD, but no direct 

association with TAU pathology was found so far [250]. 
A very rare form of parkinsonism (X-linked parkinsonism 
with spasticity, XPDS) shows pathological 4R TAU depos-
its and is caused by altered splicing of the ATPase H(+) 
transporting lysosomal accessory protein 2 (ATP6AP2) gene, 
which causes lysosomal dysfunction in XPDS [251, 252]. A 
group of inherited diseases called neurodegeneration with 
brain iron accumulation (NBIA), characterized by cognitive 
and behavioral changes and parkinsonism, comprises mito-
chondrial membrane protein-associated neurodegeneration 
(MPAN or NBIA4). This condition, caused by pathogenic 
sequence variants in C19orf12, was reported as a second-
ary tauopathy, as TAU pathology was reported by several 
studies [253–255]. Recently, TAU pathology was observed 
in some cases of spinocerebellar ataxia type 8 (SCA8), a 
condition caused by abnormal CTA/CTG repeat expansions 
in ATXN8OS which have also been reported in PSP [256]. 
However, a precise pathomechanistic connection to TAU has 
not yet been established in these cases.

Generally, the less prevalent a mutation and the less it is 
understood to be the primary cause of a neurodegenerative 
disease, the more difficult is it to attribute TAU pathology to 
this mutation in a direct pathomechanistic way. If - as in the 
recently discovered exemplary cases of genetic disease due 
to TSC1 or PABPN1 mutation - there is a convincing clinical 
and experimental rationale demonstrating that these muta-
tions may have direct effects on TAU homeostasis, we can 
assume a pathomechanistic connection, which could also be 
therapeutically leveraged. In case of TSC1, this has already 
been done, as rapamycin (a drug inhibiting mTOR, which is 
in turn activated by TSC1/2) was used in numerous studies 
for AD/tauopathies, but with ambiguous results [257].

Sporadic secondary tauopathies

There are few non-genetic and sporadic diseases, e.g. 
triggered by infections that are also associated with TAU 
pathology. In many cases, however, the TAU pathology 
is likely a consequence of the preceding conditions, as in 
the case of subacute sclerosing panencephalitis (SSPE). 
Here, tauopathy is a consequence of an infection with a 
mutated measles virus resulting in diffuse brain inflam-
mation [258]. There are also well characterized genetic 
predispositions for initially completely sporadic appearing 
clinical entities. Some genetic prion diseases (gPrDs) may 
be genetically associated with other neurodegenerative 
diseases, as abnormalities of particular genes (e.g. LPA, 
LRRK2, TET1, FGF20, ACO1, and POSTN) have been 
linked to both gPrDs and AD or PD [238]. In a subgroup 
of tauopathies, including traumatic brain injury (TBI), 
mechanically evoked traumatic axon injury precedes TAU 
pathology and NFT formation [259]. The suffering of a 
head trauma/TBI induces TAU hyperphosphorylation and 
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aggregation. Moderate to severe TBI can trigger the ini-
tial formation of pathological TAU, starting the deadly 
cascade of TAU-related neurodegeneration [260]. Repeti-
tive head trauma may trigger the long-term neurodegen-
erative process chronic traumatic encephalopathy (CTE), 
characterized by progressive neurodegeneration with 
hyperphosphorylated TAU [261]. Although in these cases 
the triggers of disease are defined and non-genetic, the 
prognosis and the brains ability to regenerate are geneti-
cally influenced. Recent GWAS studies have unveiled 
new potentially protective genes which, however, require 
validation and further analysis, especially since the direct 
correlation to the improvement of TAU pathology has not 
been proven yet (for review see Cortes and Pera [262]). 
Also experimental evidence shows that at least murine 
TAU may be protective in some settings of sporadic sec-
ondary tauopathy, as TAU KO mice fared worse in para-
digms of TBI [263]. Outcome is also improved, if TAU 
is present and specific PTMs of TAU (e.g. acetylation 
of TAU) are pharmacologically repressed via inhibition 
of upstream acetylases [264]. First reported in 2014, the 
Anti-IgLON5 disease is a rare autoimmune disorder of the 
nervous system manifesting with cognitive impairment, 
gait instability, bulbar syndrome, and sleep and move-
ment disorders [265, 266]. The disease is connected to 
autoantibodies against the neuronal cell adhesion protein 
IgLON5, which may be involved in the development and 
regulation of the central nervous system [265, 267]. Little 
is known about the pathogenic mechanisms resulting in 
neurodegeneration, but cellular investigations and experi-
ments in mice suggest an antibody-mediated pathogenesis, 
with anti-IgLON5 antibodies as the main disease cause 
leading to irreversible cognitive and behavioral deficits 
[268]. Post-mortem examination of IgLON5 patient brains 
demonstrate neuronal loss with the presence of not only 
anti-IgLON5 antibodies but also deposits of hyperphos-
phorylated TAU (both 3R and 4R), predominantly in the 
hypothalamus, tegmentum of the brainstem, hippocam-
pus, and cerebellum [269, 270]. TAU depositions in anti-
IgLON5 disease patients visualized with a dynamic PET 
scan show increased [18F]PI-2620 TAU binding poten-
tials in the pons, dorsal medulla, and cerebellum [271]. 
A recent study indicates that anti-IgLON5 antibodies pre-
cede the TAU pathology and suggests that TAU pathology 
occurs in later disease stages where it may also present 
like a PSP neuropathological phenotype with exclusively 
4R neuronal and glial TAU pathology [272]. Genetically, 
there is a strong association between disease and the pres-
ence of human leukocyte antigen (HLA) alleles HLA-
DRB1*10:01 and HLA-DQB1*05:01. This supports a 
primary autoimmune origin, but a significant association 
of MAPT H1/H1 homozygous haplotype was observed as 
well [273]. Hence, while IgLON5 is considered a sporadic 

disease and can be classified as a secondary tauopathy, 
TAU may play an important role as disease driver.

Environmental factors, regardless of genetic defects, can 
have a noticeable impact on post-translational modifications 
of TAU and therefore leads to environment-induced sporadic 
tauopathies. For example, zinc exposure leading to increased 
level of zinc ions in the brain is able to induce TAU oli-
gomerization and ultimately the formation of paired helical 
filaments (PHFs) [274]. Another example of the implication 
of metals in tauopathies is the PSP-like tauopathy clusters 
observed in regions surrounding chemical plants, where the 
soil is heavily contaminated with heavy metals such as arse-
nic and chromate [275].

Rather peculiar examples of environmental exposure-
induced tauopathies are geographically isolated PSP-like 
tauopathies, such as Guam parkinsonism-dementia complex 
(ALS-PDC) and Guadeloupean parkinsonism. The former 
is prevalent among the Chamorro population of the island 
of Guam [276], and is thought to emerge from exposure 
to the neurotoxin β-Methylamino-L-alanine enriched in the 
seeds of the cycad plant, a popular food on Guam [277]. 
While Guadeloupean parkinsonism shares a similar clinical 
picture with Guam ALS-PDC, the prevalence of the disease 
is thought to stem from the indigenous tradition of ingest-
ing herbal tea and tropical fruits from the soursop and sugar 
apple plants, rich in neurotoxic benzyltetrahydroisoquinoline 
alkaloids [278]. While patients of both diseases exhibit NFT 
pathology and hyperphosphorylated TAU in several brain 
regions, there are no MAPT mutations associated with these 
diseases.

To conclude, in some sporadic neurodegenerative dis-
eases, TAU pathology is secondary to another pathogenic 
event, but TAU may contribute to the disease progression, 
and may for some diseases constitute an attractive therapeu-
tic target. A comprehensive list of genetic secondary tauopa-
thies is provided (Table 2).

Diagnostic and therapeutic considerations

Misdiagnosis is not uncommon in particular in late-onset 
neurodegenerative diseases, which is arguably the big-
gest group of patients for tauopathies. Because of the well 
known clinical heterogeneity for some tauopathies, that 
can span e.g. from Amyotrophic Lateral Sclerosis to the 
very different and neurologically/phenotypically clearly 
separated FTD also in the same families for mutations/
repeat expansions in the gene C9orf72, and e.g. PSEN2, 
mutations, we do not recommend single-gene diagnostics 
for the diseases discussed here. Rather, as is common 
standard of care in human genetics and neurology, and 
which is also justified by the many possible atypical mani-
festations, we believe that exome/genome-based virtual 
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multi-gene panel or an unbiased approach is the most suit-
able way to genetically confirm a clinical diagnosis [279, 
280]. Human geneticists and neurologists are aware that 
one gene can cause multiple disease phenotypes as out-
lined also in Tables 1 and 2, and that genotype–phenotype 
correlation can vary considerably also in the same family. 
Further, while tauopathy can now be detected in a fairly 
confident manner e.g. using PET-imaging and CSF-analy-
sis and these clinical exams could be upstream of a genetic 
analysis, this is uncommon for diseases that manifest e.g. 
with a neuromuscular phenotype during childhood or early 
adult. If, however, tauopathy is suspected, the genes listed 
here can serve as an addition to phenotype-based mul-
tigene panel exome/genome analysis. Apart from TAU, 
in case of secondary tauopathies the causative gene is 
naturally the prime target for (gene) therapy considera-
tions. Already now there are several clinical trials ongo-
ing or recruiting for genetic tauopathies, which include 
(but are not limited to) also interventional studies e.g. 
MAPT, SOD1, HTT, GRN, PRNP, TSC1, but may not be 
available regionally. If a genetic cause has been identi-
fied, we strongly recommend to verify important clinical 
trials registries (like clinicaltrials.gov, euclinicaltrials.eu 
or clinicaltrialsregister.eu) for regionally available clini-
cal studies.

Conclusion

Epigenetic modifications, missense mutations, and rarely 
deletions in the MAPT gene are involved only in a fraction 
of tauopathies. If MAPT/TAU itself is the causative agent 
of a tauopathy and/or its primary pathological hallmark, 
we consider the disease a primary tauopathy. In the case 
of hereditary secondary tauopathies, MAPT abnormalities 
can be involved as a disease modifying or risk factor, but 
TAU pathology appears to be a consequence of the known 
disease-causing pathology. Hence, TAU might as well have a 
crucial role in disease pathology and progression of second-
ary tauopathies, as many pathomechanisms and intercon-
nections are only partially resolved but hint towards TAU 
involvement. Two questions remain in most cases: 1) Is 
TAU a bystander, protective (like in NPC and possibly TBI) 
or a driver of disease (like in AD and PD), and 2) Do the 
disease-causing genetic abnormalities in secondary tauopa-
thies (such as LRRK2 in PD or HTT in HD) have a direct 
effect on the physiology of TAU protein, and if so what is 
the pathomechanistic link? Elucidation of these aspects and 
further research into the pathomechanistic background of 
genetic tauopathies will reveal whether TAU is the driver 
of dementia or the endpoint of a pathological cascade, and 
whether TAU is a valid therapeutic target for these disorders.Ta
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