
Vol:.(1234567890)

Journal of Neurology (2024) 271:2324–2344
https://doi.org/10.1007/s00415-024-12269-5

REVIEW

Multiple system atrophy: an update and emerging directions 
of biomarkers and clinical trials

Min Liu1 · Zhiyao Wang1 · Huifang Shang1 

Received: 26 January 2024 / Revised: 17 February 2024 / Accepted: 19 February 2024 / Published online: 14 March 2024 
© The Author(s) 2024

Abstract
Multiple system atrophy is a rare, debilitating, adult-onset neurodegenerative disorder that manifests clinically as a diverse 
combination of parkinsonism, cerebellar ataxia, and autonomic dysfunction. It is pathologically characterized by oligoden-
droglial cytoplasmic inclusions containing abnormally aggregated α-synuclein. According to the updated Movement Disor-
der Society diagnostic criteria for multiple system atrophy, the diagnosis of clinically established multiple system atrophy 
requires the manifestation of autonomic dysfunction in combination with poorly levo-dopa responsive parkinsonism and/
or cerebellar syndrome. Although symptomatic management of multiple system atrophy can substantially improve qual-
ity of life, therapeutic benefits are often limited, ephemeral, and they fail to modify the disease progression and eradicate 
underlying causes. Consequently, effective breakthrough treatments that target the causes of disease are needed. Numerous 
preclinical and clinical studies are currently focusing on a set of hallmarks of neurodegenerative diseases to slow or halt the 
progression of multiple system atrophy: pathological protein aggregation, synaptic dysfunction, aberrant proteostasis, neu-
ronal inflammation, and neuronal cell death. Meanwhile, specific biomarkers and measurements with higher specificity and 
sensitivity are being developed for the diagnosis of multiple system atrophy, particularly for early detection of the disease. 
More intriguingly, a growing number of new disease-modifying candidates, which can be used to design multi-targeted, 
personalized treatment in patients, are being investigated, notwithstanding the failure of most previous attempts.
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Introduction

Multiple system atrophy (MSA) is a rare, sporadic, and rap-
idly progressive neurodegenerative disorder characterized by 
progressive autonomic failure, parkinsonism, and cerebellar 
syndrome in various combinations [1]. Based on clinical 
symptoms, this neurodegenerative disorder can be classi-
fied into a Parkinsonian subtype (MSA-P) and a Cerebellar 
subtype (MSA-C). Macroscopic changes in MSA include 
selective atrophy of the striatonigral system and olivopon-
tocerebellar system, which are presented by microscopic 

neuronal loss and axonal degeneration and correlated with 
the two clinical subtypes of MSA [2]. MSA is neuropatho-
logically considered as one of the synucleinopathies due to 
the predominance of aggregated α-synuclein-positive cyto-
plasmic inclusions, classically localized in oligodendrocytes 
and termed glial cytoplasmic inclusions (GCIs) [3–5].

MSA is considered as the most aggressive synucle-
inopathy due to its rapid clinical course, typically leading 
to severe disability within 5–6 years and death on average 
within 10 years from symptom onset [6–9]. Although sig-
nificant progress has been made in treating some symptoms 
of MSA, most MSA-related symptoms are not yet treatable 
with symptomatic therapies. In addition, most disease-modi-
fying therapies have failed at the clinical trial stage, probably 
because pathologic changes were advanced when the disease 
was diagnosed. The new MSA diagnostic criteria developed 
by the Movement Disorder Society (MDS) aim to improve 
the diagnostic accuracy, particularly at the early stage [10, 
11]. On the basis of the better understanding of the under-
lying pathophysiological mechanisms and improvement of 
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early-stage diagnosis, the development of disease-modifying 
interventions for MSA has become an urgent unmet need.

This review summarizes the epidemiology and risk fac-
tors for MSA, neuropathologic progress, clinical presenta-
tions, updated diagnostic criteria, and treatment and clinical 
trials. More importantly, we provide a comprehensive and 
updated overview of current and emerging biomarkers as 
well as completed and ongoing clinical trials of disease-
modifying therapies for this devastating disease.

Epidemiology and genetics

MSA is a rare disease that could potentially affect the people 
of all racial groups without gender preference. According 
to a 10-year nationwide epidemiological study in Iceland, 
the incidence of MSA was estimated to be approximately 
0.7 per 100,000 people [12]. According to a 15-year study 
conducted in Olmsted County, Minnesota, there were no 
one who developed MSA before age 50; however, the aver-
age annual incidence rate of MSA was 3.0 per 100,000 
people [13]. In addition, studies from northern Sweden 
over a 4-year period and from Russia over a 2-year period 
found distinct frequencies of 2.1 and 0.1 per 100,000 peo-
ple, respectively [14, 15]. This suggests that the incidence 
of MSA is influenced to some degree by region and age. 
Other studies estimate that the crude prevalence rates range 
from 1.9 in Gironde, 3.4 in Iceland, and 4.4 in London per 
100,000 population [12, 16, 17].

In addition, the relative prevalence of MSA subtypes var-
ies among geographical regions and ethnic groups. MSA-P 
is more prevalent in European and North American popula-
tions. MSA-C, on the other hand, is more common in Japa-
nese and mestizo populations [7, 8, 18, 19].

MSA was traditionally considered as a sporadic disease 
rather than a genetic disease. However, there is increas-
ing evidence from multiplex families with MSA, indicat-
ing genetic association in MSA [20, 21]. Genetic variants 
within SNCA locus (α-synuclein gene) were associated with 
an increased risk for the development of MSA [22]. There 
was strong genetic association between MSA-C subtype 
and SNCA replication [23], although the earlier study sug-
gested that no nucleotide alterations were found in the entire 
region of SNCA in any of confirmed cases of MSA [24]. 
Four multiplex MSA families were studied using whole-
genome sequencing. Two of the four Japanese families car-
ried mutations in the coenzyme Q2 (COQ2) gene, which is 
involved in the coenzyme Q10 (CoQ10) synthesis pathway 
[25]. However, these results could not be replicated in a 
European cohort of patients with MSA [26, 27], suggesting 
that these variants may be population-specific. In addition, a 
common COQ2 polymorphism V393A was associated with 
sporadic MSA in East Asia but not in the West [28–30]. In 

addition, other mutations of COQ2, such as L402F, tend to 
play a population-specific role in susceptibility to MSA in 
Chinese patients [31]. Other genetic risk factors, such as 
C9orf72, LRRK2, MAPT, etc., have also been reported [26]. 
A potential association between the family with the coexist-
ence of MSA and amyotrophic lateral sclerosis (ALS) and 
hexanucleotide repeat expansions in C9orf72 has been docu-
mented, but pathological confirmation would be needed to 
differentiate phenotypical presentations [32]. However, hex-
anucleotide repeat expansions in C9orf72 were not found in 
a Chinese population with PD or MSA, indicating no asso-
ciations between C9orf72 expansions and the wider spec-
trum of Parkinsonism [33]. Pathogenic glucocerebrosidase 
(GBA) variants have been demonstrated to increase the risk 
of developing PD [34, 35]. A large-scale multicenter study 
identified GBA variants among MSA patients across the 
Japanese, European, and North American series, indicating 
GBA variants are associated with MSA [36]. Additionally, 
another study demonstrated that MSA patients from main-
land China did not carry the GBA L444P mutation, but a 
large-scale study should be considered to further confirm the 
association [37]. In patients from the United States and the 
United Kingdom, exonic LRRK2 variants have been found to 
be associated with MSA [38], but in the Han Chinese popu-
lation, LRRK2 variants were not risk factors for MSA [39]. 
However, another study reported an interesting result. One 
of eight subjects in the same family from the Sagamihara 
district with PARK8-linked parkinsonism (LRRK 2 I2020T 
mutation) had MSA pathology [40]. Additionally, another 
study of genome-wide association study (GWAS) identified 
four potential risk variants on genes of microtubule-associ-
ated protein tau (MAPT), endothelin 1 (EDN1), f-box Protein 
47 (FBXO47), and ELOVL fatty acid elongase 7 (ELOVL7) 
in MSA in European population [26], but no association was 
found in the Chinese population as presented in separate 
GWAS [41], suggesting that genetic risk factors for MSA 
maybe region- and ethnic-specific.

Neuropathology

MSA-P and MSA-C correlate with neuropathological pat-
terns of predominant striatonigral degeneration and olivo-
pontocerebellar atrophy, respectively [42]. MSA belongs to 
the broad spectrum of α-synucleinopathies characterized 
by the abnormal accumulation of misfolded, hyperphos-
phorylated α-synuclein at serine residue 129 [43]. MSA 
is distinguished from other synucleinopathies by the pres-
ence of aggregated α-synuclein fibrils in oligodendrocytes 
(also known as GCIs) [3, 44]. Interestingly, multiple groups 
have found no evidence of elevated SNCA expression in 
MSA oligodendrocytes [45–47], indicating that SNCA gene 
expression is not the cause of MSA. In patients with MSA, 
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α-synuclein fibrils accumulate more in oligodendrocytes 
but less frequently in the cytoplasm and nuclei of neurons, 
although α-synuclein is normally found mainly in neurons. 
The question of how α-synuclein was released from neurons 
and acted on oligodendrocytes in MSA has been challenged 
by the aforementioned feature. Increasing evidence suggests 
that pathological α-synuclein oligomers were released from 
neurons and may propagate α-synuclein pathology from 
neurons to oligodendrocytes, leading to neuronal loss and 
axonal degeneration in a specific brain region in a prion-
like manner [48, 49]. However, the source of α-synuclein in 
GCIs in MSA brains remains obscure to date even though 
neuronal spreading appears to be a plausible source of it as 
described above. Additionally, oligodendroglial progenitor 
cells (OPCs) and immature oligodendrocytes express SNCA 
mRNA both in rodents and in humans. The density of OPCs 
was increased in a white matter region of the MSA brain, but 
α-synuclein does not accumulate in OPCs. It is still possible 
for OPCs to be mature oligodendroglia, which enables GCI 
formation [50, 51]. Another question is how α-synuclein 
oligomers were released and transported between different 
types of cells like neuron and glia. Exosomes are considered 
to be transporters of toxic α-synuclein oligomers. Both neu-
rons and glial cells can release exosomes, which may contain 
inflammatory molecules and this glia-to-neuron or neuron-
to-glia transmission of exosomal α-synuclein oligomers may 
contribute to the propagation of pathology and neuroinflam-
mation throughout the brain in MSA [52].

α-Synuclein accumulates in oligodendrocytes exclu-
sively in MSA, indicating a number of subcellular changes 
in oligodendroglia contribute to the pathogenic cascade and 
α-synuclein aggregation. In vitro studies suggested that 
phosphoprotein-25α (p25α, also known as tubulin polym-
erization promoting protein, TPPP) may be a potent trigger 
of α-synuclein aggregation. p25α, an oligodendrocyte-spe-
cific phosphoprotein, normally associates with the oligo-
dendroglia marker myelin basic protein (MBP) located in 
the myelin sheath. An early-stage finding in patients with 
MSA revealed relocalization of p25α from the myelin sheath 
to the cell bodies, followed by accumulation of p25α in 
the cytosol and subsequent degradation and deposition of 
MBP in the cell bodies, and finally enlargement of oligo-
dendroglia, which may lead to a decrease in cellular clear-
ance [53–55]. The enlarged oligodendroglia were unable to 
degrade α-synuclein propagated from neurons [56]. Taking 
neuronal cytoplasmic inclusions (NCIs) reported in MSA 
[57] and dominant GCIs, as well as elevated astroglial and 
microglial activation together [58], eventually neuronal loss 
and axon degeneration occurred (Fig. 1). However, there are 
still a few key unanswered questions in the MSA pathogenic 
cascade, such as the timing of GCIs formation, the clear 
mechanism of interplay between neuron and glia, etc. [51].

Clinical presentations

MSA is characterized by various combinations of autonomic 
dysfunction, parkinsonism, and ataxia, with the predomi-
nance of core motor symptoms defining MSA-P or MSA-C, 
although the symptoms of MSA-P and MSA-C often overlap 
[59]. Many patients have a mixed phenotype.

According to the current diagnostic criteria [10], promi-
nent autonomic dysfunction (dysautonomia) is a critical 
defining feature in clinically established and probable MSA, 
with urogenital and cardiovascular systems primarily being 
affected and presenting in a variety of ways. Early and severe 
dysautonomia is indicative of a more aggressive disease 
course [60]. Core clinical features include neurogenic ortho-
static hypotension (OH) and significant urinary dysfunction, 
such as voiding difficulty with retention after urination and 
urinary urge incontinence. Bladder dysfunction may be a 
prominent and common early symptom of MSA [61, 62]. 
Neurogenic OH for clinical established MSA is defined as 
a sustained drop in systolic blood pressure of  ≥ 20 mmHg 
or a drop in diastolic blood pressure of  ≥ 10 mmHg within 
3 min of standing or head up tilt (HUT). In addition to recur-
rent syncope, other characteristic symptoms of OH include 
dizziness, nausea, weakness, tremors, headache, and painful 
sensations in the neck known as coat-hanger pain [63, 64].

In the past, the terms striatonigral degeneration and olivo-
pontocerebellar atrophy were used to describe MSA, indicat-
ing the features of parkinsonism and cerebellar dysfunction. 
The core motor symptoms of MSA are parkinsonism and 
cerebellar ataxia, which correspond to MSA-P and MSA-C, 
respectively. Parkinsonism in MSA is dominated by a rapidly 
progressive poor levo-dopa responsive akinetic-rigid syn-
drome characterized by paucity and slowness of movement 
along with muscle stiffness and resistance to passive move-
ments, unsatisfactory response to levo-dopa treatment due to 
striatal degeneration, and early postural instability and gait 
disability. Cerebellar syndrome include gait and limb ataxia, 
scanning dysarthria (also known as explosive speech), and 
cerebellar oculomotor disturbances, such as gaze nystagmus 
and hypometric saccades [65].

Patients with MSA also suffer from non-motor symptoms, 
such as cognitive deficits [66, 67], depression or anxiety 
[68, 69], sleep disturbances, and disordered breathing stridor 
[70, 71]. Rapid eye movement (REM) sleep behavior disor-
der (RBD), a parasomnia characterized by recurrent dream 
enactment with excessive motor behaviors such as punching 
or kicking, frequently affects patients with MSA. More than 
half of patients with MSA present with symptoms of RBD 
before the onset of motor deficits [72, 73]. In addition to 
sleep disturbance, laryngeal stridor is a diagnostic indicator 
of MSA with a high positive predictive value, and its early 
onset may contribute to shorter survival. Stridor is defined as 
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a strained, high-frequency, harsh respiratory sound, primar-
ily inspiratory, occurring only during sleep or both during 
sleep and wakefulness [74].

Diagnosis and biomarkers

To date, three sets of MSA diagnostic criteria have been pro-
posed for clinical and research purposes [10, 75, 76]. Over 
the past 14 years, the second consensus criteria have been 
widely used despite their suboptimal sensitivity [76–78]. 
Recently, a set of MDS MSA diagnostic criteria for clinical 
practice and inclusion criteria for clinical trials has been 
developed and validated against neuropathological diagnosis 
in current clinical practice [10, 79]. However, further valida-
tion studies are needed. The new criteria define four levels of 
diagnostic certainty: neuropathologically established MSA, 
clinically established MSA, clinically probable MSA, and 

possible prodromal MSA. They have incorporated current 
information and are anticipated to increase the sensitivity 
of future disease assessments.

Neuropathologically established MSA corresponds to 
the definite MSA category of the second consensus crite-
ria. Autopsy must reveal widespread and abundant central 
nervous system (CNS) α-synuclein-positive GCIs along with 
neurodegenerative changes in striatonigral or olivopontocer-
ebellar structures [10, 80]. Compared to the second consen-
sus, the criteria for clinically established and probable MSA 
have been revised, including the mandatory value of MRI 
markers and a list of research biomarkers that were not pre-
viously required. Possible prodromal MSA is a research cat-
egory, and future diagnostic biomarker research will expand 
this category. Identifying possible prodromal MSA at the 
earliest disease stage is crucial for being aware of fast pro-
gression and developing disease-modifying treatments for 
MSA. Possible prodromal diagnostic criteria were recently 

Fig. 1  Key pathophysiological 
cascade events of MSA. The 
translocation of p25α from the 
myelin sheath to the oligoden-
droglial cell body, followed by 
p25α aggregation, appears to 
precede the abnormal aggre-
gation of α-synuclein. This 
aggregated p25α led to morpho-
logical alteration and functional 
impairment of oligodendro-
cytes, rendering them unable 
to process the α-synuclein 
oligomer secreted by neurons, 
resulting in GCI formation and 
eventual neurodegeneration. 
Secondary events include astro-
gliosis and microglial overacti-
vation. Created with Biorender.
com and granted a publication 
license with Biorender (Agree-
ment Number: GK255GQVD7)
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developed for MSA. Either polysomnography (PSG)-proven 
RBD or isolated autonomic failure (one of urogenital fail-
ure with post-void residual (PVR) > 100 ml or urinary urge 
incontinence, or neurogenic OH within 10 min of standing) 
are the current entry criteria for a diagnosis. Additionally, 
research biomarkers are similar across all the categories seen 
later in this review [10].

Autonomic dysfunction (Dysautonomia), parkinson-
ism, and cerebellar syndrome are still the essential clini-
cal characteristics listed in the new criteria. Autonomic 
dysfunction has a significant impact on blood pressure and 
bladder control. The presence and severity of OH could be 
determined by cardiovascular autonomic function tests that 
measure supine and standing blood pressure and changes 
of heart rate. Continuous blood pressure monitoring, and 
HUT testing could provide additional information and help 
to differentiate MSA from similar diseases [81]. Although 
autonomic tests regarding PVR or HUT were performed 
easily and reported to be useful in the diagnosis of MSA, 
normal cardiac sympathetic imaging (123I-MIBG-scintig-
raphy) could also benefit the diagnosis of MSA [10] and 
even distinguishes PD from MSA patients. As cardiac sym-
pathetic postganglionic denervation distinguishes PD from 
MSA patients with intact innervation, the radiolabeled 
noradrenaline analog 123I-MIBG may assist in distinguishing 
MSA from PD [82]. MSA patients exhibit preserved tracer 
uptake, whereas PD patients exhibit reduced tracer uptake. 
Furthermore, a supine plasma noradrenaline level > 100 pg/
ml associated with neurogenic OH might support the diag-
nosis of MSA [83–85]. Taken together, imaging biomarker 
123I-MIBG and plasma biomarker noradrenaline level maybe 
support the diagnosis of MSA before the appearance of 
severe autonomic dysfunction and motor disability. In addi-
tion, an elevated PVR volume (> 100 ml) is the most specific 
indicator of bladder impairment in MSA that can be detected 
by urodynamic testing or post-void bladder ultrasonography 
[86]. Poor or nonexistent response of parkinsonism to levo-
dopa is a critical diagnostic feature for clinically established 
MSA. A poor levo-dopa responsiveness is typically defined 
by history or as < 30% improvement on the MDS-UPDRS 
III on up to 1000 mg levo-dopa as needed or tolerated for at 
least a month as judged by a movement disorder specialist 
[10].

According to the new MSA diagnostic criteria, imaging 
evidence is required for clinically established MSA (Fig. 2). 
Regarding neuroimaging, radiotracer-based functional 
imaging techniques could support the diagnosis of MSA. In 
MSA-C, olivopontocerebellar atrophy predominates, with 
loss of pontocerebellar fibers and gliosis which is best seen 
on T2-weighted MRI imaging, occasionally producing the 
characteristic "hot cross bun" sign [87]. In MSA-P, MRI may 
reveal putaminal atrophy with decreased T2 signal in the 
posterior putamen [88]. In addition to MRI, 18FDG- positron 

emission tomography (PET) has been shown to be helpful in 
diagnosing MSA by revealing hypometabolism in the puta-
men, pons, and cerebellum [89]. Currently, some efforts are 
being made in the development of selective α-synuclein PET 
tracers, despite numerous obstacles in visualizing intracel-
lular α-synuclein inclusions in synucleinopathies, includ-
ing intracellular localization α-synuclein, low abundance 
of α-synuclein within brain [90, 91]. Hopefully, this non-
invasive in vivo imaging technique can benefit the diagnosis 
of MSA in the future.

Although detection of MSA biomarkers in body fluids 
or tissues is not required in diagnostic criteria and is still 
under investigation, promising molecular markers have been 
summarized and utilized in preclinical and clinical studies 
of MSA [92–94]. Several investigational biomarkers, includ-
ing α-synuclein, neurofilament light chain (Nfl), and total 
tau, have demonstrated potential value but have not been 
routinely used because of their limited availability and lack 
of diagnostic validation. A meta-analysis suggests that a 
combination of a decrease in α-synuclein and total tau and 
an increase in Nfl in cerebrospinal fluid (CSF) distinguishes 
MSA patients from healthy controls [95]. In addition, a 
recent pilot study showed that the levels of phosphorylated 
α-synuclein at serine 129 (pS-α-syn) were significantly 
higher in MSA patients than in healthy controls, suggesting 

Fig. 2  MRI brain imaging in MSA patients. a Demonstrates putami-
nal atrophy (red arrows). b Atrophy and hyper-intensity signal of 
middle cerebellar peduncles (red arrows). c Pontine atrophy (red 
dashed arrow) and cerebellar atrophy (red solid arrow). d “Hot cross 
bun” sign (red arrow)
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that phosphorylated α-synuclein in red blood cells is a 
potential diagnostic biomarker for MSA [96]. Excluding 
plasma, peripheral tissues, such as mucosa, salivary glands, 
and skin, were examined to develop a safer and convenient 
method for supporting MSA diagnosis. Skin biopsy to detect 
α-synuclein has demonstrated biomarker potential [97]. 
Moreover, seeding aggregation assays, including Protein 
Misfolding Cyclic Amplification (PMCA) and Real-Time 
Quaking-induced Conversion (RT-QuIC), have been devel-
oped to detect pathological α-synuclein in CSF with high 
sensitivity and specificity [98–100]. One study reported that 
α-synuclein was not only detected by PMCA with high sen-
sitivity in the CSF of both PD and MSA, but also had distin-
guished amplification kinetics [99]. Meanwhile, the samples 
of skin, olfactory mucosa, and submandibular gland were 
also seeded with α-synuclein. The seeding of α-synuclein 
aggregation in skin provided evidence that α-synuclein in 
skin can serve as a novel biomarker for synucleinopathies 
[101]. Another study suggests that the combination of skin 
α-synuclein RT-QuIC and circulating Nfl can distinguish 
between MSA and PD [102]. In addition, a few studies utiliz-
ing the RT-QuIC assay demonstrated the potential to detect 
α-synuclein aggregation in other peripheral tissues, includ-
ing the olfactory mucosa and submandibular gland [103, 
104]. Phosphorylated α-syn in non-myelinating Schwann 
glial cells of the skin has been studied and may be a promis-
ing clinical biomarker for MSA [105, 106].

Importantly, recent studies have also focused on measur-
ing oligomer α-synuclein in the exosomes as another non-
surgical approach for the diagnosis of MSA. Exosomes are 
one main subtype of extracellular vesicles (EVs) formed 
by an endosomal route, and are secreted by all cell types, 
including neuron, oligodendroglia and have been found in 
plasma, CSF, saliva and other secretions [107]. Exosomes 
have been shown to carry various proteins, including 
α-synuclein [52]. So, this indicates that exosomes in the 
blood that have originated from various brain cells could 
reflect pathogenic status. To identify blood-based biomark-
ers in MSA, neuron- and oligodendroglia-derived exosomes 
containing α-synuclein appear promising and feasible. One 
study showed that the concentration of α-synuclein in the 
oligodendroglia-derived exosomes in the plasma of MSA 
patients was lower as compared to the healthy controls, 
but it remained the same in the neuron-derived exosomes 
[108]. However, in contrast to the above study, another 
study presented conflicting data. They identified elevated 
concentrations of α-synuclein within both neuron- and oligo-
dendroglia-derived exosomes in the blood of MSA patients 
compared to the healthy controls [109]. Despite different 
studies showing conflicting results, exosomal contents may 
serve as non-surgical and safe MSA biomarker if further 
efforts of optimization and validation can be conducted.

In addition, with the support of current diagnosis criteria 
including typical clinical manifestations and tests, imaging 
and fluid biomarkers, and more sensitive and accurate meas-
urements like PMCA and RT-QuIC as well, the earlier and 
more reliable diagnosis of MSA became possible and more 
convincing. However, there was some combination of PD 
and MSA in autopsy level in MSA patients [110], which 
made the diagnosis more difficult. Meanwhile, as MSA 
belongs α-synucleinopathy, which included PD, dementia 
with Lewy bodies and MSA, Lewy bodies were present in 
about 10–13% of MSA cases [111, 112]. Overlap of clinical 
or pathological presentation made a clear and solid diagno-
sis more challenging. Therefore, more sensitive and specific 
measurements are urgent to develop to differentiate the dis-
eases with common manifestations and avoid misdiagnosis. 
And the development of broader biomarkers at the early 
stage maybe could help the diagnosis.

Treatment and clinical trials

Current treatment focuses primarily on symptomatic man-
agement [113–115]. This review only summarized the clini-
cal trials of disease-modifying therapies. Disease modifi-
cation could be defined as interventions that influence the 
underlying pathophysiology of MSA and have a positive 
outcome on disease progression.

Over the past two decades, the number of clinical trials 
to modify MSA has increased. Unfortunately, most attempts 
have failed, possibly due to incomplete understanding of 
pathophysiology, inadequacies in preclinical animal mod-
els, and lack of early and accurate diagnosis of the disease.

The most straightforward therapeutic target and treat-
ment strategy is directed against pathological oligomer 
α-synuclein. Other strategies aim to enhance the synaptic 
function, restore the proteostasis, inhibit neuroinflamma-
tion and provide neuroprotection for neuronal death [116]. 
Table 1 provides an overview of previous and current stud-
ies on the development of disease-modifying therapies for 
MSA.

Targeting pathological α‑synuclein

MSA is characterized by the accumulation of insoluble oli-
gomer α-synuclein within oligodendrocytes, also referred as 
GCIs. Although there is no direct evidence that α-synuclein 
is the cause of MSA progression, an abundance of evidence 
supports the potential significance of α-synuclein to the 
pathogenic cascade of MSA [51]. Treatment strategies tar-
geting α-synuclein have been widely adopted and evaluated 
in clinical trials. These include immunotherapy, inhibition 
of α-synuclein aggregation, and α-synuclein gene therapy 
by antisense oligonucleotides (ASO) [116]. Due to the 
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Table 1  Summary of Therapeutic Clinical Trials

Hallmarks Mode of action Investigational drug Phase Primary outcome Results and Current Status

Pathological protein 
aggregation

Active immunization 
against α-syn

AFFITOPE PD01A, 
PD03A

1 Safety and Tolerability Safe and well-tolerated

Passive immunization 
against α-syn

Lu AF82422 1, 2 Safety and Tolerability 
and Efficacy

Safe and well-tolerated

Passive immunization 
against α-syn

PRX002, MEDI1341, 
BIIB054

1, 2 Safety and Tolerability 
and Efficacy

In PD

Passive immunization 
against α-syn

Tak-341 2 Safety and Tolerability 
and Pharmacokinetics

Ongoing

Antisense oligonucleo-
tides

BIIB101 (ION464) 1 Safety and Tolerability 
and Pharmacokinetics

Ongoing

Inhibition of α-syn aggre-
gation

EGCG 3 UMSARS Part II Score Negative

Inhibition of α-syn mis-
folding

NPT200-11 2 UPDRS, Parts I-III Score In PD

Inhibition of α-syn aggre-
gation

Anle 138b 1 Safety and Tolerability Safe and well-tolerated, 
Phase 1b in PD

Inhibition of α-syn aggre-
gation

ATH434 (PBT434) 2 Safety and Efficacy Ongoing

Synaptic dysfunction Synaptic density N/A N/A N/A Observational
Aberrant proteostasis Enhanced degradation of 

α-syn
Sirolimus (rapamycin) 2 Efficacy (A Futility Trial) Terminated

Enhanced degradation of 
α-syn

Rifampicin 3 UMSARS Part I Score Terminated

Enhanced degradation of 
α-syn

Lithium 2 Safety Terminated

Neuroinflammation Inhibition of microglial 
activity

Minocycline 3 UMSARS Part II Score Negative

Inhibition of inflamma-
tion

IVIG 2 Number of the adverse 
effects

Positive

Inhibition of oxidative 
stress

Verdiperstat (AZD3241, 
BHV-3241)

3 Standardized uptake 
values and ratios

Negative

Neuronal cell death Reduced excitotoxicity Riluzole 3 UMSARS Part II and III 
Score

Negative

NMDAR-modulator Tllsh2910 3 SARA score Ongoing

FAF-1 inhibition KM-819 1 Safety and Tolerability Safe and well-tolerated

Lipidomic neurotoxicity YTX-7739 1b Safety and Tolerability Safe and well-tolerated

Mito dysfunction CoQ10 2 UMSARS Part II Score Ongoing

Proliferation Growth hormone 2 UMSARS total score Ongoing

Mito dysfunction Rasagiline 2 UMSARS Part I and II 
Score

Negative

Mito dysfunction and 
reducing glutamate 
release

Safinamide 2 TEAEs and SAEs Ongoing

Neurotrophic support Fluoxetine 2 UMSARS Part IandII 
Score

Negative

Neuroprotection GDNF 1 Safety and Tolerability Safe and well-tolerated

Neuroprotection Insulin 2 UPDRS-Motor Motor improvement in PD

IGF-1 Exendin-4 2 UMSARS Part I and II 
Score

Ongoing
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pathological similarity between PD and MSA and the fact 
that PD is the most prevalent synucleinopathy, several poten-
tial disease-modifying treatments have been investigated in 
both PD and MSA patients. In addition to MSA, we list the 
relevant clinical trials from PD in which the same above 
strategies were used, although these treatments are not cur-
rently available in MSA.

Immunotherapy of α‑synuclein

In recent years, increasing evidence has supported the the-
ory that α-synuclein is primarily produced by the neurons, 
where it aggregates and spreads into oligodendrocytes via 
the extracellular environment, as mentioned earlier. This 
provided a clear rationale for targeting the α-synuclein-
mediated extracellular pathology through immunothera-
peutic approaches. Both active and passive immunizations 
targeting the reduction of α-synuclein are promising immu-
notherapeutic modalities currently under development.

MBP-α-synuclein transgenic mice, a mouse model 
of MSA in which α-synuclein is specifically expressed 
in oligodendrocytes, were used to investigate the active 
immunization of α-synuclein. In the study, immunization 
with AFFITOPE® (AFF 1) reduced the accumulation of 
α-synuclein within oligodendrocytes, prevented demyeli-
nation, and ameliorated motor deficits and neurodegenera-
tion in the above mouse model. Moreover, the increase in 
α-syn-positive microglial cells suggests that immunization 
with AFF 1 stimulates the degradation of α-synuclein by 
microglia [117]. Subsequently, to evaluate the safety and tol-
erability of AFFITOPE® PD01A in patients with PD, a first-
in-human phase 1 immunization trial showed that it was safe 
and well tolerated [118] (NCT01568099, NCT02216188). 
Another phase 1 study evaluating the safety and exploring 
the immunogenicity of AFFITOPE® PD01A and PD03A 
in patients with early MSA demonstrated that both PD01A 
and PD03A were safe and well tolerated and that PD01A 
elicited a rapid and long-lasting antibody response [119] 
(NCT02270489). Further large-scale studies are needed to 

determine the efficacy of vaccines if they can slow the pro-
gression of MSA.

In addition to the active immunization strategy mentioned 
above, some treatments based on passive immunization are 
currently being developed. Lu AF82422 from Lundbeck 
is a human monoclonal antibody (mAb) directed against 
the toxic α-synuclein protein. A phase 1 interventional 
study evaluating the safety and tolerability of the antibody 
in healthy volunteers and in Parkinson's disease (PD) has 
shown that it is safe and well tolerated (NCT03611569). 
Lundbeck has recently advanced the development of Lu 
AF82422 in MSA with the AMULET study, a phase 2 
trial to evaluate safety, tolerability, and efficacy in MSA. 
This study has been enrolling patients since June 2022 
(NCT05104476).

Other passive immunization-based treatments are 
currently being investigated only in PD and not in MSA 
patients. Given that the mechanism of action of these thera-
pies is directed against α-synuclein, they are likely beneficial 
to MSA treatment. One of such therapies is Prasinezumab 
(PRX002) from Prothena/Roche. A first-in-human trial in 
which PRX002 was administered by intravenous infusion 
in PD patients revealed to be safe and well tolerated. And 
the pharmacokinetic properties of the drug showed strong 
binding of peripheral α-synuclein and a dose-dependent 
increase of PRX002 in CSF [120, 121] (NCT02157714). 
However, in a subsequent large-scale phase 2 study (PAS-
ADENA), the primary endpoint of slowing disease symp-
tom progression in PD patients over one year, as meas-
ured by change in MDS-UPDRS-total score, was not met 
[122]. Nonetheless, interestingly, PRX002 showed signals 
of efficacy on secondary measures, significantly delay-
ing worsening of the UPDRS Part III, i.e., digital motor 
score, by 25–30%, and patients with more severe and rap-
idly developing symptoms appeared to have benefited most 
from treatment (NCT03100149). Based on the research 
from PASADENA, Roche initiated another phase 2b study 
(PADOVA) in patients with more advanced symptoms than 
in the PASADENA study to further evaluate the efficacy 
and safety of PRX002, refining the primary endpoint to 

Table 1  (continued)

Hallmarks Mode of action Investigational drug Phase Primary outcome Results and Current Status

Neuroprotection ONO-2808 2 Safety, Tolerability, 
Pharmacokinetics, 
Pharmacodynamics, 
and potential efficacy

Ongoing

Neuroprotection bmMSCs 2 UMSARS Part II Score Positive

fMSCs 1/2 Safety and Tolerability Safe and well-tolerated

hOMSCs 1/2a Safety and Efficacy Ongoing
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time to meaningful disease progression to MDS-UPDRS 
part III (NCT04777331). Another α-synuclein antibody, 
MEDI1314, is being developed by AstraZeneca. Two phase 
1 studies evaluating the safety and tolerability, pharmacoki-
netics, and pharmacodynamics of MEDI1341 in healthy vol-
unteers and PD patients, respectively, have been completed 
(NCT03272165 and NCT04449484). Currently, Takeda 
took over its development (Tak-341) to evaluate the efficacy, 
safety, tolerability, pharmacokinetics, and pharmacodynam-
ics of intravenous (IV) TAK-341 in participants with MSA 
in phase 2 stage (NCT05526391).

The fourth monoclonal antibody in clinical trials is Bio-
gen's BIIB054 (Cinpanemab). SPARK, a phase 2 trial of 
BIIB054 in PD patients has been terminated since it had 
failed to meet its primary and secondary endpoints, despite 
phase 1 results showed it was safe and well tolerated [123] 
(NCT02459886, NCT03318523).

Antisense oligonucleotides

As a method to modify gene or protein expression, antisense 
oligonucleotides (ASO) are increasingly being explored 
clinically to target some causative genes associated with 
multiple neurologic diseases, such as Alzheimer's Disease 
(AD), spinal muscular atrophy (SMA), and Huntington's 
Disease (HD) and non-neurologic diseases, such as Duch-
enne muscular dystrophy (DMD). Specifically, Food and 
Drug Administration (FDA) approved the ASO drug Nusin-
ersen (Spinraza) for the treatment of SMA, and it recently 
approved another ASO drug Casimersen (Amondys 45) for 
the treatment of DMD [124, 125]. In addition, the findings 
of a recent phase 3 trial evaluating the efficacy and safety 
of intrathecally delivered ASO medication RO7234292 
(RG6042) in HD patients are awaited (NCT03761849). The 
development outlined above suggests that ASO is likely to 
become a significant new therapeutic category for neurode-
generative diseases and rare diseases.

Given that intracellular aggregation of α-synuclein 
plays a critical role in the MSA pathology, reducing the 
α-synuclein protein production using ASO targeting SNCA 
gene is a straightforward and promising mechanism of 
action, although current research in this area remains at an 
early stage. ASO of α-synuclein has shown neuroprotec-
tive effects and a dramatic reduction of α-synuclein in CSF 
and brain tissue in the PD animal models [126]. A phase 1 
first-in-human trial with intrathecal application of the ASO 
ION464 (previously known as BIIB101) in MSA patients 
is ongoing (NCT04165486). This study is to evaluate the 
safety, tolerability, pharmacokinetics, and pharmacodynam-
ics of ION464.

Synucleinopathies are generally characterized as gain 
of function in SNCA. Indeed, ASO-mediated suppres-
sion of α-synuclein reduced α-synuclein pathology in a 

dose-dependent manner. α-synuclein pathology will be 
rescued if the SNCA mRNA levels is allowed to return to 
normal levels [127]. However, an excessive α-synuclein 
knock-down may have detrimental effects. For example, a 
reduction of dopamine content in the striatum and tyros-
ine hydroxylase (TH) -positive neurons in the substantia 
nigra pars compacta (SNpc) were revealed in α-synuclein 
knockout mice [128, 129]. Thus, an appropriate level of 
α-synuclein achieved by ASO of α-synuclein is crucial. In 
addition, non-invasive and efficient delivery of ASO drug 
candidate may be another intractable aspect to overcome 
in this field.

Inhibition of α‑synuclein aggregation

As previously stated, α-synuclein-positive GCI is the patho-
logical hallmark of MSA, nevertheless the absence of endog-
enous oligodendroglial α-synuclein expression obscured the 
pathological detail. Targeting the misfolding and aggrega-
tion of α-synuclein has always been one of the major treat-
ment strategies for MSA.

Epigallocatechin gallate (EGCG), a small molecule 
extract of green tea, inhibited the fibrillogenesis of 
α-synuclein by directly binding to the natively unfolded 
α-synuclein polypeptide chain and preventing its conversion 
into toxic aggregation forms, thereby reducing associated 
toxicity [130, 131]. Although EGCG inhibited α-synuclein 
aggregation in vitro and alleviated motor impairments and 
α-synuclein aggregation in nonhuman primates [132, 133], a 
phase 3 trial in patients with MSA failed to alter the disease 
but revealed overall well-tolerated [134] (NCT02008721).

Another small molecule, NPT200-11 (also knowns 
as UCB0599), has also demonstrated α-synuclein mod-
ulation-related benefits in animal models of PD [135, 
136]. A phase 1 trial in healthy subjects determined the 
safety, tolerability, and blood levels of orally administered 
NPT200-11 (NCT02606682), and a phase 2 trial in patients 
with early PD and mild symptoms is currently underway 
(NCT05543252).

Anle138b is a small molecule that targets and inhibits 
α-synuclein oligomerization and aggregation in SNpc and 
striatum in MSA mouse models, slowing the progression 
of the disease [137–139]. The German biotech company 
MODAG successfully completed a phase 1 trial in which 
Anle138b demonstrated an excellent safety and tolerability 
profile (NCT04208152). Currently, another phase 1 trial is 
evaluating the safety, tolerability, blood levels, and efficacy 
of orally administered anle138b in patients with mild to 
moderate PD (NCT04685265).

In addition, dysregulation of iron metabolism was a 
potential pathogenic factor in neurodegenerative diseases. 
It has been shown that iron was elevated in PD and MSA 
[140, 141]. Iron could regulate α-synuclein expression 
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at the translational level and mediate the aggregation of 
α-synuclein [142]. PBT434 (also known as ATH434) was a 
novel small molecule inhibitor of α-synuclein aggregation 
by redistributing excessive loosely bound iron [143–145]. 
Accordingly, a phase 1 trial of it was completed, demonstrat-
ing that it was safe, well-tolerated, and achieved the desired 
brain concentration in healthy subjects [146] (U1111-1211-
0052). Currently, a phase 2 trial is evaluating the safety and 
efficacy of ATH434 in patients with MSA (NCT05109091, 
NCT05864365).

Synaptic dysfunction

In neurodegenerative diseases, synaptic dysfunction and 
toxicity seem to be an early event preceding neuronal loss. 
α-synuclein exerts its physiological function in the synapses, 
thereby it is plausible that MSA may be characterized by 
extensive synaptic loss [147]. A recent observational in vivo 
study regarding the degree of damage of the synapses using 
the synaptic vesicle glycoprotein 2A (SV2A) selective PET 
radioligand  [11C] UCB-J showed a profound loss of syn-
aptic density in the putamen, cerebellum, and brainstem 
(NCT05121012). This study will show how early the syn-
apse deteriorates in MSA patients and open new avenues 
for its treatment preceding the significant neuronal loss and 
clinical symptoms.

Aberrant proteostasis

The impairment of protein processing and degradation has 
been implicated in the pathogenesis of α-synuclein aggrega-
tion based on some preclinical evidence [148–150]. There-
fore, enhancing the degradation of α-synuclein has also been 
adopted as one important treatment strategy for MSA.

Accumulating evidence suggests that the autophagy–lyso-
somal pathway is altered in MSA. By inhibiting the activ-
ity of mammalian target of rapamycin (mTOR), rapamycin 
(also known as Sirolimus) influenced a variety of essential 
cellular processes, such as protein synthesis and autophagy 
[151, 152]. Rapamycin increased autophagy, decreased 
α-synuclein aggregation and provided partial neuroprotec-
tion in the SNpc of PLP-α-syn transgenic mice (PLP: pro-
teolipid protein), a specific MSA mouse model [153, 154]. 
However, a phase 2 trial on oral sirolimus for MSA was 
failed recently (NCT03589976).

Another degradation enhancer is rifampicin, an antibiotic 
which has been investigated to inhibit the α-synuclein fibrils 
and to disaggregate already-formed fibril [155]. In addition, 
rifampicin decreased α-synuclein and neurodegeneration in 
MBP-α-syn transgenic mouse model of MSA [156]. A large 
phase 3 trial in patients with early MSA was terminated after 
an interim analysis of the primary endpoint revealed that 
futility criteria were met (NCT01287221).

Besides, lithium exerted neuroprotection against rote-
none-induced injuries partially through the autophagy 
pathway in an in vitro PD cell model [157] and protected 
dopaminergic neurons likely via autophagy enhancement in 
an MPTP-administration mouse model of PD [158], indi-
cating that it may be beneficial in MSA. A phase 2 trial to 
evaluate efficacy, safety, and tolerability of lithium treatment 
in patients with MSA was terminated due to severe adverse 
effect from interim analysis, indicating that lithium treat-
ment was not well-tolerated [159] (NCT00997672).

Despite the failure of all clinical trials focusing on 
α-synuclein degradation enhancement to slow down the pro-
gression of the disease, several promising preclinical studies 
are still underway. On the other hand, it has been demon-
strated that α-synuclein can be degraded via the autophagy 
and the ubiquitin–proteasome system (UPS) pathways 
[160]. Targeting the proteasome degradation system may 
be a viable alternative, as suggested by the failure of clini-
cal trials aimed at enhancing the autophagy-lysosomal path-
way. Recently, by introducing the proteolysis targeting chi-
meric (PROTAC) concept and technology, a peptide fusion 
containing α-synuclein binding domain and a short strong 
proteasome-targeting motif was able to bind to α-synuclein 
and direct it to the proteasome for degradation [161]. Addi-
tionally, one of Arvinas Company’s pipelines demonstrated 
that α-synuclein PROTAC protein degraders could degrade 
oligomeric forms of α-synuclein in their preclinical studies.

Inhibition of neuroinflammation

There was growing evidence that brain inflammation 
played a crucial role in the pathogenesis of MSA. In MSA, 
aggregated α-synuclein induced microglial activation and 
astrogliosis, stimulated the secretion of proinflammatory 
cytokines in microglia, and ultimately exacerbated the dis-
ease pathology [58, 162, 163]. Therefore, suppression of 
microglial activation or inflammation as a whole has been 
viewed as a potential and promising approach in MSA.

Minocycline was a semi-synthetic, second-generation tet-
racycline analog which can effectively cross the blood–brain 
barrier and inhibit the microglial activation [164, 165]. 
Notably, minocycline has been shown to provide neuropro-
tection in experimental models of multiple neurodegenera-
tive diseases, including PD, Alzheimer’s Disease (AD) and 
HD [166–168]. Contradictory preclinical evidence suggested 
that minocycline did not prevent lesion-induced neuronal 
damage in a rat model of striatonigral degeneration, a core 
pathology that may correlate with MSA, despite its micro-
glial suppression [169]. In addition, another study found that 
minocycline inhibited microglial activation, but exacerbated 
dopaminergic neuronal damage in a mouse model of PD 
administered with MPTP [170]. A phase 3 for the evaluation 
of the efficacy and safety of Minocycline for treatment of 
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MSA was completed (NCT00146809) but failed to demon-
strate a clinical effect of minocycline on symptom severity as 
measured by clinical motor function. However, preliminary 
PET data suggested that minocycline may inhibit microglial 
activation [171].

Another study investigated the intravenous administra-
tion of immunoglobulins (IVIG). IVIG is a type of anti-
body mixture derived from human plasma that is believed 
to inhibit auto-reactive T-cells and then the production of 
cytokines. Even though the underlying mechanism remains 
poorly understood, this is utilized in a variety of immune-
mediated neurological diseases. Activation of microglia and 
production of toxic cytokines suggested a role for neuroin-
flammation [172] and the potential therapeutic benefit of 
IVIG in MSA. A phase 2, open-label pilot clinical study 
for the efficacy of IVIG had enrolled 9 MSA patients, and 
the UMSARS scores declined in the majority of this group 
of patients [173] (NCT00750867). Despite this, to further 
confirm the efficacy of IVIG, larger confirmatory trials are 
still needed.

In addition, myeloperoxidase (MPO), a key enzyme 
involved in the production of reactive oxygen species by 
phagocytic cells, contributed to the oxidative stress impli-
cated in the pathogenesis of the neurodegenerative disorders, 
such as AD, PD, multiple sclerosis, and MSA [174–177]. 
In the MSA mouse model, it was demonstrated that MPO 
inhibition reduced motor impairment and rescued vulnerable 
neurons in the striatum, SNpc, cerebellar cortex, pontine 
nuclei, and inferior olives, which was accompanied by a 
reduction in microglial activation and intracellular aggre-
gates of α-synuclein [177]. In contrast, another research 
reported that MPO inhibition had no effect on motor impair-
ments and neuronal loss in a mouse model of advanced MSA 
despite a significant decrease in microglial activation [178]. 
Verdiperstat (also known as AZD3241, and BHV-3241) is 
a potent, selective, and irreversible inhibitor of MPO that 
suppresses microglial activation that was initially studied 
by AstraZeneca [179]. A phase 1 study evaluating the safety 
of AZD3241 in healthy participants revealed this compound 
has a good safety profile (NCT01457807). A phase 2 PET 
study in PD demonstrated that AZD3241 was safe and well 
tolerated and reported amelioration of microglial activa-
tion, supporting proof of the mechanism of AZD3241 and 
extending further study of AZD3241 in PD or MSA [180] 
(NCT01527695). A phase 2 12-week trial of AZD3241 
clinical trial in patient with MSA to assess the effect on 
microglia activation as measured by PET using 11-CPBR28 
tracer, a tracer that binds to the transporter protein (TSPO) 
in activated glia as primary outcome was completed and 
no significant changes from baseline, or between groups, 
were detected (NCT02388295). In 2018, Biohaven licensed 
AZD3241 from AstraZeneca and further developed by a 
phase 3 clinical trial of BHV-3241 (referred to AZD3241) in 

patients with MSA, given the supportive phase 2 exploratory 
efficacy outcomes. However, this phase 3 study to evalu-
ate the efficacy and safety of BHV-3241 in subjects with 
MSA was recently completed and failed to meet its primary 
and key secondary endpoints (NCT03952806). Recently, 
Biohaven began a small study evaluating the newer TSPO 
PET ligand  18FPBR06, before and after Verdiperstat treat-
ment [181]. This study enrolled 19 MSA, studied the effect 
of Verdiperstat on microglial activation in well-character-
ized MSA patients and was completed in January 2022 
(NCT04616456).

Neuroprotective therapies

It is well-known that glutamate-induced neurotoxicity plays 
a crucial role in the neuronal damage and death underlying 
a broad spectrum of central nervous system disorders. Sev-
eral glutamate receptor antagonists have been investigated 
for their neuroprotective effect in CNS disorders. Riluzole, 
an anti-glutamatergic agent approved by the FDA as a dis-
ease-modifying therapy for amyotrophic lateral sclerosis 
(ALS), is believed to have neuroprotective properties [182]. 
Observations of a reduction in behavioral deficits and stri-
atal degeneration in the double lesion rat model of MSA-P 
administered by Riluzole supported the neuroprotective 
effect [183]. Despite promising preclinical results, a pla-
cebo-controlled cross-over trial in 10 probable MSA patients 
showed no significant anti-parkinsonian effects after admin-
istrated Riluzole [184]. A subsequent, large-scale phase 3 
trial of Riluzole in MSA (NNIPPS) failed to meet the pri-
mary endpoint which is the difference of 36-month survival 
rate between the placebo group and the treatment group 
[185] (NCT00211224). Other neuronal excitability modu-
lators are currently under investigation, such as Tllsh-2910, 
a specific NMDA receptor modulator. NMDA receptors in 
the cerebellum have unique properties that distinguish their 
function and modulation from those in other brain regions 
[186]. A phase 3 clinical trial of Tllsh-2910 in patients with 
MSA is ongoing and its primary endpoint is the improve-
ment rating of ataxia (NCT03901638).

Fas-associated factor 1 (FAF1) is an apoptosis-related 
Fas-binding protein. It has been reported that FAF1 levels 
were significantly elevated in PD and were responsible for 
neuronal cell death [187, 188]. In addition, FAF1 induced 
α-synuclein accumulation in dopaminergic neurons [189]. 
KM-819 is a novel FAF1 inhibitor and could act as a neu-
roprotective agent. The effect of KM-819 in dopaminergic 
neurons of MPTP mouse model of PD was investigated. The 
study manifested the neurorestorative effect of KM-819 in 
striatal dopamine neurons of MPTP model via restoring 
autophagic α-synuclein degradation [190, 191], implying 
that KM-819 may have therapeutic potential for synucle-
inopathies. A phase 1 first-in-human trial to investigate the 
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safety, tolerability, pharmacokinetics, and pharmacodynam-
ics of KM-819 in healthy subjects has been completed and 
revealed favorable safety, tolerability, and pharmacokinet-
ics results [192] (NCT03022799). Recently, a phase 2 trial 
to further evaluate the safety and efficacy of KM-819 as a 
disease-modifying therapy to slow down the progression of 
PD was planned [193].

Lipid and fatty acid homeostases are crucial for neuronal 
functions in the brain, the second-most lipid-rich organ. A 
lipidomic analysis of α-synuclein neurotoxicity revealed 
that stearoyl-CoA desaturase (SCD) is essential for α-syn-
induced neurotoxicity and that inhibiting SCD may be a 
novel therapeutic strategy [194–197]. A phase 1 study of 
SCD inhibitor YTX-7739 in healthy subjects has been com-
pleted and the result showed it was safe and well-tolerated. 
A following phase 1b safety and biomarker study has been 
conducted on PD patients, and the result reported no serious 
safety events, and a reduction in fatty acid desaturation in 
blood and CSF was observed. However, the FDA has placed 
a partial clinical hold on multi-dose clinical trials of YTX-
7739 for some reason [198] (Trial NL9172).

A genetic relationship between COQ2 mutations (V393A 
variant), which resulted in decreased production of Coen-
zyme Q10 (CoQ10) as an electron carrier in the mitochon-
drial respiratory chain and MSA-C type was exclusively 
established in Japanese population [25]. In addition, multiple 
mitochondrial dysregulations were observed in iPSC-derived 
dopaminergic neurons from MSA patients [199, 200]. In 
a report of a 3-year follow-up of high-dose ubiquinol sup-
plementation in a case of familial MSA with COQ2 muta-
tions, the clinical rating scale scores remained stable, but 
mitochondrial oxidative metabolism improved [201]. A 
phase 2 multicenter study to evaluate efficacy and safety of 
high-dose ubiquinol (drug name: MSA-01) supplementation 
in MSA patients was completed (UMIN000031771). The 
results showed that high-dose ubiquinol was well-tolerated 
and led to a significantly smaller decline of UMSARS part 
2 score compared with placebo in MSA patients, indicat-
ing orally administered ubiquinol have clinical benefits in 
patients with MSA [202].

During brain development, it is well-known that growth 
hormone promotes proliferation of neural precursors, neu-
rogenesis, and gliogenesis, indicating its potential neuropro-
tective or neurotrophic effects [203]. A randomized, double-
blinded, placebo-controlled pilot study in patients with MSA 
has been conducted and showed no treatment differences 
for any efficacy measures, but some trend improvements 
in terms of UMSARS total score and cardiovascular reflex 
autonomic testing. Maybe a large-scale trial and higher 
doses will be required for further studies [204].

Rasagiline is a monoamine oxidase type B (MAO-B) 
inhibitor that is approved for the symptomatic treatment of 
PD [205] and may have disease-modifying effect for PD, 

but because of the previous clinical studies have revealed 
that the treatment outcomes differ when different drug doses 
had been administered, further phase 3 trials are required 
[206] (NCT00256204). A promising preclinical study in 
the MSA transgenic mouse model with GCI pathology 
revealed improvement in motor deficits and significant 
reduction of neuronal loss [207]. However, a phase 2 trial 
to evaluate the efficacy, safety, and tolerability of Rasagil-
ine in MSA-P patients failed, measured by UMSARS [208] 
(NCT00977665). In addition, another MAO-B inhibitor Safi-
namide was investigated to measure the treatment-emergent 
adverse events (TEAE) and serious adverse events (SAE) in 
MSA-P patients in the phase 2 stage (NCT03753763).

Boosting the levels of neurotrophic factors, such as 
brain-derived neurotrophic factor (BDNF) and glial cell 
line-derived neurotrophic factor (GDNF) in the brain, is an 
integral part of neuroprotective strategies. In animal research 
on the MSA transgenic mouse model, selective serotonin 
reuptake inhibitor Fluoxetine has been demonstrated to 
increase GDNF and BDNF [209, 210]. However, in a phase 
2 trial in MSA patients failed to show improvement [211] 
(NCT01146548). Another trial on GDNF is focusing on 
gene therapy and currently recruiting to assess the incidence 
of TEAE and SAE within 3 years in a phase 1 trial of AAV2-
GDNF in MSA (NCT04680065).

Some reported that the Insulin/IGF-1 signaling pathway 
contributed to the regulation of neuronal excitability, nerve 
cell metabolism, and cell survival, thereby supporting their 
neurotrophic function in a number of neurodegenerative 
diseases [212, 213]. Increased insulin and IGF-1 plasma 
concentrations in MSA patients and decreased IGF-1 brain 
levels in MSA transgenic mouse model supported the 
hypothesis that impaired insulin/IGF-1 signaling existing 
in MSA pathology [214–216]. A phase 2 study evaluat-
ing the efficacy of intranasal Insulin in patients with MSA 
(n = 1) and PD (n = 15) demonstrated an improvement based 
on UPDRS scale and the only MSA patient in this study 
received insulin-treatment remained symptom stable without 
disease progression [217] (NCT02064166).

Exendin-4, an FDA-approved antidiabetic glucagon-
like pepdide-1 (GLP-1) analog, has been shown to protect 
the nigral dopaminergic neurons survival and reduce the 
α-synuclein load, but motor benefits in a MSA transgenic 
mouse model have not been observed [216]. A phase 2 ran-
domized, open label study to evaluate the safety and efficacy 
of Exenatide (synthetic exendin-4) in patients with MSA is 
ongoing (NCT04431713).

Most recently, another neuroprotective target sphingo-
sine-1-phosphate receptor 5  (S1P5) was focused and new 
clinical trial was initiated.  S1P5 is predominantly expressed 
in nervous system and playing a role in neurodegenerative 
disorders [218]. A phase 2 study of  S1P5 agonists ONO-
2808 in patients with MSA is ongoing to assess the safety, 
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tolerability, pharmacokinetics, pharmacodynamics, and 
potential efficacy as well (NCT05923866).

So far, the majority of completed clinical trials reported 
negative outcomes. The only clinical trial with positive out-
comes is a trial of mesenchymal stem cells (MSC) treat-
ment. As MSC is multipotent, it has been investigated as a 
potential neuroprotective or neurotrophic therapy [219–222]. 
Preclinical studies of MSC treatment in transgenic MSA 
mouse models supported that intravenously infused MSCs 
have a potent effect on immunomodulation and neuropro-
tection [223, 224]. The first clinical trial was an open-label, 
single-center study evaluating the feasibility and safety 
of therapy with autologous MSCs through consecutively 
intra-arterial and three repeated intravenous injections. The 
treatment group demonstrated significant improvement on 
UMSARS than the control group in all visits throughout the 
12-month study period without serious adverse effects [225, 
226]. However, the open-label design has been challenged. 
After that, a phase 2 trial of autologous MSCs in patients 
with MSA was completed and showed a smaller increase in 
total and part II UMSARS scores in MSA patients receiv-
ing autologous bone marrow derived MSCs (bmMSCs) via 
intra-arterial routes, indicating MSC therapy could delay 
the progression of neurological deficits in patients with 
MSA [227] (NCT00911365). However, because it was 
common to observe small ischemic lesions using magnetic 
resonance imaging (MRI) following intra-arterial infusion, 
safety concerns were raised to MSC therapies. Therefore, 
one recent phase 1 MSC clinical trial added the observation 
of small ischemic lesion as a safety measurement. The study 
reported that no ischemic lesions on diffusion-weighted 
images in any of the study participants, suggesting that a 
single intra-arterial administration of autologous bmMSCs 
is a safe and promising neuroprotective strategy in patients 
with MSA-C (NCT03265444). In addition, another ongoing 
long-term observational study also monitors the incidence 
of adverse events and the efficacy of subjects who partici-
pated in the above phase 1 trial to evaluate the safety and 
tolerability of autologous bone marrow derived MSCs in 
patients with MSA for up to 60 months after administration 
(NCT04495582).

MSCs derived from autologous fat (fMSCs) were also 
being investigated as a potential treatment to interfere MSA 
progression. A phase 1/2 open-label study evaluating the 
safety, tolerability, and efficacy of intrathecal injection of 
autologous MSCs in MSA patients was completed and 
revealed intrathecal MSCs was safe, well-tolerated, but 
associated with painful implantation at high doses [228] 
(NCT02315027). A phase 2 trial of intrathecally adminis-
tered autologous fMSCs in patients with MSA is ongoing 
(NCT05167721).

In addition, a recent interventional phase 1/2a study 
is underway to assess the safety and efficacy of intrathe-
cal administration of low-/high-dose allogenic human oral 
mucosa stem cells (hOMSCs) in MSA patients in early to 
moderate stage (NCT05698017).

Although the aforementioned clinical trials achieved their 
primary endpoints and represent a potentially significant 
advance in the treatment, the safety of intra-arterial injec-
tion remains controversial due to reports of micro-strokes 
and increased mortality.

Discussion and outlook

MSA is a debilitating disease with poor prognosis. The dif-
ficulty in effectively managing the disease is not only due to 
the incomplete understanding of neuropathogenesis in terms 
of the interaction between neurons and glia, but also the 
lack of diagnostic methods, including specific biomarkers. 
The health-related quality of life (HR-QOL) of patients with 
MSA is significantly affected by aggressive disability due to 
motor and autonomic deficits and by nonmotor symptoms, 
especially depression. Regarding the measurement of clini-
cal outcomes, a HR-QOL change scale could become a valu-
able tool and the basis for improved MSA outcome measure-
ment associated with UMSARS, which could benefit future 
clinical trials of disease-modifying therapies [229–231].

Genetic factors and future perspectives

MSA is largely regarded as a sporadic disease. In a recent 
[232] and this review, genetic factors, such as SNCA, COQ2, 
C9orf72, LRRK2, and MAPT, in MSA have been described 
thoroughly, even though there is still some controversy. In 
addition, some genetic factors seem to be region- or pop-
ulation-specific. Clearly, none of the genetic associations 
showed above is the direct causative factor of MSA. How-
ever, it is no doubt that genetic factors are the risk factors 
in MSA. To consolidate the genetic aspects in MSA, firstly, 
genome-wide association studies need to be conducted in 
different regions and populations. Importantly, it will be 
meaningful for identifying novel pathophysiological insights 
as well as innovative therapeutic interventions like personal-
ized gene therapies if association between MSA risk and a 
series of genetic factors is identified.

Open questions of MSA pathology and possible 
directions

Despite the tremendous progress regarding the underlying 
pathological mechanisms of MSA, further scientific research 
is needed to elucidate the interactions between neurons, 
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oligodendrocytes, and other types of glia during the onset 
and progression of MSA.

MSA is grouped into neurodegenerative diseases (NDDs), 
in which eight hallmarks were presented in a recent review 
[233] as described in clinical trials. There are several criti-
cal unanswered questions in pathology of MSA. First is 
about the early stage of pathology, since it is quite likely 
pathologies underlying the disease start many years before 
clinical symptoms. Synaptic failure and dysfunction in many 
NDDs like AD and PD have been described as an early 
event before neurodegeneration [233]. Currently, an obser-
vational in vivo study is underway to investigate whether 
synaptic dysfunction will be an early critical alteration in 
MSA (NCT05121012). If so, it will provide new promising 
targets for MSA therapies. Second, all the NDDs share some 
pathological hallmarks and their commonalities may sug-
gest that some strategies possibly have wider applications. 
On the other hand, at the final stage of NDDs, distinct brain 
regions and neuronal population were affected, indicating 
that disease-specific aspects should be considered in MSA. 
Lastly, as we know, GCIs is well-established hallmark in 
MSA as well as the central role in the diagnosis of MSA. So, 
an unanswered question is why α-synuclein accumulates in 
oligodendrocytes exclusively in MSA, but even not in other 
synucleinopathies. Hopefully, advances of high-sensitivity 
and -resolution approaches like single-cell sequencing may 
help further the unique transcriptome of MSA pathologies 
regarding the specific molecular alterations in oligodendro-
cytes in MSA and even across all the synucleinopathies, and 
then open new avenues for MSA therapeutic targets more 
specifically.

Current picture of biomarkers

Biomarkers with higher sensitivity and specificity abso-
lutely will benefit the early diagnosis of MSA, but also 
help monitor the prognosis and disease progression. In 
previous investigations of MSA, a number of biomarkers 
across several different sample sources were revealed as 
described earlier in this review. However, few biomarkers 
are put in the clinical practice. Among those biomarkers, 
total free and oligomeric α-synuclein were measured in 
an observational study to determine whether oligomeric 
α-synuclein level was elevated in MSA patients compared 
to controls (NCT01485549). In addition, another observa-
tional study (TRACK-MSA) in MSA patients is underway 
to define changes of CSF and plasma biomarkers, including 
α-synuclein, aggregated α-synuclein, Nfl and Tau/phospho-
rylated Tau in CSF, and plasma Nfl as well (NCT04450992). 
Taken together, the biomarkers above will be potentially 
diagnostic and prognostic biomarker if the clinical trials can 
provide some reliable profiles.

The lack of reliable biomarkers for early diagnosis and 
monitoring of disease progression complicates disease 
treatment. In fact, definitely, clear and specific pathologi-
cal mechanisms may facilitate the exploration and promo-
tion of novel biomarkers, and further the disease-modifying 
therapies. Although significant progress has been made on 
biomarker discovery for MSA, three recent observational 
clinical studies are underway to demonstrate the biomarker 
profiles across the synucleinopathies (NCT05453058, 
NCT05638815, NCT05699460). For future development of 
biomarkers, large multicenter observational studies are more 
convincing. Furthermore, high-throughput technologies like 
genomics, transcriptomics, proteomics will make the stud-
ies more reliable and efficient. Intriguingly, artificial intel-
ligence also might assist this field. Indeed, high-sensitivity 
and -specificity, and non-invasiveness will be goals of new 
set of biomarkers.

Possible therapeutic opportunities

Characteristic abnormal protein aggregation is a leading 
pathological hallmark of a variety of NDDs, including MSA 
and currently serves for diagnosis and disease-modifying 
therapeutic targets. Due to the central role of GCIs in MSA, 
integrating advances of gene therapies, targeting α-synuclein 
by gene therapy approach will be promising. Given FDA 
approved the ASO drug Nusinersen (Spinraza) for the treat-
ment of SMA, and recently approved another ASO drug 
Casimersen (Amondys 45) for the treatment of DMD, ASOs 
have become a particularly attractive therapeutic strategy 
for MSA. Importantly, α-synuclein ASO has been showed 
to reverse the pathology in rodent PD models [126]. Taken 
together, reduction of α-synuclein production using ASOs 
may provide a disease-modifying therapy for MSA. Cur-
rently, a phase 1 study to assess the safety and tolerability 
of ASO of α-synuclein (ION464) administered intrathecally 
in MSA patients is ongoing (NCT04165486). Maybe it is 
the right time to consider the ASOs as a promising choice 
of treatment for CNS diseases like MSA due to conceptual 
simplicity, more selective action, less side effect, and wide 
distribution throughout the brain. However, there are still 
many challenges in terms of ASO delivery to the brain 
beyond the blood–brain barrier (BBB). In most of clinical 
trials and preclinical discovery of CNS diseases, intrathecal 
administration was employed and turned out it was a feasible 
and effective approach. But still, delivery via intrathecal way 
has a longer distance to travel to the brain, and also there is a 
high chance for dorsal root ganglion and spinal cord effects 
or damage. Last not the least, intrathecal administration is 
not a routine clinical procedure. Taken together, advances 
on ASOs delivery into the brain are required to be more spe-
cific, efficient and non-invasive. For the transfer of biomol-
ecules across the BBB, transferrin receptor (TfR)-mediated 
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delivery has significantly advanced this field [234]. It will 
be quite promising to attach the α-synuclein ASOs to the 
delivery cart like TfR-mediated one.

On the other hand, enhancing the degradation of path-
ological protein α-synuclein is also an attractive strategy, 
integrating current innovative technology PROTAC. As 
described in clinical trials, a peptide fusion containing 
α-synuclein binding domain and a short strong proteasome-
targeting motif was able to bind to α-synuclein and direct it 
to the proteasome for degradation. There will be at least two 
kinds of challenges. The specific and efficient peptide must 
be developed in the first place. And delivery of this kind 
of biomolecules to the brain will face the same problem as 
ASO does. Therefore, the same strategy could be applied 
here.

Neuroinflammation, including microgliosis and astroglio-
sis, is a pathological hallmark of NDDs, including AD, PD 
and MSA as well. First, insights into the detrimental and 
protective roles of the different microglial populations will 
be important for effective therapeutic targeting in NDDs. 
Then, neuroinflammation is a cause of NDDs or just a result 
of other pathological hallmarks. Research will be needed to 
address above fundamental questions to further this direc-
tion. Interestingly, the nucleotide-binding domain, leucine-
rich repeats-containing family, pyrin domain-containing-3 
(NLRP3) inflammasome complex, comprising NLRP3, 
apoptotic speck protein containing a caspase recruitment 
domain (ASC), and cysteine aspartic acid protease 1 (Cas-
pase 1), regulates microglial inflammation in several neuro-
degenerative diseases, including MSA. The study indicates 
that NLRP3 inflammasome is significantly upregulated and 
correlates with the neurodegenerative process in MSA [235], 
providing novel therapeutic strategies to target excessive 
activation of the inflammasome in MSA.

Last but not the least, neuroprotection is another funda-
mental theme in disease-modifying therapies of NDDs. The 
goal of neuroprotection treatment is to provide the brain with 
the necessary factors to support the neurons and to prevent 
neurodegenerative changes at the molecular level. First, 
some neurotrophic factors could be applied as described 
in clinical trials. Second, some core molecules at the key 
points of signaling pathways also can benefit as  S1P5 did 
in clinical trials (NCT05923866). At last, across all clinical 
trials in MSA, the only clinical trial with positive outcomes 
is a trial of MSC treatment. The aforementioned clinical 
trials achieved their primary endpoints and represented a 
potentially significant advance in the treatment. Importantly, 
among all the MSC platforms, hOMSC retains properties of 
neural crest stem cells, due to its origins from the embryonic 
brain (neural crest). But the safety of intra-arterial injection 
for bmMSCs remains controversial due to reports of micro-
strokes and increased mortality.

In conclusion, MSA is a mostly sporadic disease. Up to 
date, it still has been difficult to identify the disease initia-
tors and to investigate the core pathological mechanisms. 
But a growing number of evidences showed that MSA has a 
genetic component. MSA is driven by combined defects like 
many other NDDs. Furthermore, integrating complicated 
pathological mechanisms, it points to the need for multi-
targeted therapies. On the other hand, MSA belongs to the 
rare diseases and exhibited strong biological heterogeneity, 
which makes personalized therapeutic strategies promis-
ing. Therefore, designing combinatorial and personalized 
therapeutic strategies to effectively halt the MSA will be a 
promising and compelling perspective in future based on the 
better understanding the molecular mechanisms and devel-
opment of biomarkers.
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