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Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms 
of economic cost and personal hardship. Many stroke survivors face long-term disability—a phenotype associated with an 
increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic poly-
morphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on 
their patient’s genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required 
for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as 
modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features 
associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to 
inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. 
Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
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Introduction

Stroke is the leading neurological cause of disability-
adjusted life years, globally [89]. Every year in the United 
States, nearly 800,000 people suffer from a new or recurrent 
stroke with 13.6% of patients expiring, making cerebrovas-
cular accidents the 5th most common cause of death [277]. 
Fortunately, stroke incidence and mortality are declining, 
the latter steadily decreasing since the early 1900s, and more 
notably in the last four decades [150, 156]. Nonetheless, our 
aging population bears an increased lifetime risk of stroke, 
rising from 22.8% in 1990 to 24.9% in 2016, with a relative 
risk increase of 8.9% [336]. Considering that 50% of stroke 
survivors endure long-term disability, it is not surprising 
that the economic burden of stroke in the United States is 
projected to increase from $45.5 billion in 2014 to $129.3 

billion by 2035 [79, 277]. Thus, increased efforts to under-
stand, predict, and improve the functional outcome of stroke 
is essential.

Ischemic stroke (IS), which accounts for 87% of total 
stroke cases, carries a strong genetic basis with heritabil-
ity estimates of 39% [22, 277]. The outcome of ischemic 
stroke is a multifactorial endpoint influenced by clinical 
and genetic variables [266, 277]. Most studies have imple-
mented a candidate gene approach to examine associations 
between preselected polymorphisms and disability scores 
(see Outcome metrics below); however, many of the latest 
projects have been genome wide association studies (GWAS) 
attempting to validate prior findings and discover novel vari-
ants in a nonbiased fashion.

A comprehensive catalogue of known polymorphisms 
affecting poststroke recovery would serve as a roadmap 
for further studies, organizing relevant information for 
researchers to quickly grasp the state of the field and plan 
future directions. Furthermore, understanding the genetic 
underpinnings of ischemic stroke recovery can be lever-
aged for disability prediction, decision analysis, precision 
medicine, and drug target discovery. Understanding the 
polymorphisms and concomitantly affected molecular 
mechanisms is crucial to fully appreciate the impact on 
functional outcome. Here, we show that pertinent genes 
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can be grouped by the following systems and processes: 
inflammation, vascular homeostasis, growth factors, 
metabolism, p53 regulatory pathway, and mitochondrial 
variation.

Inflammation

Cytochrome P450 pathway

Cytochrome (CYP) P450s are a class of monooxygenase 
enzymes that, among other functions, metabolize ara-
chidonic acid (AA) into eicosanoids such as 20-hydrox-
yeicostetarenoic acid (20-HETE) (Fig. 1). 20-HETE is 
a potent vasoconstrictor involved in the autoregulation 
of cerebral blood flow. It is associated with increased 
IS severity in animal models as well as larger lesions 
and worse modified Barthel Index (mBI) scores [69, 
128, 286]. CYP epoxygenase enzymes also act on AA; 
however, they produce epoxyeicosatrienoic acids (EETs) 
that affect cerebral perfusion through vasodilation and 
offer protective effects against ischemia as opposed to 
20-HETE [69, 128].

CYP2C8 and CYP4A11

The synthesis of 20-HETE is catalyzed by enzymes of the 
CYP4 gene family, while EETs are produced by CYP2C 
and CYP2J isoforms [128]. Interactions between CYP2C8, 
CYP4A11, and EPHX2 single nucleotide polymorphisms 
(SNPs) were associated with IS risk as well as increased 
20-HETE and decreased EET [312]. One study in a Chi-
nese population reported a higher frequency of CYP2C8 
rs17110453 CC in patients with neurologic deterioration 
(ND) defined as a change in NIHSS score 10-days after 
admission. The same report revealed similar findings regard-
ing CYP4A11 rs9333025 GG (Supplemental Table 1) [309].

EPHX2

Downstream in the CYP eicosanoid pathway, EETs are 
converted to dihydroxyeicosatrienoic acid (DHETs) by 
soluble epoxide hydrolases (sEH) (Fig. 1). DHETs are gen-
erally less bioactive than their precursor, thus sEH acts to 
reduce the vasodilatory and protective effects of EETs [69, 
72, 128]. Accordingly, genetic variants in EPHX2, which 
encodes sEH, worsen IS outcomes. The missense rs751141 
GG variant is independently associated with carotid stenosis 
[307], plaque density [314], increased metabolism of EET 
to DHET, and increased ND ten days poststroke leading to 
worse 3-month modified Rankin Scale (mRS) scores [308, 
309].

Cyclooxygenase pathway

COX2

Arachidonic acid is converted to prostaglandin  H2  (PGH2) 
via cyclooxygenases encoded by COX-1 and COX-2. Vari-
ous tissue-specific isomerases and synthases then generate 
 PGH2 derivatives that trigger diverse biochemical cascades, 
examples of which include thromboxane A2  (TXA2) and 
prostacyclin  (PGI2), synthesized by thromboxane synthase 
(TBXAS) and prostacyclin synthase (PTGIS), respectively 
(Fig. 1) [72]. With respect to cerebrovascular physiology, 
COX1 is implicated in the maintenance of vascular tone 
and vasodilator responses and evidence suggests that COX2 
increases cerebral blood flow in accordance with neural 
activity [201, 202].

In addition to studies demonstrating that polymorphisms 
in COX genes affect IS risk, extensive investigations into 
how these changes affect functional outcome have also been 
conducted [326]. One group examined the effects of COX2 
SNPs on a variety of functional outcome metrics includ-
ing mRS, Glasgow Coma Scale (GCS), and BI at 90 days 
follow-up. Interestingly, they report an association between 

Fig. 1  Depicts the eicosanoid inflammatory pathway. Genes shown 
in red contain a SNP associated with worse functional outcome. 
The COX2 locus contains both risk and protective variants which 
are detailed in the gray boxes. Abbreviations are as follows: throm-

boxane A2 (TXA2), prostacyclin (PGI2), prostaglandin H2 (PGH2), 
20-hydroxyeicostetarenoic acid (20-HETE), epoxyeicosatrienoic 
acids (EET), and dihydroxyeicosatrienoic acid (DHET)
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COX2 rs5275 TC and improved mRS, but not GCS or BI, 
while COX2 rs20417 GC was associated with better GCS 
scores but no other metrics [186]. Another group showed 
that COX-2 rs20417 CC was significant for ND [310] and 
a different investigation demonstrated that interactions 
between COX-2 rs20417, P2Y1 rs1371097, and GPIIIa 
rs2317676 were also associated with ND [311].

TXAS1 and PTGIS

The functional effects of SNPs in PTGIS and TBXAS1 
were assessed alongside COX2 polymorphisms: TBXAS1 
rs2267679 TT and PTGIS rs5602 CC occurred at a higher 
frequency in patients with ND. Furthermore, univariate anal-
ysis indicated that TBXAS1 rs41708 TT and PTGIS rs5629 
CC were independently associated with ND [310].

Toll‑like receptors

Toll-like receptors (TLRs) are pattern recognition receptors 
that are an integral component of the innate immune sys-
tem and can be activated by exogenous danger-associated 
molecular patterns (DAMPs) or endogenous ligands pro-
duced by disease and injury [140]. TLRs are interconnected 
with eicosanoid inflammatory pathways and can activate 
calcium-dependent phospholipase A2 that in turn, produce 
arachidonic acid-containing phospholipids [72]. Localized 
to microglial [165] and astrocytic [31] surfaces, TLR4 is 
implicated in neuroinflammation and stroke recovery [46, 
292]. Specifically, increased TLR4 expression at 18–72 h 
and 7-days poststroke is associated with worse 90-day mRS 
scores [34, 272, 302]. Although many genetic variants exist 
in TLR4, two linked SNPs, Asp299Gly and Thr399Ile, occur 
at significant frequencies, forming the 299/399 haplotype 
[203]. One study examined the effects of 299/399 on IS 
functional outcome (ISFO) and found it to be predictive of 
worse 3-month mRS scores [288]. Proinflammatory markers 
such as IL-1β, I-L6, and TNFα are associated with TLR4 
levels [34, 305] and elevated C-reactive protein 3-months 
poststroke is associated with 299/399 [288]. Thus, TLR 
perturbations likely affect other innate immune system 
processes.

C‑reactive protein

C-reactive protein (CRP) is not only an inflammatory bio-
marker but is also functionally active in compliment activa-
tion and Fc receptor binding, the latter of which stimulates 
cytokine release. Primarily synthesized in hepatocytes, tran-
scriptional induction of CRP occurs in response to inflam-
matory cytokines including interleukin-6 (IL-6), interleu-
kin-1 (IL-1) and tumor necrosis factor alpha (TNFα) [257]. 
Elevated CRP is a predictor of cardiovascular disease [67, 

334], IS risk [328], and forecasts worse functional outcome 
(mRS) in acute IS patients according to multiple meta-analy-
ses [127, 281]. Heritability estimates of baseline CRP levels 
range from 10 to 65% [233] and specific genetic variants 
affecting CRP levels have been studied in several disease 
contexts.

Many CRP SNPs have been described; however, only 
seven have been tested for their effects on ISFO. The minor 
allele of rs1130864, which is associated with elevated serum 
CRP in Han Chinese populations [149], demonstrated 
increased risk for poor outcome (3-month mRS) in the 
same ethnic group [108], It should be noted that rs1130864 
has shown mixed associations with CRP levels in other 
populations [8, 9, 142, 148, 157], so caution is warranted 
when assuming the relationship shown in Guo et al. [108] 
will extrapolate to non-Asian cohorts. Two other SNPs, 
rs3093059 and rs11265260, were identified as independent 
risk factors for elevated CRP and worse 3-month mRS scores 
in Han Chinese patients. In addition, a haplotype analysis 
of five SNPs including the two previously mentioned was 
also included in the study and showed significance for poor 
outcome [306].

Cytokines

IL-1 and IL1RN

Interleukin-1 is an archetypal cytokine involved in a myriad 
of proinflammatory events that occur during acute brain 
injury. Pertinent examples include matrix metalloproteinase 
and platelet activation, augmented angiogenesis, diminished 
neurogenesis, and the induction of other cytokines [251]. 
IL-1⍺ and IL-1β are well-studied agonists of the IL-1 type 
I receptor (IL-1R1), while IL-1 receptor antagonist (IL-1Ra) 
is a potent endogenous inhibitor [246]. Preclinical studies 
investigating the therapeutic potential of IL-1Ra administra-
tion yielded promising results, yet in clinical trials, the use 
of IL-1Ra reduced inflammatory biomarkers but failed to 
show a clear association with improved functional outcome 
[250, 251]. IL1RN encodes IL-1Ra and contains a variable 
number tandem repeat polymorphism in which the minor 
allele (*2) increases IL-1Ra production [68]. Homozygotes 
(IL-1RN 2/2) had improved clinical outcomes (BI; 7-days, 
1-month, 3-months, 1-year) in an IS study [105] and in Rezk 
et al. which had a cohort composed of patients with intrac-
ranial hemorrhage, subarachnoid hemorrhage, and IS [223]. 
Rezk et al. also reported that a biallelic variant in the promo-
tor region of IL-1β (-511C/T; rs16944), known to increase 
secretion [217], was associated with worse BI scores at 
various timepoints out to 6-months poststroke. They dem-
onstrated similar findings for an intronic polymorphism of 
IL-1⍺ (-889C/T) [223].
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IL-6

Interleukin-6 is a pleiotropic cytokine capable of complex, 
context-dependent functionality [84, 154]. Regarding IS, 
the exact of role IL-6 remains nebulous. In vivo studies 
have shown through a variety of approaches including gene 
knockout [96], intracerebroventricular administration [182, 
194], and receptor blockage [299] that IL-6 is neuropro-
tective [49]. Nonetheless, a plethora of evidence suggests 
IL-6 is elevated in stroke and is significantly correlated with 
lesion size [249, 263] and worse functional outcome [12, 
42, 237].

A variant in the IL-6 promoter (− 174 G/C; rs1800795) is 
known to influence IL-6 levels; however, controversy exists 
regarding which allele increases IL-6 expression and IS risk 
[152, 268]. One group reported the GG genotype as pro-
tective: it was associated with decreased serum IL-6 levels 
as well as improved 7-day (NIHSS), 3-month (mRS, BI), 
and 6-month (mRS, BI) outcomes in an Indian population 
[50]. Contrarily, another study conducted in young patients 
yielded the opposite findings: the GG genotype was a risk 
factor for elevated RS at 7-days and 3-months poststroke 
[102]. The most recent investigation was inconclusive, find-
ing no association between rs1800795 and poststroke IL-6 
levels or 6-month mBI [301]. These inconsistencies may be 
attributed to population differences or experimental biases. 
Further investigation is warranted to properly elucidate the 
effects of rs1800795 on ISFO. IL-6 receptor polymorphism 
Asp358Ala (+ 48,892 A/C; rs8192284) which increases IL-6 
levels [337] was shown to improve 3-month mRS scores 
suggesting that increased IL-6 levels is indeed therapeutic 
in poststroke recovery [130].

IL-10

Interleukin-10 is generally considered an anti-inflammatory 
cytokine and is expressed in response to brain injury. It acts 
by limiting proinflammatory cytokines and effector actions 
of T cells, monocytes, and macrophages [94]. Preclinical 
evidence suggest that IL-10 is neuroprotective and reduces 
infarct volume [24, 26, 169, 172, 256]. With some excep-
tions [51, 200], clinical studies indicate that low IL-10 
levels accompany IS [87, 126, 248] or coincide with acute 
neurological deterioration [220, 276]. One relevant IL-10 
gene promoter polymorphism (–1082 G/A; rs1800896) has 
mixed evidence regarding its influence on ischemic stroke 
risk [153, 315]; however, one group did find a significant 
association between rs1800896 GG and lower BI scores 
at 1-month and 3-months poststroke [192]. Other SNPs 
increase IS risk (rs1800872, rs1554286, rs3021094) [297], 
but remain untested in the context of functional outcome 
[155].

RETN

Resistin is a pro-inflammatory, atherogenic adipokine asso-
ciated with acute cerebral infarction independent of obesity-
related pathways [206]. Elevated serum resistin was linked 
to 5-year mortality and poststroke disability (mRS) [82, 
163]. The -420 C/G (rs1862513) polymorphism in the pro-
moter region of RETN leads to increased resistin levels [58, 
162, 207]. Bouziana et al. reported that carriers of the minor 
allele present with more severe IS and experience higher in-
hospital mortality [30]. Interestingly, the same group also 
found an association between -420G and improved 1-year 
mRS scores. The authors postulate the contradiction stems 
from selection bias whereby -420G carriers who endure 
increased risk of acute death may create artificial associa-
tions with long-term recovery [29].

circ-STAT3

Noncoding, circular RNAs (circRNAs) are ubiquitous in 
neural tissue and differentially expressed in stroke patients 
with subtype-specific profiles [78, 178, 208]. One group 
was able to predict IS outcomes by measuring only three 
circRNAs, thus demonstrating robust biomarker potential 
[333]. A growing number of associations between circRNA 
variants and human disease includes connections to athero-
sclerosis [41], multiple sclerosis [210], and coronary artery 
disease [330]. The only study investigating functional recov-
ery reported that circ-STAT3 rs2293152 GG worsened post-
stroke disability (3-month mRS) [180]. Signal transducer 
and activator of transcription 3 (STAT3) molecules are 
regulated by Janus kinases 2 (JAK2). JAK2/STAT3 activa-
tion exacerbates neuroinflammation and inhibition of this 
pathway can mitigate cerebral ischemic injury and decrease 
infarct size after stroke [331]. Liu et al. posits that rs2293152 
GG influences STAT3 levels by altering circ-STAT3 expres-
sion, or by modifying its ability to bind regulatory miRNAs 
[180].

Myeloperoxidase

Myeloperoxidase (MPO) is a heme-containing enzyme 
found in primary azurophilic granules of neutrophils. MPO 
augments innate immune system defense via production of 
reactive oxygen species (ROS) such as hypochlorous acid 
[11]. Considering that exuberant ROS production leads to 
host tissue damage, and that MPO levels increase poststroke 
[61], MPO inhibition as a therapeutic strategy has been 
posed and successfully tested in animal models [146]. A can-
didate gene approach was employed to examine the effects 
of MPO polymorphisms on ISFO and G463A (rs2333227) 
was associated with worse RS scores at follow-up (median 
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interval: 11 days) [125]. Another variant, rs2107545 CC, led 
to poor 6-month outcomes (mRS, BI) [175].

Vascular homeostasis

Hemostasis

GPIIIa

Normal platelet functioning is essential for primary hemo-
stasis and thrombosis [214]. Elevated platelet markers in 
early cerebrovascular studies led authors to postulate that 
increased platelet activity may be pathogenic, at least in 
certain stroke subtypes [238, 270, 271]. This notion meshes 
well with the contemporary practice of antiplatelet admin-
istration for treatment and prophylaxis of ischemic events. 
Platelet adhesion and aggregation is orchestrated in part by 
integrins, a class of glycoprotein signaling receptors [129]. 
The constellation of integrin species on human platelets 
includes αIIbβ3. This transmembrane protein offers binding 
sites for hemostasis-related ligands such as Von Willebrand 
factor, fibrinogen, fibronectin, and CD40 [229]. Experiments 
in nonhuman primate models showed microvascular preser-
vation after αIIbβ3 inhibition, so genetic alterations to GPIIa 
and GPIIIb which encode the αIIb and β3 subunits may affect 
stroke outcome [5, 47, 129].

While multiple groups have reported that genetic variants 
in GPIIb/GPIIIa affect IS risk, evidence of their influence on 
functional outcome is less robust [176]. Initial investigations 
revealed that poststroke mortality is affected by the HPA-3 
genotype of GPIIb with 80% of bb carriers surviving at fol-
low-up, compared to 68% of ab, and 58% of aa carriers [47]. 
Another study showed that the A2 allele of GPIIIa rs5918 
was significantly associated with poor BI scores at 90-days 
postadmission, but not mRS or GCS grades [186]. As pre-
viously mentioned, interactions between GPIIIa rs2317676, 
COX-2 rs20417, and P2Y1 rs1371097 were significant for 
ND ten days after admission [311]. P2Y1 is a G protein-cou-
pled receptor classically known to activate platelet aggrega-
tion, but also participates in neuroinflammatory processes via 
IL-6 induction [92, 316]. These molecules certainly contrib-
ute to stroke pathophysiology considering that P2Y1 recep-
tors are upregulated during cerebral ischemia and infarct size 
is reduced after P2 receptor antagonism [159, 269].

⍺2AP

Alpha-2-antiplasmin (⍺2AP) influences fibrinolysis via 
plasmin deactivation [1]. One ⍺2AP mutation, Arg407Lys 
(rs1057335), is associated with cardiovascular disease as 
demonstrated in Bridge et al. where carriers of 407Lys 
were at decreased risk for abdominal aortic aneurysm [35]. 

Relating to cerebral ischemia, a multivariate analysis indi-
cated that IS and transient ischemic attack (TIA) patients 
with the minor allele were more likely to have long-term 
functional recovery (mRS, 6–12 months). These findings 
suggest a protective role for Arg407Lys, but the exact 
mechanisms underlying this effect remain obscure [296].

eNOS

Nitic oxide (NO) is a lilliputian signaling molecule and 
orthodox vasodilator with anti-proliferative and anti-throm-
botic properties [88]. NO also facilitates synaptic plastic-
ity and is neuroprotective at physiologic concentrations yet 
neurotoxic at higher levels [44]. Three isoforms of nitric 
oxide synthase (NOS) produce NO including endothelial 
(eNOS), neuronal, and inducible versions. NOS requires 
several cofactors including tetrahydrobiopterin  (BH4), the 
synthesis of which is governed by rate-limiting enzyme, 
GTP cyclohydrolase 1 (GCH1) [90]. Polymorphisms affect-
ing eNOS and GCH1 have been linked to adverse poststroke 
outcomes (Fig. 2a). For example, G894T (rs1799983) is a 
missense variant altering the active site of eNOS. Asian 
carriers of the T allele endure increased risk of IS, unlike 
Caucasians [56, 151]. However, one study found that Medi-
terranean patients with the mutation have worse functional 
outcomes (1-month mRS) [83]. Regarding GCH1, + 243C/T 
is a SNP in the 3'-UTR that decreases NO production lead-
ing to increased vascular events and death after IS (5-year 
follow-up) [262, 319].

Atherosclerosis

ACE

The renin angiotensin system (RAS) is integral to vascu-
lar homeostasis and is also active in brain parenchyma, 

Fig. 2  has two components: a and b. a Shows the molecular path-
way for nitric oxide (NO) synthesis and shows that genetic variants in 
GCH1 and eNOS lead to adverse outcomes after stroke. ✢ placed to 
clarify that the GCH1 variant led to death after IS but was not associ-
ated with a functional outcome metric. b Shows pathway for angio-
tensin II type 1 receptor  (AT1R) agonism which is augmented by an 
angiotensin converting enzyme (ACE) polymorphism and leads to 
worse poststroke recovery
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influencing learning and memory [65]. In the classical RAS 
axis, angiotensin converting enzyme (ACE) cleaves angi-
otensin I to produce the angiotensin II (ang II) (Fig. 2b). 
Overactivation of ang II type 1 receptor  (AT1R) is implicated 
in stroke pathogenesis via proinflammatory, profibrotic, and 
vasoconstrictive effects. Increased oxidative stress also con-
tributes to these proatherosclerotic changes [14]. ACE is a 
key player in aberrant RAS activity as evidenced by studies 
wherein pre-stroke ACE inhibition reduced ischemic stroke 
incidence [120] and severity [57], and improved poststroke 
recovery (BI at discharge) [116]. A 287-bp insertion/deletion 
(I/D) polymorphism within the ACE gene is known to affect 
serum ACE levels. Carriers of the D allele possess higher 
levels of ACE [224], incur increased risk of IS [323], and 
are subject to worse functional outcomes (BI at discharge) 
[189].

HDAC9

Histone deacetylases (HDACs) remove acetyl groups from 
lysine residues on histones and other regulatory proteins, 
promoting a heterochromatic configuration that dampens 
transcriptional activity [110]. HDAC inhibition is a com-
mon therapeutic approach and has shown promise in pre-
clinical stroke models [160]. Several variants at the HDAC9 
locus are associated with IS risk [111, 164, 267, 335]. Two 
of these variants, rs2074633 and rs28688791, are associ-
ated with unfavorable short-term outcome (3-month mRS) 
and are in linkage disequilibrium with another risk SNP, 
rs2107595 [282]. This variant is associated with common 
carotid intimal thickness, the presence of carotid plaque, and 
increased HDAC9 expression [17, 191]. Mechanistic studies 
found that HDAC9 represses cholesterol efflux and promotes 
atherosclerosis [45].

TNFRSF11B

Osteoprotegerin (OPG) is a member of the tumor necrosis 
receptor superfamily with roles in bone homeostasis, vas-
cular inflammation, and calcification [274]. Whether OPG 
activity is beneficial or harmful in the context of vascular 
disease remains unclear. While OPG knockout accelerates 
calcific atherosclerosis in certain animal models [40], sug-
gesting protective effects, preclinical stroke models showed 
reduced infarct volume and brain edema in  OPG−/− mice, 
indicating a pathogenic role for OPG in cerebrovascular 
disease [240]. Clinically, OPG levels positively correlate 
with stroke severity [46], mortality [132], and poor func-
tional outcome (3-month mRS) [254]. Two genetic vari-
ants in TNFRSF11B, which encodes OPG, are associated 
with increased serum OPG levels [260], IS occurrence [25], 
and worse poststroke recovery (rs2073617G, rs3134069C; 

3-month mRS) [283]. In silico analysis projected that these 
SNPs are in histone modification regions, hence the altered 
OPG levels [283].

PDE4D

Cyclic adenosine monophosphate (cAMP) is a ubiqui-
tous second messenger generated by adenylyl cyclase that 
facilitates diverse cellular processes in response to vari-
ous stimuli. The breakdown of cAMP to inactive AMP 
is catalyzed by phosphodiesterase (PDE) enzymes [234]. 
A connection between stroke and PDEs was discovered 
when Gretarsdottir et  al. reported that certain PDE4D 
haplotypes were associated with IS susceptibility. The 
authors posited atherosclerosis-related mechanisms as an 
explanation considering the strongest associations were 
among cardiogenic and carotid stroke subtypes [103]. A 
decade of additional studies summarized by meta-analysis 
confirmed that some PDE4D variants are indeed related 
to stroke [181]. And while cAMP does inhibit a variety 
of proatherosclerotic changes in vascular smooth muscles 
cells including proliferation [131], migration [95], and col-
lagen deposition [81], it also mitigates neuroinflammation 
and increases BDNF expression [298]. PDE4D variant, 
SNP87 (rs2910829), although not related to IS incidence 
overall [170], was found to worsen functional outcomes 
(3-month mRS) [255].

OPN

Osteopontin (OPN) is a multifunctional phosphoglycopro-
tein that guides numerous signaling pathways and in the 
context of acute brain injury, balancing pro-inflammatory 
and anti-inflammatory responses to modulate neuroin-
flammation, apoptosis, and blood–brain barrier (BBB) 
integrity [329]. Some evidence also suggests that OPN 
potentiates atherosclerosis [294]. Nonetheless, several 
in vitro studies have indicated a neuroprotective role for 
OPN; specifically, OPN administration reduced infarct 
volume and lessened neurologic deficits in rodent mod-
els of IS [134]. Clinically, however, elevated OPN is 
associated with worse outcomes (3-month mRS [195], 
recurrence [93]). This correlation may be a reactive phe-
nomenon in which compensatory increases in OPN occur 
in patients with more severe stroke. OPN polymorphism 
-443 C/T (rs11730582) was examined in IS patients and 
investigators reported that -443 CC was associated with 
decreased levels of a particular OPN isotope and that CC 
homozygotes experienced worse long-term functional 
recovery (12-month mRS and BI) reinforcing the notion 
that OPN is neuroprotective [135].
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Growth factors

BDNF

Brain-derived neurotrophic factor (BDNF) is a highly 
expressed protein involved in numerous nervous system 
activities including neuroinflammation, neuronal survival, 
and plasticity [19]. BDNF administration in stroke animal 
models has demonstrated various benefits including reduc-
tion of infarct size [235] and improved functional outcome 
[198]. In humans, BDNF levels are negatively correlated 
with NIHSS scores [139] and low initial quantities are asso-
ciated with worse mRS outcomes at 90-days [161, 280], 
2-years, and 7-years poststroke [258].

BDNF is initially synthesized as a precursor protein 
(proBDNF) that is cleaved to separate a mature domain 
(mBDNF) and prodomain. All three molecules are bioac-
tive and exhibit distinct, even opposing effects due to dif-
fering receptor affinity [71]. Among multiple SNPs in the 
BDNF gene, val66met (rs6252; G196A), which occurs in the 
prodomain, is the most studied variant in the context of IS. 
Molecularly, val66met reduces activity-dependent secretion 
of BDNF [18].

Val66met is implicated in the pathogenesis of many 
neuropsychiatric disorders [123] and multiple groups have 
reported associations with IS occurrence [141, 325, 327]. 
In aneurysmal subarachnoid hemorrhage, met66 is a nega-
tive prognostic factor [244]. Several studies have investi-
gated the effects of val66met on ISFO, some of which are 
aggregated in a meta-analysis that reports an overall sig-
nificant association between the met allele and unfavorable 
outcome as defined by study-dependent mRS cutoff values 
[193]. Nonetheless, other publications utilizing mRS as 
an outcome metric have yielded mixed results with some 
groups reporting negative findings [141]. Recently, two 
studies of large cohorts reported contrasting findings: Braun 
et al. found that poor outcome (mRS ≥ 3) was associated 
with met66 (n = 829) in a young American population (aver-
age age = 41.4) [33], while Zhou et al. described no such 
association in a Han Chinese population (mRS ≥ 2; n = 778; 
average age = 64) [327]. Differences in study parameters and 
population demographics may account for the incongruity.

Aside from mRS, other outcome measurements have 
bolstered the case for val66met as a risk factor for IS recov-
ery. BI at 6-weeks postrehabilitation [232] and cognitive 
functional independence Measure (FIM) at discharge [112] 
are more likely to be compromised in patients carrying the 
met66 allele. In addition, more granular phenotypes have 
been studied as well. Specifically, val66met is associated 
with decreased motor function [52] and improvement [242, 
278], rate of adaptation [122], and sensorimotor cortex 
activation after stroke [145]. In patients with dysphagia, 

the met66 allele was originally described as protective 
[85]; however, new evidence suggests the opposite [204]. 
Other BDNF SNPs, although less studied than val66met, 
have also been linked to poststroke disability. For example, 
rs11030119 is an intronic variant associated with favora-
ble 7-year mRS [259]. And rs7124442, which is located 
the 3'-UTR and affects miR-922 binding, is significant for 
increased BDNF expression and improved NIHSS scores at 
3-months poststroke [174].

IGF1

Insulin-like growth factor 1 (IGF1) is a polypeptide hor-
mone that activates signaling pathways to promote growth, 
neurodevelopment, and neuroplasticity [295]. IGF1 
decreases with age [138], but remains an important neu-
roprotective agent as evidenced by clinical studies that, 
minus one exception [13], show elevated serum IGF1 levels 
correlating with improved functional outcomes in stroke 
patients [2, 70]. In vivo stroke models also support this 
notion: IGF1 administration reduces infarct volume [236]. 
Regarding IGF1 genetics, multiple SNPs have been iden-
tified in addition to a 192 base pair CA repeat polymor-
phism in the promoter region that increases serum IGF1 
concentrations [273] and decreases IS risk [225]. With 
respect to functional outcome, one study demonstrated that 
rs7136446 was significantly associated with lower IGF1 
levels in healthy controls and worse mRS scores 2-years 
poststroke [3].

VEGF

Vascular endothelial growth factor (VEGF) is a signal-
ing protein that stimulates angiogenesis and is neuro-
protective as evidenced by preclinical models wherein 
VEGF administration reduces infarct volume and cogni-
tive deficits after ischemic events [101]. Polymorphisms 
in VEGFA have been linked to cardiovascular disease 
including stroke [147, 285]. Regarding functional out-
come, one group reported that + 936C/T (rs3025039) 
led to worse IS outcomes (3-month mRS) and that 
this variant is in linkage disequilibrium with nearby 
SNP, + 1451C/T  (rs3025040), both of which occupy 
the 3'-UTR. Subsequent experimentation revealed 
that + 1451C/T lies within a crucial binding cite for reg-
ulatory miRNAs (miR-199a, miR-199b) with the minor 
allele decreasing miRNA binding affinity and reducing 
VEGFA expression [324]. A variant in the VEGFA recep-
tor, VEGFR2 (+ 1719A/T; rs1870377T/A; Q472H), ele-
vates serum VEGF [245], increases microvessel density 
[97], and improves 3-month mRS scores [168].
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ANGPT1

While VEGF promotes early angiogenesis, Angiopoietin 1 
(Ang1) acts later by decreasing vascular permeability and 
inflammation, leading to BBB preservation and periinfarct 
neovascularization after ischemic injury in preclinical stud-
ies [113, 265]. Accordingly, ischemic stroke patients with 
low plasma Ang1 levels at admission had worse 3-month 
mRS scores [98]. Two SNPs in the ANGPT1 3'-UTR report-
edly alter IS risk, one of which also worsened poststroke 
recovery in a Chinese population (rs2507799; 1-month 
mRS) [53, 54]. Differential binding of miR-607 potentially 
explains why carriers of the T allele had decreased plasma 
Ang1 and poorer outcomes [53].

Metabolism

APOE

Apolipoprotein E (APOE) is a ubiquitously expressed gly-
coprotein found in a variety of central nervous system cell 
types, facilitating the transport and metabolism of choles-
terol and other lipids [300]. After being secreted from cells, 
APOE becomes lipid-bound and carries cargo molecules to 
neuronal cell-surface APOE receptors such as low-density 
lipoprotein receptor (LDLR). Polymorphisms in two criti-
cal positions on the APOE gene generate three allelic vari-
ants: ε2, ε3, and ε4. APOE ε2 (APOE2) binding to LDLR 
is 50 times weaker than the other alleles, while APOE4 has 
enhanced binding to very low-density lipoprotein (VLDL) 
particles [300]. Consequently, pathologies are dichotomized 
by deficient or excessive lipoprotein processing. In the 
periphery, APOE2 is associated with Type-III hyperlipopro-
teinemia, and APOE4 with proatherogenic lipoprotein con-
ditions [216, 300]. In brain parenchyma, APOE is involved 
in cerebrovascular function, glucose metabolism, and syn-
aptic integrity and plasticity although the exact mechanisms 
underlying these relationships are poorly understood [300].

APOE4 genotype is a major risk factor for Alzheimer’s 
disease (AD), increasing Aβ plaque formation [219]. Con-
trarily, APOE2 is protective for AD and associated with 
reduced plaque burden [64]. APOE impacts cerebrovas-
cular disease as well: cerebral amyloid angiopathy (CAA), 
which is modulated by APOE4 [222], increases risk for 
lobar intracranial hemorrhage (ICH) [230], the severity of 
which is impacted by APOE2 [39]. Although APOE influ-
ences IS risk [143], its effect on poststroke disability remains 
controversial.

Several studies have examined the relationship between 
APOE4 genotype and ISFO. A recent meta-analysis of rele-
vant publications from 1998 to 2012 reported no overall sta-
tistically significant association [193]. This analysis included 

measurements from a variety of timepoints (1-month, 
3-months, 1-year), quantified by various metrics (NIHSS, 
BI, RS, mRS, FIM, mortality). Another group reported 
negative findings regarding functional outcome, but found 
that males with the APOE4 allele endured higher 1-year 
mortality, poststroke [104].

Further negative findings outside of those encompassed 
in the meta-analysis include additional studies reporting no 
association between APOE4 and RS [185], or APOE4 and 
mRS [158, 289, 321]. Interestingly, APOE4 decreases age 
of ischemic stroke onset [158], and specific cognitive test-
ing has shown that APOE4 delays the recovery of verbal 
memory functioning 1-year poststroke [289]. In addition, ε4 
homozygosity leads to poststroke dementia [213]. Nonethe-
less, underwhelming evidence exists regarding the effects of 
APOE4 and ISFO.

APOE2 is less studied in the context of stroke outcome. 
Broderick et al. found that ε2 carriers treated with t-PA had 
better 3-month outcomes (mRS) [36]; however, a general 
effect on poststroke recovery has not been shown [321], only 
a sex-specific association whereby male carriers of the ε2 
allele experienced increased disability (3-month mRS) [158].

MTHFR

Homocysteine is a member of the sulfur-containing amino 
acid metabolic pathway. Methylene tetrahydrofolate reduc-
tase (MTHFR) regenerates  N5-methyl-tetrahydrofolate, 
so homocysteine can be used to replenish methionine, an 
essential amino acid (Fig. 3) [38]. Alterations to MTHFR 
efficiency can cause homocysteine buildup resulting in a 
multitude of pathologic effects including endothelial dys-
function, ROS generation, DNA repair suppression, and 
increased apoptosis [166]. Two well-studied variants, 
C667T and A1298C, reduce enzyme activity by 75% and 
39%, respectively in homozygous carriers [279]. Both muta-
tions increase ischemic stroke risk [4, 77] but have no known 
associations with poststroke recovery. He et al. examined 
rs868014, a SNP in the 3'-UTR, and reported increased 
miR-1203 binding leading to decreased MTHFR expression, 
heightened serum homocysteine, increased stroke incidence 
and severity, as well as worse functional outcomes (3-month 

Fig. 3  Depicts methionine regeneration and its dependence on meth-
ylene tetrahydrofolate reductase (MTHFR), a genetic variant of which 
leads to worse functional outcomes after stroke. THF is abbreviation 
of tetrahydrofolate
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ΔNIHSS). Interestingly, rs868014 was linked to A1298C 
[118].

COMT

Catechol-O-methyltransferase (COMT) metabolizes dopa-
mine and thus inhibits its activity in the synaptic cleft [291]. 
Dopamine, which massively increases during ischemic 
stroke onset, influences motor activity, memory, and cog-
nition among other functions. While dopamine-enhancing 
drugs almost universally improve sensorimotor function in a 
variety of animal stroke models, clinical trials have failed to 
reproduce the same success: dopamine augmentation failed 
to improve general disability tests such as BI in most tri-
als and showed mixed results when motor-specific scales 
were used as outcome variables [100]. COMT contains a 
key polymorphism, val158met (rs4680), that decreases enzy-
matic activity, increasing dopamine in the synaptic cleft by 
as much as 38% [291]. This variant significantly worsens 
BI and Rivermead Motor Assessment (RMA) at 1-month 
and 6-months poststroke as well as FIM and Fugl-Meyer 
Assessment (FMA) at 3-months and 6-months poststroke 
[144, 171]. These findings suggest a harmful role of excess 
dopamine in IS recovery that contradicts preclinical models.

NOX4

NADPH oxidase (NOX) enzymes generate ROS that propa-
gate redox dependent signaling pathways to execute numer-
ous physiologic functions [275]. ROS abundance is an 
essential component of stroke pathophysiology causing lipid 
peroxidation, DNA damage, and apoptosis [205]. NOX4 is 
induced under hypoxic conditions and is especially harmful 
during cerebral ischemia [48]. NOX4 variant rs11018628 
TC/CC is associated with decreased IS risk and improved 
functional recovery (ΔNIHSS at discharge) [119].

Hypothalamic‑pituitary‑thyroid axis

Tightly controlled by a precise feedback loop known as the 
hypothalamic-pituitary-thyroid (HPT) axis, thyroid hor-
mones affect metabolism, development, and growth, influ-
encing virtually every cell in the human body. The HPT 
axis is as follows: thyrotropin-releasing hormone (TSH) 
generated in the hypothalamus causes thyroid-stimulating 
hormone (TSH) secretion in the hypophysis, precipitating 
T3 and T4 synthesis in the thyroid gland at a 1:14 ratio. T4 
is converted to the more biologically active T3 by deiodi-
nase enzymes in extrathyroidal tissues [184]. Many studies 
investigating interplay between thyroid hormones and stroke 
outcome have been conducted. One meta-analysis revealed 
an overall association between poor mRS scores and low T3 
levels [133]. Decreased T3 has also been associated with 

increased 1-year mortality [7] and worse NIHSS scores 
(~ 2–4 weeks) [322]. Thus, T3 appears to be neuroprotec-
tive in acute cerebrovascular disease. Regarding other HPT 
hormones, high T4 is prognostic for long-term disability 
[133] and although individual studies report mixed find-
ings regarding the effects of TSH on ISFO, a meta-analysis 
found that initially elevated TSH levels improved 1-month 
and 3-month mRS scores [74].

DIO3

Given the impact thyroid hormones have on IS outcome, 
genetic variants affecting their transport and activity were 
postulated to influence poststroke disability. Deiodinase 3 
(DIO3) is an enzyme that inactivates T3 in neurons—a pro-
cess induced by hypoxic conditions [136]. One group found 
that DIO3 SNP rs945006 TT was associated with improved 
ISFO at 1-year follow up (mRS) [264]. The mechanisms by 
which rs945006 affects intraneural DIO3 activity are cur-
rently unknown.

OATP1C1

Organic anion transporting polypeptide 1C1 (OATP1C1) is 
a transmembrane protein specific for thyroid hormone trans-
port in the brain and animal models indicate that inflamma-
tion reduces OATP1C1 mRNA expression in cerebral blood 
vessels [21, 293]. One group reported a relationship between 
rs10770704 CC and increased disability 1-year poststroke 
(mRS) [264], despite multiple studies reporting no direct 
effect of the SNP on thyroid hormone levels [73, 227].

p53 regulatory pathway

TP53 and MDM2

Neuronal apoptosis is a determinate of penumbra progres-
sion and highly influenced by the p53 regulatory pathway. 
A variety of stress signals including hypoxia and DNA 
damage can trigger p53 activation leading to cellular death, 
while p53 attenuation is therapeutic in animal models of 
IS [124]. Genetic variants affecting p53 and its regulators 
and downstream targets have been implicated in poststroke 
recovery. The arg72pro (rs1042522) SNP of TP53, which 
encodes p53, alters its proapoptotic functionality. Arg72 
augments apoptosis, a seemingly hazardous modification 
for IS patients considering the arg/arg genotype worsens 
poststroke disability (3-month mRS) [99]. Murine double 
minute 2 (MDM2) is an E3 ubiquitin protein ligase and 
direct negative regulator of p53 (Fig. 4). The minor allele of 
MDM2 SNP309 (rs2279744) increases MDM2 expression, 
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downregulates p53, and improves 3- and 12-month mRS 
scores [226] at the cost of increased tumor formation [27].

TUG1

Taurine-upregulated gene 1 (TUG1) is a long non-coding 
RNA induced by p53 and upregulated in IS (Fig. 4). In vitro 
studies indicate that TUG1 knockdown reduces neuronal 
apoptosis in oxygen–glucose deprivation (OGD) models, 
while decreased TUG1 expression is associated with worse 
cancer outcome metrics [55, 317]. One group showed that 
the C allele of rs2240183, a SNP in the TUG1 promoter 
region, led to increased TUG1 expression and IS risk which 
is in align with the aforementioned preclinical evidence 
[287]. However, Liu et al. reported the CC genotype as 
protective with respect to 3-month mRS scores [179], thus 
further investigation is required to confirm the effects of 
rs2240183 on TUG1 activity and resultant changes in IS 
risk and outcome.

WRAP53 and XRCC1

Ischemia–reperfusion injuries after stroke generate ROS 
leading to DNA damage [167]. WD40-encoding p53-anti-
sense RNA (WRAP53) is a regulatory RNA that facilitates 
p53-mediated DNA repair and apoptosis (Fig. 4) [188]. 
Relating to stroke, it has been shown that WRAP53 is trans-
located to the nucleus upon hypoxic injury where it is essen-
tial for the assembly of DNA repair-related proteins and neu-
ronal survival. A coding variant of WRAP53 (rs2287499; 
arg68gly) increases the rate of nuclear translocation and thus 
enhances repair. Homozygous carriers of the less efficient 
arg68 allele have larger infarct volumes and worse func-
tional outcomes (3-month mRS) after IS [231]. X-ray repair 
cross-complementing protein 1 (XRCC1) is a scaffold pro-
tein for DNA repair enzymes integral to the DNA single 

strand break repair pathway [75], and in the context of base 
excision repair, is indirectly regulated by p53 (Fig. 4) [218]. 
In functional outcome studies, XRCC1 SNP rs25487 was 
shown to reduce IS susceptibility and improve short-term 
recovery (ΔNIHSS from admission to discharge) [117].

MMP2

Matrix metalloproteinases are proteolytic enzymes that cleave 
extracellular matrix proteins to aid in cell motility, tissue 
remodeling, and inflammatory responses [209]. In stroke, 
acute hypoxemia triggers MMP2 release from astrocytes and 
subsequent degradation of BBB integrity. If reperfusion is 
not accomplished, free radicals induce MMP9 production in 
microglia and pericytes further damaging the cerebrovascu-
lature [304]. Accordingly, MMP inhibition abrogates BBB 
insult [228] and reduces apoptosis [107] in preclinical mod-
els. In addition, MMP2 and MMP9 exhibit intranuclear activ-
ity and can degrade DNA repair proteins including XRCC1, 
worsening DNA damage after ischemic events (Fig. 4) [303]. 
Evidence suggests that p53 regulates both MMP2 and MMP9 
expression [23, 196]. Regarding ISFO, one study reported 
significant associations between nine MMP2 variants (Sup-
plemental Table 5) and 3-month mRS scores after leverag-
ing linkage disequilibrium parameters. These associations 
did not persist after Bonferroni correction [190]. Although 
no associations with MMP9 were discovered individually, 
gene–gene interactions between TP53 rs1042522, MDM2 
rs2279744, and MMP9 rs3918242 were significant for ND 
(10-day NIHSS increase ≥ 2) and increased poststroke dis-
ability (3-month mRS) [313].

Mitochondrial variation

Haplogroups and UCP2

Mitochondria enable oxidative phosphorylation and are 
intimately involved in apoptosis, both of which are key 
processes affecting cell survival under ischemic condi-
tions [247]. As a result, perturbations of the mitochondrial 
genome or nuclear genes encoding mitochondrial proteins 
impact poststroke recovery. Specifically, haplogroups N9 
[43] and R0 [66] are protective for ND (14-day and 1-month 
ΔNIHSS, respectively), but are otherwise unstudied in the 
context of stroke. The association with N9 was identified in 
an pure IS cohort [43], while Cramer et al. discovered the 
R0 association in a population composed of 77% ischemic 
stroke patients [66]. With respect to nuclear DNA, one group 
found a highly protective variant (-866G/A, rs659366) in 
the UCP2 gene which encodes uncoupling protein 2, local-
ized to the inner mitochondrial membrane. After recanali-
zation, patients with the AA genotype were twenty times 

Fig. 4  illustrates the various components of the p53 regulatory path-
way and relevant polymorphisms associated with ISFO. Red arrows 
indicate negative regulation and the dotted arrow from p53 to XRCC1 
denotes the indirect relationship between the two. ✢: as noted above, 
numerous MMP2 SNPs were found but did not endure Bonferroni 
correction
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more likely to be functionally independent (3-month mRS). 
Preclinical studies suggest the uncoupling action of UCP2 
reduces ROS generation and the A allele of -866G/A 
increases UCP2 expression [32, 76, 86].

mtDNA-CN

Mitochondrial DNA copy number (mtDNA-CN) is a proxy for 
mitochondrial function and has been linked to cardiovascular 
disease, neurodegeneration, and aging [183]. Low mtDNA-
CN is associated with increased stroke incidence, severity, 
disability (1- and 3-month mRS), and mortality [16, 59, 253]. 
While the exact mechanism underlying these associations 
remains unclear, a role for mtDNA-CN in BBB preservation 
and inflammatory modulation has been postulated [59].

Genome‑wide association studies

PATJ

As the name suggests, PALS1-associated tight junction pro-
tein (PATJ) is a macromolecule involved in tight junction 
formation and epithelial cell polarity [241]. PATJ is also 
implicated in the PI3K-Akt signaling pathway [20]. Previ-
ously unrelated to stroke, a recent meta-analysis of genome-
wide association studies (GWAS) found 18 low-frequency 
intronic SNPs in the PATJ locus to be significantly associ-
ated with 3-month mRS scores. An additive model suggested 
that every G allele of the lead variant, rs76221407, led to a 
0.4-point increase in mRS score [197]. It has been hypoth-
esized that the mechanisms through which PATJ perturba-
tions affect poststroke disability are related to altered angio-
genesis, axonal regeneration, and BBB continuity [284].

LOC105372028

OC105372028 is an understudied gene of unknown biological 
significance. Söderholm et al., conducted a meta-analysis of 
GWAS data and established a connection between rs1842681, 
a variant at the locus, and ISFO (3-month mRS) albeit with a 
small effect size (OR = 1.12–1.40) [252]. The authors specu-
late that LOC105372028 affects brain plasticity through regu-
latory actions on PPP1R21 which in turn modulate protein 
phosphatase 1 (PP1) levels. PP1 is involved in many nervous 
system behaviors including learning and memory [199].

PTCH1

Söderholm et al. also reported suggestive findings regarding 
PTCH1 SNP, rs2236406 [252]. Although statistical signifi-
cance wasn’t achieved, another group employed a candidate 

gene approach in a Chinese population to confirm its asso-
ciation with 3-month mRS [332]. PTCH1 is a cell surface 
receptor that initiates Sonic hedgehog (Shh) signaling which 
is canonically related to cellular differentiation and organo-
genesis, but also implicated in poststroke neurogenesis and 
recovery [320].

Structural variation

Genome wide approaches have also highlighted the impact 
of genetic imbalance on stroke outcome. Copy number 
variations (CNV) are large scale genomic alterations that 
can occur as benign polymorphisms or drive pathology in 
human disease [318]. CNV has been extensively studied 
in the context of vascular disease and is associated with 
increased stroke risk as well as certain stroke subtypes [106]. 
CNV of dose-sensitive genes independently contributed to 
unfavorable outcomes in IS patients (3-month mRS) [215]. 
Future studies aim to further elucidate the impact of CNV 
on stroke risk and outcome [62]. Mosaic loss of chromo-
some Y (mLOY) is an insidious progression of aneuploidy 
in somatic cells. Traditionally considered a marker of aging, 
mLOY has recently been linked to various pathologies 
including cancer, Alzheimer’s disease, and cardiovascular 
disease [109]. Recently, an mLOY polygenic risk score was 
associated with worse ISFO (3-month mRS) [137] (Fig. 5).

Conclusions

Diverse biological processes are involved in poststroke 
recovery. Genetic alterations in pertinent systems can influ-
ence functional outcome as described by metrics such as 
mRS. Significant polymorphisms have been identified 
in genes related to the eicosanoid inflammatory pathway 
including those encoding cytochromes, cyclooxygenase, 
epoxide hydrolase, prostacyclin synthase, and thrombox-
ane-A synthase. Altered proteins related to innate immunity 
including toll-like receptors, interleukins, C-reactive protein, 
and myeloperoxidase also affect IS outcome. Noncoding 
RNA variants regulating cytokine signaling are relevant as 
well. Proteins involved in primary hemostasis like GPIIIa 
and P2Y1 are vulnerable to genetic mutations affecting this 
phenotype, as are atherosclerosis-related proteins such as 
angiotensin converting enzyme. Significant variants have 
been found at the APOE, BDNF, and IGF1 loci, indicating 
that appropriate lipid metabolism and normal growth factor 
behavior are both crucial for poststroke recovery. Members 
of the HPT axis including dioxygenases and organic anion 
transporters have also been implicated. Several elements 
of the p53 pathway affect poststroke disability as well as 
various mitochondrial perturbations; markers of structural 
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imbalance such as CNV and mLOY are among the most 
recently discovered effectors of stroke outcome.

Although these systems seem disconnected, links 
between different pathways may exist (Fig. 6). For example, 
IL-6 stimulates CRP secretion [121]. Thus, stroke recov-
ery in patients with only the relevant IL-6 polymorphism 
(rs1800795) may have additional risk insofar as differen-
tial IL-6 levels could functionally mimic CRP rs1130864 
which increases CRP levels in Han Chinese populations and 
leads to worse outcomes. In addition, there is evidence of 
IL-6-dependent secretion of prostaglandin E2 (PGE2)—a 
member of the cyclooxygenase pathway—in inflammatory 
states [28]. IL-6 also activates the hypothalamic–pitui-
tary–adrenal axis which interacts with the HPT axis, so 
similar connections may exist between those systems as 
well [60, 211]. Further complexity can be postulated given 
that other inputs, such as P2Y1 receptor signaling [92] or 
decreased COMT activity [114], induce IL-6 release. As 
a result, changes in primary hemostasis or catecholamine 
metabolism may alter cytokine activity and thus function as 
a proxy for genetic variants in multiple systems [115]. TLR4 
activates NF-κB signaling which stimulates the release of 

multiple inflammatory cytokines including IL-6 which may 
explains its large effect size on ISFO [177]; HDAC9 and 
TSH activate NF-κB signaling as well [10, 15]. BDNF also 
exemplifies the interconnectedness of these systems. Sig-
nificant interactions between BDNF val66met and COMT 
val158met were reported in a study examining cortical plas-
ticity [292]. Mechanistically, this can be explained by the 

Fig. 5  Maps genetic variants associated with 90-day mRS to a chro-
mosomal ideogram. If the locus is bold, then the threshold for favora-
ble outcome is mRS < 2, otherwise, the cutoff is mRS < 3. Red text 
indicates risk variants, while green text signifies protective variants. 
The font size of loci names is unchanging; however, the font size 
of a particular variant at that locus scales with absolute odds ratio. 

Absolute odds ratio permits protective and risk variants to be scaled 
together. For example, UCP2 rs659366 lessens likelihood of poor 
functional outcome with an odds ratio of 0.05, or absolute odds ratio 
of 20, therefore, it is given the largest font size and is colored green to 
indicate a large protective effect

Fig. 6  Demonstrates potential interconnections between some of the 
biological systems implicated in ISFO. Arrows from one component 
to another are color-coded: black represent induction, grey indicates 
NF-κB signaling, and red denotes negative regulation. ✢: decreased 
COMT, specifically, induces IL-6 release
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fact that COMT val158met increases dopamine levels in the 
synaptic cleft [291] and that dopamine receptor activation 
increases BDNF expression [290]. There is also evidence 
that BDNF is induced by T3, suggesting a connection with 
the HPT axis [261].

Studies investigating the genetics of ISFO have mostly uti-
lized a candidate gene approach for which preselected variants 
are examined for associations with various outcome metrics. 
The limitations of this methodology include selection bias, 
high false positive rate, and low genetic coverage [63, 80]. 
Considering most studies related to this topic have employed 
a candidate gene approach, reported findings should be inter-
preted with appropriate caution. In 2017, the Genetics of 
Ischaemic Stroke Functional Outcome (GISCOME) network 
was established to pool genotypic and phenotypic data from 
multiple institutions to foster large-scale, genome-wide asso-
ciation studies [187]. Söderholm et al. was the first GWAS 
examining functional outcome using the GISCOME dataset 
and found a single significant intronic variant (rs1842681) 
which is not obviously related to polymorphisms previously 
identified by candidate gene studies. Mola-Caminal et al. also 
found a novel locus, PATJ [197], and aside from PATJ and 
IGF1 both contributing to the PI3K-Akt signaling pathway, 
there is no clear connection to prior genetic variants of inter-
est. As shown here, no loci identified through candidate gene 
studies have been recapitulated by the recent GWAS which 
may indicate marginal significance of canonical variants, high-
light the heterogeneity of population-specific associations, or 
reflect the shortcomings of a candidate gene approach. Cross 
validation experiments as seen in Zhu et al. [332] where sug-
gestive GWAS findings were confirmed using a candidate gene 
approach are necessary to reinforce suspected variants.

Overall, our search identified 74 genetic variants span-
ning 48 features are associated with ISFO. Most variants led 
to worse functional outcome, while nearly twenty variants 
appear to have protective effects (Supplemental Table 1, 2, 
3, 4, 5, 6, 7). Within a single locus, some SNPs may worsen 
outcome, while others improve it. No pattern is observable, 
it simply depends on what mechanisms are altered. Among 
studies that used mRS as an outcome metric, SNPs of UCP 
(OR = 0.05), IL-6 (OR = 0.1), and TUG1 (OR = 0.499) 
were the most protective, while variants at the TLR4 
(OR = 14.16), CRP (OR = 4.70), and TP53 (OR = 3.89) loci 
increase risk the most (Fig. 5).

While the literature regarding ISFO has significantly 
expanded in recent years, further investigation is required 
to verify the genetic variants discovered thus far and eluci-
date connections between different biological systems. For 
precision medicine to become practical in poststroke care, 
polymorphisms associated with functional outcome must 
be inventoried and described in a granular fashion. Aggre-
gating and summarizing the variants of interests will allow 
investigators to take the next steps: comparative analysis to 

determine the weighted influence of each polymorphism, 
genotype-guided treatment trials, and machine learning for 
outcome prediction.

Review criteria

A generalized search was conducted in PubMed with 
the following terms: (stroke OR ischemic stroke) AND 
(genotype OR genetic variant OR polymorphism) AND 
(functional outcome). Publications that examined associa-
tions between genetic polymorphisms and ischemic stroke 
functional outcome metrics (see below) were aggregated. 
Pediatric studies were excluded. Each gene of interest was 
further investigated in PubMed using the formula, ([gene 
of interest]) AND (ischemic stroke).

Outcome metrics

Several metrics exist to quantify and evaluate neurologi-
cal functioning poststroke. Neurologic deterioration (ND) 
describes clinical worsening based on changes in impair-
ment scores denoted by the Glasgow Coma Scale (GCS) or 
the NIH Stroke Scale (NIHSS) [212, 243]. Recovery status 
is commonly examined using the modified Rankin Scale 
(mRS) and the Barthel Index (BI). mRS output is a discrete 
value ranging from 0 to 6, assessing a patient’s ability to 
perform basic tasks such as ambulation, with zero meaning 
no disability and six indicating death. The original Rankin 
Scale (RS) was only from 1 to 5. The asymptomatic and 
death categories were added later. [37] BI tests a patient’s 
ability to complete various functional tasks and is scored 
on a scale from 0 to 100; higher scores imply independ-
ence [221]. A modified Barthel Index (mBI) was developed 
to enhance specificity by increasing the number of scoring 
categories [239] Functional Independence Measure (FIM) 
is another method of examining functional status. It con-
tains 5 cognitive and 13 motor sections. Each item scored 
is from 1–7 and low scores indicate increased dependence 
[173] The Rivermead Motor Assessment (RMA) specifically 
tests motor function [6] and the Fugl-Meyer Assessment is a 
quantitative index to assess motor function and some sensa-
tion qualities [91].
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