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Abstract
Background Primary lateral sclerosis (PLS) is traditionally solely associated with progressive upper motor neuron dysfunc-
tion manifesting in limb spasticity, gait impairment, bulbar symptoms and pseudobulbar affect. Recent studies have described 
frontotemporal dysfunction in some patients resulting in cognitive manifestations. Cerebellar pathology is much less well 
characterised despite sporadic reports of cerebellar disease.
Methods A multi-timepoint, longitudinal neuroimaging study was conducted to characterise the evolution of both intra-
cerebellar disease burden and cerebro-cerebellar connectivity. The volumes of deep cerebellar nuclei, cerebellar cortical 
volumes, cerebro-cerebellar structural and functional connectivity were assessed longitudinally in a cohort of 43 individuals 
with PLS.
Results Cerebello-frontal, -temporal, -parietal, -occipital and cerebello-thalamic structural disconnection was detected at 
baseline based on radial diffusivity (RD) and cerebello-frontal decoupling was also evident based on fractional anisotropy 
(FA) alterations. Functional connectivity changes were also detected in cerebello-frontal, parietal and occipital projections. 
Volume reductions were identified in the vermis, anterior lobe, posterior lobe, and crura. Among the deep cerebellar nuclei, 
the dorsal dentate was atrophic. Longitudinal follow-up did not capture statistically significant progressive changes. Signifi-
cant primary motor cortex atrophy and inter-hemispheric transcallosal degeneration were also captured.
Conclusions PLS is not only associated with upper motor neuron dysfunction, but cerebellar cortical volume loss and deep 
cerebellar nuclear atrophy can also be readily detected. In addition to intra-cerebellar disease burden, cerebro-cerebellar con-
nectivity alterations also take place. Our data add to the evolving evidence of widespread neurodegeneration in PLS beyond 
the primary motor regions. Cerebellar dysfunction in PLS is likely to exacerbate bulbar, gait and dexterity impairment and 
contribute to pseudobulbar affect.
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PUMNS  Penn Upper Motor Neuron Score
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TE  Echo time
TI  Inversion time
TIV  Total intracranial volume
Tukey HSD  Tukey’s Honest Significant Difference
TR  Repetition time
UMN  Upper motor neuron
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Introduction

PLS has traditionally been exclusively associated with 
primary motor cortex, corpus callosum and descending 
corticospinal tract degeneration [1–4], but there is a 
scarcity of longitudinal studies in PLS. [5–7]. There is 
however growing evidence of frontotemporal disease 
burden and supporting clinical evidence of frontotemporal 
dysfunction [8–12]. More recently, considerable 
subcortical disease burden has also been described, 
and putative extrapyramidal and cognitive correlates 
proposed [13–15]. There is a particularly high incidence 
of pseudobulbar affect in PLS, which is classically 
linked to cortico-bulbar disconnection [16, 17], but the 
contribution of impaired cerebellar gating is increasingly 
recognised as an important aetiological factor [18–23]. 
As PLS carries a considerably better prognosis than 
ALS [24], it is often inaccurately regarded as a relatively 
benign condition. However, recent research has helped 
to reconceptualise PLS from a pure UMN condition with 
a relatively benign course, to a relentlessly progressive 
neurodegenerative condition [25] with considerable 
extra-motor, frontotemporal, subcortical and cerebellar 
involvement. Despite landmark histopathology papers 
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[26], the post-mortem literature on PLS is relatively 
scarce, therefore quantitative imaging approaches are 
the most reliable techniques to characterise and track 
progressive disease burden trajectories. Both PET and 
MRI studies have contributed considerable insights, 
but the majority of imaging studies are cross-sectional. 
Previous diagnostic criteria required a minimum symptom 
duration of 4 years, which led to the inclusion of patients 
with considerable disease durations into research 
studies. The new consensus diagnostic criteria [27] and 
the introduction of the category “probable” PLS have 
enabled earlier recruitment and enrolment into academic 
research studies [28]. The characterisation of cerebellar 
pathology is a relatively novel frontier of PLS research, 
particularly in view of conflicting histopathology reports 
and the difficulty to appreciate clinical correlates of 
cerebellar disease. Cerebellar manifestations are likely to 
be masked by the predominant upper motor neuron signs 
and admittedly formal cerebellar assessments are not 
commonly performed in PLS. Some post-mortem reports 
described the cerebellum as ‘unremarkable’ [29] despite 
radiological reports of cerebellar involvement [9, 30, 31]. 
Global cerebellar volume loss is sometimes reported, 
but the predilection for specific cerebellar lobules is 
less well evaluated [32]. Recent quantitative imaging 
studies confirmed functional [33, 34] and structural 
cerebro-cerebellar connectivity changes [33, 34] and 
spinocerebellar tract degeneration have also been recently 
reported. [35] Considerable brainstem atrophy has also 
been shown in PLS, based on high-resolution structural 
data, which may be exacerbated by the degeneration of 
cerebellar projections. [36, 37] Notwithstanding the 
radiological evidence, overt cerebellar ataxia is not 
commonly noted clinically observed in PLS. [34, 35, 38]. 
Cerebellar pathology in ALS is better characterised [39], 
in no small part due to the interest in ATXN1 and ATXN2 
repeat expansions, and genotype-associated cerebellar 
signatures have been proposed [40]. Evidence from other 
neurodegenerative conditions suggests that cerebellar 
pathology is likely to contribute to bulbar, eye-movement, 
gait, dexterity, cognitive, behavioural, pseudobulbar 
and respiratory manifestations in PLS also [38, 41–48]. 
Analogous to ALS [49–51], language deficits, behavioural 
impairment, deficits in social cognition and executive 
dysfunction have also been reported in PLS [8–12]. In 
view of recent imaging and clinical reports, our objective 
was the systematic characterisation of both intra-cerebellar 
and cerebro-cerebellar connectivity alterations in a 
large cohort of individuals with PLS and track integrity 
measures longitudinally over four timepoints.

Methods

Ethics approval

This project was approved by the Ethics Committee of 
Beaumont Hospital Dublin (REC reference: 08/90) and each 
participant gave informed consent prior to study enrolment.

Demographic, clinical and genetic profiling

A total of 156 participants, 43 PLS patients and 113 healthy 
controls (HC) were included in this study. Up to four MRI 
scans were acquired with a follow-up interval of four 
months. Demographic variables were carefully recorded; 
age, sex, symptom duration, handedness, education, and 
family history of neurodegenerative conditions (Table 1). 
Forty out of 43 patients had their total ALSFRS-r, ALSFRS 
sub-scores, symptom duration, Penn Upper Motor Neuron 
Score (PUMNS), modified Ashworth spasticity scale 
scores, Edinburgh Cognitive and Behavioural ALS Screen 
(ECAS), the Frontal Systems Behavior Scale (FrSBe), 
the Hospital Anxiety and Depression Scale (HADS), the 
Emotional Lability Questionnaire (ELQ) and the Center 
for Neurological Study-Lability Scale (CNS-LS) scores 
also recorded. A standardised cerebellar assessment was 
also performed on 31 patients by the same neurologist. 
Individuals with PLS were diagnosed based on the 
new consensus criteria [27]. Exclusion criteria for each 
participant included prior stroke, brain or neurovascular 
surgery, traumatic brain injury, and comorbid neurological 
or psychiatric diagnoses. Thirty-one of the 43 PLS patients 
underwent whole genome sequencing as described 
previously [52] and were screened for ALS [53] and 
HSP-associated [54] genetic variants. Thirty-three PLS 
were screened for C9orf72 GGG GCC  repeat expansions 
using repeat-primed polymerase chain reaction (PCR). 
GeneMapper version 4.0 was used to visualise capillary 
electrophoresis outcomes more than 30 repeats were 
considered C9orf72-positive.

Neuroimaging

A standardised neuroimaging protocol was implemented 
on a 3 Tesla Philips Achieva MR scanner. The protocol 
included T1-weighted (T1w), fluid-attenuated inversion 
recovery (FLAIR), diffusion-MRI (dMRI), resting state 
functional MRI (rs-fMRI) sequences. A 3D Inversion Recov-
ery prepared Spoiled Gradient Recalled echo (IR-SPGR) 
sequence was implemented to acquire T1w images with: TR 
/ TE = 8.5/3.9 ms, TI = 1060 ms, FOV of 256 × 256 × 160 
mm, 160 sagittal slices with no interslice gap, flip angle 
(FA) = 8°, VR = 1  mm3, SENSE factor = 1.5. An Inversion 
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Recovery Turbo Spin Echo (IR-TSE) sequence was utilised 
to acquire FLAIR images axially with a repetition time (TR) 
/ echo time (TE) = 11,000/125 ms, inversion time (TI) = 2800 
ms, field of view (FOV) = 230 × 183 × 150 mm, voxel reso-
lution (VR) = 0.65 × 0.87 × 4 mm. A spin-echo echo planar 
imaging (SE-EPI) pulse-sequence was used to record dMRI 
data with a 32-direction Stejskal-Tanner diffusion encoding 
scheme: TR/TE = 7639/59 ms, FOV = 245 × 245 × 150 mm, 
60 axial slices with no interslice gaps, FA = 90°, VR = 2.5 
 mm3, SENSE factor = 2.5, dynamic stabilisation and spectral 
presaturation with inversion recovery (SPIR) fat suppression. 
An echo-planar imaging (EPI) sequence was used to acquire 
220 volumes of rs-fMRI data to assess blood oxygen level-
dependent (BOLD) signal at rest with TR/TE = 2000/35 ms, 
FOV = 233 × 233 × 120 mm, 30 axial slices with no inter-
slice gap, FA = 90°, VR = 2.875 mm × 2.875 mm × 4 mmm, 
SENSE factor = 2.5. Participants were instructed to close 
their eyes during the rs-fMRI data acquisition.

Structural analyses

The Computational Anatomy Toolbox (CAT12) [55] was 
implemented to assess cerebellar grey matter (GM) altera-
tions. Pre-processing steps included denoising, affine reg-
istration, partial volume segmentation, skull-stripping and 
spatial normalization. Cerebellar cortical regions-of-interest 
(ROIs) were defined using the SUIT cerebellar segmenta-
tion pipeline [56]: (1) anterior lobe (SUIT labels I-V), (2) 
posterior lobe (SUIT labels VI-IX), (3) flocculonodular 

lobe (SUIT) label X, (4) crura (SUIT labels “Crura I” and 
“Crura II”), and (5) vermis (SUIT labels “Vermis”). The 
Julich-Brain Cytoarchitectonic Atlas was used to define the 
cerebellar nuclei [57]: (1) dorsal dentate, (2), ventral dentate, 
(3) interposed, and (4) fastigial. The primary motor cortex 
(M1) was defined based on the labels “Brodmann 4a” labels 
from the Anatomy3 atlas [58]. GM volume of these ROIs 
were estimated separately in the two hemispheres using 
CAT12 and added to generate a single volume output for 
each ROI. MRtrix3 was utilised for dMRI data pre-process-
ing [59], which included denoising, Gibb’s Ringing artifact 
removal, motion-, eddy current- and bias field-corrections. 
Subsequent to dMRI data preprocessing, the constrained 
spherical deconvolution (CSD) approach was implemented 
[60] to estimate fibre orientation distribution (fODF) in 
each voxel before normalisation [61]. Tractography of the 
following tracts was performed: (1) cerebello-frontal, (2) 
cerebello-parietal, (3) cerebello-temporal, (4), cerebello-
occipital, (5) cerebello-thalamic and (6) spinocerebellar i.e. 
inferior brainstem-cerebellum. Relevant masks were defined 
using SUIT, Automated Anatomical Labeling (AAL) atlas 
and Hammers atlas labels [62]. The corticospinal tract was 
mapped from the primary motor cortex to the brainstem in 
each hemisphere separately and transcallosal fibres were 
mapped between the right to left motor cortex. Probabilistic 
tractography [63] was performed with 5000 streamlines and 
the Track Density Imaging (TDI) approach was implemented 
[64] (Fig. 1). Two white matter integrity metrics, fractional 

Table 1  Demographic details of the study population

# Follow-up scans were acquired with an inter-scan interval of four months
dMRI diffusion-weighted imaging, F female, rs-fMRI resting-state functional MRI, HC healthy control, L left-handed, M male, MRI magnetic 
resonance imaging, n.a. not applicable / not available, PLS primary lateral sclerosis, R right-handed, SD standard deviation, y years
+ Welch two-sample t-tests [t] were performed to test differences of age and years of education between all PLS vs. HC
++ Chi-square tests [X2] were performed to test differences of sex and handedness frequencies between all PLS patients vs. HC
* significant at an alpha-level of p ≤ 0.05

PLS HC PLS vs HC t-test +/
Chi-square  test++

Number of subjects at baseline (T1/dMRI/rs-fMRI) 43 (43/41/39) 113 (113/113/111) n.a
Number of subjects at Time-point 2 (T1/ dMRI/rs-fMRI) 8 (30/29/27) 18 (18/18/18) n.a
Number of subjects at Time-point 3 (T1/ dMRI/rs-fMRI) 7 (25/25/23) 13 (13/13/13) n.a
Number of subjects at Time-point 4 (T1/ dMRI/rs-fMRI) 3 (20/19/15) 8 (8/8/8) n.a
Age [y, mean ± SD] 55.50 ± 9.05 59.36 ± 10.66 t(80.33) = 1.33,

p = .188
Years of education [y, mean ± SD] 12.18 ± 3.25 14.77 ± 3.46 t(71.04) =  – 4.05,

p = .001*

Sex, F/M 16/27 57/56 X2(1, N = 156) = 1.69,
p = .193

Handedness, R/L 39/4 106/7 X2(1, N = 156) = 0.11,
p = .736

Years of symptom duration [y, mean ± SD] 109.75 ± 70.46 n.a n.a
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anisotropy (FA) and radial diffusivity (RD) were evaluated 
for each tract.

Functional analyses

BOLD signal correlations were explored between the 
above ROIs, along the CST and CC. The FEAT pipeline 
of the FMRIB Software Library (FSL) [65] was used to 
pre-process fMRI data including brain extraction, intensity 
normalisation, and slice-time corrections. FSL’s ICA-based 
Automatic Removal Of Motion Artifacts (ICA-AROMA) 
[66] was utilised to correct for head-motion artifacts. Data 
were registered to MNI152 2mm standard space. As above, 
(1) cerebello-frontal, (2) cerebello-parietal, (3) cerebello-
temporal, (4), cerebello-occipital, (5) cerebello-thalamic and 
(6) cerebello-spinal functional connectivity were appraised. 
Fisher z-transformed Pearson correlations were run between 
the mean BOLD time courses of the above pairs of ROIs in 
Matlab R2022b (The Mathworks, Natick, USA) using the 
CoSMoMVPA [67] toolbox.

Statistical modelling

Statistical analyses were performed with RStudio (version 
2022.12.0 + 353; R version 4.2.2).

Differences in means of age and education between 
PLS patients and HC were investigated using Welch two-
sample t-tests, whereas differences in sex and handedness 
frequencies were compared using Chi-square testing. 
To test for cross-sectional differences in neuroimaging 
metrics between PLS patients and HC, we implemented 
a one-way analysis of variance (ANOVA), correcting for 
the confounding effects of age, sex, handedness, and years 
of education. In our volumetric analyses, we additionally 
corrected for total cerebellar volume for cerebellar GM 
analyses and total intracranial volume (TIV) for cortical 
GM analyses. We evaluated the main effect of the Group 
(i.e., PLS/HC). To test for longitudinal differences in 
neuroimaging metric alterations over between PLS patients 
and HC, a linear mixed effects model was implemented 
using R’s nmle package [32], where Time (i.e. session) 
was modelled as a random effect and the subjects as 
fixed effects. We corrected for the confounding effects of 
age, sex, handedness, and years of education. Volumetric 
analyses were also corrected for total cerebellar volumes 
(TCV) or total intracranial volumes (TIV) as appropriate, 
for cerebellar GM and cortical GM analyses respectively. 
We have evaluated the interaction effect “Time x Group” 
i.e., assessing if longitudinal progression was different in 
PLS compared to controls. Finally, we sought to compare 
whether disease burden was different in “cerebellar 
networks” compared to “primary motor networks”. First, 
we extracted the coefficients for the main effect “Group” 

Fig. 1  Illustrative tractography outputs from a healthy control. Right-
hemispheric and unilateral tracts are depicted in red, left-hemispheric 
tracts in blue
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(i.e., PLS vs. HC) from the ANOVA from all analysed ROIs 
and neuroimaging metrics (i.e., RD, FA, FC and volumetry), 
as described above. We then assigned, per neuroimaging 
metric, each ROI to the group “cerebellar network” or 
“primary motor network”. For example, for RD and FA, we 
compared the coefficients of the 11 assessed cerebellar tracts 
(i.e., bilateral cerebello-frontal/-parietal/-temporal/-occipital 
lobes/-thalamus and unified spinocerebellar) against the 
coefficients of three motor tracts (i.e., bilateral CST and 
transcallosal M1). To test for differential involvement of the 
two networks (supra- versus infratentorial), we used pairwise 
t-testing to test for means in the coefficients, regarding 
p-values < 0.05 as evidence of significant differences. Notice 
that for the volumetric analyses, t-testing was not possible 
since we only assessed volumetry for one ROI of the motor 
system (M1). Therefore, we provide instead descriptive 
statistics for the volumetric comparison. T-testing was 
performed within Matlab.

Data availability

Due to departmental policies, clinical, genetic or 
neuroimaging data from individual patients cannot be made 
available, but additional information can be requested from 
the corresponding author with regard to statistics and data 
processing pipelines.

Results

Subjects

In total, data from 43 PLS patients and 113 HC were 
assessed. For most subjects, longitudinal data with up to 
three follow-up sessions were available. Multimodal MRI 
data included T1w, dMRI and rs-fMRI data, whereby not 
for all subjects/sessions, all sequences were available. We 
provide further details on available/missing data in Table 1. 
Demographic data were compared between PLS patients 
and HC: Welch two-sample t-testing indicated appropriate 
matching for age (t(80.33) = 1.33, p = 0.188), however, 
PLS patients had significantly fewer years of education 
t(71.04) =  – 4.05, p = 0.001). Chi-square tests revealed 
no differences in sex distributions between the groups 
(X2(1, N = 156) = 1.69, p = 0.193), and in distributions of 
handedness (X2(1, N = 156) = 0.11, p = 0.736). Patients 
with PLS tested negative for GGG GCC  hexanucleotide 
expansions in C9orf72 and the panel of HSP and ALS-
associated genetic variants.

Cross‑sectional findings at baseline

The PLS group exhibits infratentorial-supratentorial dis-
connection as compared to HC between the cerebellum and 
almost all lobes as well as the thalamus. This was found 
for both hemispheres and more evident for RD than FA. In 
Fig. 2, we present some illustrative RD findings between the 
cerebellum and frontal lobe (Fig. 2A), parietal lobe (Fig. 2B) 
and thalamus (Fig. 2C) tracts. With regards to the primary 
motor system, the CST (Fig. 2D–E) and trans-callosal tracts 
were also significantly affected (Fig. 2F) based on increased 
RD and decreased FA. Comprehensive descriptive statis-
tics are provided in Table 2. and Fig. 3 highlights the key 
findings. The PLS groups display marked infratentorial/
supratentorial disconnection, particularly between the cer-
ebellum and parietal lobe (Fig. 3A) and the cerebellum 
and occipital lobes (Fig. 3B) in both hemispheres. Inter-
estingly, the PLS group exhibits increased FC compared to 
HC between the cerebellum and LH frontal lobe (Fig. 3C). 
Unexpectedly, no FC differences were identified (Fig. 3D–F) 
in the primary motor system i.e. along the CST and CC. 
Further statistical details are provided in Table 2. Volume 
reductions were detected in PLS throughout the cerebellar 
cortex, including anterior (Fig. 4A) and posterior lobes, the 
vermis (Fig. 4B) and crura, but not in the flocculonodular 
lobe. We did not detect volumetric differences in the cer-
ebellar nuclei, except for a tendency towards atrophy in the 
interposed nucleus (Fig. 4C). The motor cortex was signifi-
cantly atrophic in PLS (Fig. 4D). Full statistics are provided 
in Table 2.

Longitudinal analyses

With regards to longitudinal structural connectivity, we 
found no evidence for divergent longitudinal progression 
between PLS and HC in any of the cerebellar (e.g., Fig. 5A 
for RD Cerebellum-to-parietal lobe, RH) or primary motor 
tracts (e.g., Fig. 5D for RD CST, RH). The results were simi-
lar for RD and FA. To assess differences in the evolution of 
FC, a linear mixed effects model was implemented to assess 
the interaction effect “Time x Group”, correcting for age, 
sex, handedness, and years of education. We found no evi-
dence of accelerated FC disconnection in PLS compared to 
HC in any of the analyzed networks in cerebellar or primary 
motor circuits (Fig. 5E for FC of CST, RH). However, we 
detected a marked increase in FC in PLS over time between 
the cerebellum and RH parietal lobe (Fig. 5B). Differences 
in longitudinal volumetric trajectories between PLS and 
HC were also evaluated, but no significant differences were 
detected, neither for the cerebellar cortex (except for a ten-
dency of accelerated atrophy of the flocculonodular lobe, 
Fig. 5C), cerebellar nuclei (not shown) or the motor cortex 
(e.g., Fig. 5F).
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Divergent disease burden in the primary motor 
system and cerebellar networks

To test for disease burden differences between cerebellar 
and primary motor region, pairwise t-testing was used, 
comparing means of the coefficient of the main effect 
“Group” from all ROIs in each system. This analysis was 
repeated for each neuroimaging metric (Fig. 6). Base-
line disease burden was more pronounced in the motor 
system as compared to the cerebellar system for SC, 
as evident by higher RD coefficients (Fig. 6A, t(12) =  
– 5.78, p < 0.001) and lower FA coefficients (Fig. 6B, 
t(12) = 5.16, p < 0.001), but not for FC (Fig. 6C, t(12) =  
– 1.05, p = 0.312). For the volumetric analysis (Fig. 6D), 
t-testing was not possible since only one value was avail-
able for the motor system. The mean/standard deviation 
of the volumetric coefficients of the assessed cerebellar 
ROIs was -0.258 ± 0.359, the coefficient for M1 volume-
try was – 0.348.

Discussion

Our data confirms considerable intra-cerebellar disease 
burden in PLS. We detected cerebello-frontal, temporal, 
parietal, occipital and cerebello-thalamic structural 
disconnection at baseline as well as impaired cerebello-
frontal, -parietal and -occipital functional connectivity. 
Volume reductions were identified in the vermis, anterior 
lobe, posterior lobe, and crura. Among the deep cerebellar 
nuclei, the dorsal dentate was atrophic. Interestingly 
longitudinal follow-up did not capture statistically 
significant progressive changes. Consistent with classical 
imaging signatures, significant primary motor cortex 
atrophy and inter-hemispheric transcallosal degeneration 
was also captured based on diffusivity metrics but not 
based on functional analyses.

Fig. 2  Structural connectiv-
ity (SC) profiles at baseline in 
cerebellar (A–C) and primary 
motor networks (D–F) *indi-
cates p-values ≤ .05, **indicates 
p-values ≤ .001, CRB Cerebellar
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Table 2  Cross-sectional and longitudinal statistical comparisons of neuroimaging metrics between PLS and healthy controls

Cross-sectional Longitudinal
(Interaction Time x Group)

Left hemisphere Right hemisphere Left hemisphere Right hemisphere

F-value (DOF) p-value F-value (DOF) p-value t-value (DOF),
p-value

t-value (DOF),
p-value

Connectivity: Crb-Frontal
 SC: RD F(1,146) = 50.16  < 0.001** F(1,146) = 56.89  < 0.001** t(110) = 0.63,

p = 0.530
t(110) = 1.30,
p = 0.197

 SC: FA F(1,146) = 7.80 0.006* F(1,146) = 4.25 00.041* t(110) =  – 0.92,
p = 0.358

t(110) =  – 1.93,
p = .056

 FC F(1,142) = 6.80 0.010* F(1,142) = .782 0.378 t(101) =  – 1.16,
p = 0.249

t(101) =  – 0.01,
p = 0.991

Connectivity: Crb-Parietal
 SC: RD F(1,146) = 37.25  < 0.001** F(1,146) = 36.28  < 0.001** t(110) = 0.70,

p = 0.485
t(110) =  – 0.01,
p = 0.988

 SC: FA F(1,146) = 2.22 0.138 F(1,146) = 1.47 0.228 t(110) =  – 1.61,
p = 0.111

t(110) =  – 0.43,
p = 0.666

 FC F(1,142) = 7.23 0.008* F(1,142) = 17.41  < 0.001** t(101) = 1.50,
p = 0.138

t(101) = 2.25,
p = 0.027*

Connectivity: Crb-Temporal
 SC: RD F(1,146) = 10.44 0.001** F(1,146) = 25.68  < 0.001** t(110) = 1.01,

p = 0.315
t(110) = 0.05,
p = 0.958

 SC: FA F(1,146) = 2.87 0.092 F(1,146) = 3.09 0.081 t(109) =  – 0.66,
p = 0.508

t(109) = 0.18,
p = 0.859

 FC F(1,142) = 0.11 0.738 F(1,142) = 0.20 0.654 t(101) =  – 1.75,
p = 0.084

t(101) =  – 0.72,
p = 0.473

Connectivity: Crb-Occipital
 SC: RD F(1,146) = 16.40  < 0.001** F(1,146) = 31.84  < 0.001** t(110) = 0.16,

p = 0.873
t(110) =  – 0.99,
p = 0.326

 SC: FA F(1,146) = 0.30 0.583 F(1,146) = 0.007 0.933 t(110) = 0.17,
p = 0.864

t(110) = 0.62,
p = 0.534

 FC F(1,142) = 6.49 0.012* F(1,142) = 3.861 0.051 t(101) =  – 1.53,
p = 0.130

t(101) = 0.29,
p = 0.772

Connectivity: Crb-Thalamus
 SC: RD F(1,146) = 5.21 0.024* F(1,146) = 3.44 0.066 t(110) = 0.19,

p = 0.851
t(110) = 0.44,
p = 0.658

 SC: FA F(1,146) = 0.12 0.728 F(1,146) = 0.07 0.790 t(110) =  – 0.06,
p = 0.955

t(110) = 0.47,
p = 0.637

 FC F(1,142) = 0.33 0.566 F(1,142) = 2.45 0.120 t(101) = 0.44,
p = 0.662

t(101) = 0.84,
p = 0.404

Connectivity: Spinocerebellar
 SC: RD F(1,146) = 2.26 0.135 n.a n.a t(110) =  – 0.30,

p = 0.764
n.a

 SC: FA F(1,146) = 1.18 0.279 n.a n.a t(110) =  – 0.65,
p = 0.515

n.a

 FC F(1,142) = 0.33 0.566 n.a n.a t(101) = 0.15,
p = 0.882

n.a

Connectivity: Corticospinal tract
 SC: RD F(1,146) = 50.30  < 0.001** F(1,146) = 50.41  < 0.001** t(110) = 1.06,

p = 0.289
t(110) = 1.57,
p = 0.119

 SC: FA F(1,146) = 27.64  < 0.001** F(1,146) = 24.96  < 0.001** t(110) = 1.06,
p = 0.289

t(110) =  – 1.74,
p = 0.084

 SC: FC F(1,142) = 0.28 0.596 F(1,142) = 0.32 0.571 t(101) = 1.57,
p = 0.121

t(101) = 0.04,
p = 0.970

Connectivity: Transcallosal M1 (hemisphere n.a.)
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Academic insights

Cortical cerebellar changes have been previously described 
in PLS, and our data also suggest widespread cerebellar 
grey matter change including the vermis, anterior lobe, 
posterior lobe, and crura. Posterior cerebellar pathology 
has been consistently linked to visuospatial, language, 
verbal memory, executive and sequencing deficits; while 
neuropsychological function may be relatively preserved 
with anterior cerebellar insults [68]. Cerebellar disease 
burden has also been linked to deficits in social cogni-
tion [69], language [70] and pseudobulbar affect [17, 20]. 
Vermis lesions may manifest emotional dysregulation such 

as impulsivity, irritability, and disinhibition [71]. Previous 
imaging studies have reported cerebellar [9], spinocerebel-
lar and dentato-rubro-thalamo-cortical (DRTC) tract diffu-
sivity changes [72] as well as increased functional connec-
tivity between the cerebellum and cortical motor, frontal 
and temporal areas [73]. Cognitive deficits in PLS have 
been linked to reduced FA and higher cerebellar RD [74]. 
Increased cerebro-cerebellar functional connectivity and 
expanded metabolic activation are also commonly reported 
in ALS [75, 76] and often interpreted as functional adap-
tation to neurodegenerative change [77, 78]. While con-
cepts of neuroplasticity and compensatory mechanisms 
are attractive at a theoretical level, there is no compelling 

Table 2  (continued)

Cross-sectional Longitudinal
(Interaction Time x Group)

Left hemisphere Right hemisphere Left hemisphere Right hemisphere

F-value (DOF) p-value F-value (DOF) p-value t-value (DOF),
p-value

t-value (DOF),
p-value

 SC: RD F(1,146) = 39.10  < 0.001** n.a n.a t(110) = 1.85,
p = 0.066

n.a

 SC: FA F(1,146) = 14.76 0.002** n.a n.a t(110) =  – 1.05,
p = 0.297

n.a

 FC F(1,142) = 0.63 0.427 n.a n.a t(101) =  – 0.96,
p = 0.340

n.a

Volumetry: Cerebellar cortex (hemisphere: n.a.)
 Anterior cerebellar lobe F(1,146) = 11.37  < 0.001** n.a n.a t(112) =  – 1.11,

p = 0.270
n.a

 Posterior cerebellar lobe F(1,146) = 9.18 0.002* n.a n.a t(112) =  – 1.27,
p = 0.208

n.a

 Flocculonodular lobe F(1,146) = 1.04 0.309 n.a n.a t(112) =  – 1.85,
p = 0.067

n.a

 Cerebellar crura F(1,146) = 5.02 0.027* n.a n.a t(112) =  – 1.53,
p = 0.128

n.a

 Cerebellar vermis F(1,146) = 5.51 0.020* n.a n.a t(112) =  – 1.01,
p = 0.314

n.a

Volumetry: Cerebellar nuclei (hemisphere: n.a.)
 Dorsal dentate nucleus F(1,146) = 5.02 0.027* n.a n.a t(112) = 0.87,

p = 0.384
n.a

 Ventral dentate nucleus F(1,146) = 1.21 0.274 n.a n.a t(112) = 0.94,
p = 0.348

n.a

 Interposed nucleus F(1,146) = 3.80 0.053 n.a n.a t(112) = 0.78,
p = .435

n.a

 Fastigial nucleus F(1,146) = 0.41 0.521 n.a n.a t(112) = 0.48,
p = 0.636

n.a

Volumetry: Motor cortex (hemisphere: n.a.)
 M1 F(1,146) = 58.36  < 0.001** n.a n.a t(112) =  – 1.01,

p = 0.316
n.a

ANOVA analysis of variance, Crb cerebellum, dMRI diffusion-magnetic resonance imaging, DOF degrees of freedom, FA fractional anisotropy, 
FC functional connectivity, HC healthy control, M1 primary motor cortex, n.a. not applicable, RD radial diffusivity, PLS primary lateral 
sclerosis, rs-fMRI resting-state functional MRI, SC structural connectivity, T1w T1-weighted MRI
* significant at an alpha-level of p ≤ 0.05
** significant at an alpha-level of p ≤ 0.001
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Fig. 3  Functional connectiv-
ity (FC) profiles at baseline in 
cerebellar (A–C) and primary 
motor networks (D–E). *indi-
cates p-values ≤ .05, **indicates 
p-values ≤ .001, CRB Cerebellar

Fig. 4  Volumetric profiles at 
baseline in cerebellar struc-
tures (A–C) and in the primary 
motor cortex (D) *indicates 
p-values ≤ .05, **indicates 
p-values ≤ .001
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histopathology evidence to convincingly support adaptive 
structural processes [79].

Methodological considerations

From a methodological perspective, our results highlight 
the relative limitations of functional connectivity metrics. In 
our study, the detection sensitivity of structural connectivity 
indices clearly outperforms BOLD-signal-derived functional 
measures. This is potentially important for the design of 
short-duration clinical protocols, which should ideally only 
include pulse sequences with biomarker potential. While 
FA is the most widely evaluated diffusivity metric both in 
tractography and voxelwise models such as TBSS etc., our 
study highlights the importance of assessing other measures. 
In this study, RD was more sensitive to detect cortico-
cerebellar disconnection than FA. It is noteworthy, that we 
did not detect significant longitudinal structural or functional 
changes, which is likely to stem from the long symptom 
duration profile of our sample. It is particularly striking 
that corticospinal tract, corpus callosum and primary motor 
cortex measures did not exhibit progressive decline either, 
despite the relentless clinical progression observed clinically. 

This suggests a saturation-effect or ceiling effect of these 
variables i.e. while they capture significant differences 
with reference to control change there is no tangible further 
progression over time. One needs to also acknowledge the 
heterogeneity of the cohort with respect to symptom duration 
as well as the long average length of symptom duration. By 
the time these participants have been scanned they have had 
the disease for a long time, resulting in considerable CST, 
CC, and PMC degeneration which has not progressed further 
significantly during the relatively short 4-monthly follow-up 
periods. Accordingly, it would be particularly interesting to 
capture patients soon after symptom onset, before fulfilling 
diagnostic criteria or patients with “suspected” disease and 
evaluate their imaging change at a much earlier stage of the 
disease. We have made such attempts previously, evaluating 
patients with a symptom duration of 2–4 years i.e. patients 
with “probable PLS” according to the new consensus 
criteria [27] and they have already exhibited motor cortex 
and corticospinal tract alterations [28, 80]. Imaging patients 
with short symptom duration is particularly important as 
these are the patients who face diagnostic uncertainty, 
apprehensive about potentially developing ALS [81]. In 
this study, we used a single inferior (caudal) brainstem 

Fig. 5  The longitudinal evolu-
tion of cerebral and cerebellar 
integrity metrics. *indicates 
p-values ≤ .05, **indicates 
p-values ≤ .001
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mask to track ascending projections to the cerebellum as a 
proxy of the “spinocerebellar tracts”, but we concede that 
this is a suboptimal approach. High-resolution spinal data 
can now be reliably acquired with cardiac and respiratory 
gating in ALS [82] and correlated with clinical metrics [83, 
84]. Spinal protocols in ALS have also been successfully 
utilised in diagnostic applications [85] and to describe 
presymptomatic changes in C9orf72 [86]. Combined spinal 
and cerebral datasets are increasingly evaluated in ALS to 
accurately explore the substrate of clinical phenomena [83].

Clinical implications

From a pathophysiology standpoint, functional MRI studies 
in ALS [75, 77, 79] have consistently suggested that the 
cerebellum may assume a compensatory role in the face 
of supratentorial degeneration and cerebellar hypertrophy 
has also been detected in adult poliomyelitis survivors [87, 
88]. In our study, PLS patients exhibit increased functional 
connectivity compared to controls between the cerebellum 

and left frontal lobe at baseline (Fig. 3C) and increasing 
cerebello-parietal FC over time (Fig. 5B). As the increased 
FC is not supported by increased SC, one needs to be careful 
not to over-interpret BOLD synchronisation as proof of 
effective compensation. Our volumetric analyses revealed 
a trend for progressive flocculonodular lobe atrophy in PLS 
(Fig. 5). This region is a key hub of the vestibulo-ocular 
networks playing an important role in fixation, smooth 
pursuit, and vestibular responses to head motion. These 
observations support the importance of eye-movement 
assessments in PLS, particularly that other cerebellar 
manifestations, such as disequilibrium during stance and gait 
are affected by coexisting pyramidal weakness or spasticity. 
While eye-movement abnormalities have been extensively 
investigated in ALS [43], they are glaringly understudied in 
PLS. Cerebellar atrophy and cortico-cerebellar connectivity 
changes are also commonly observed in ALS, ALS-FTD 
and HSP [89–91]. Radiological measures are increasingly 
included as input features in machine-learning (ML) 
models in MNDs [92, 93], but these have only achieved 

Fig. 6  The comparison of cerebral and cerebellar disease burden at baseline. *indicates p-values ≤ .05, **indicates p-values ≤ .001
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limited accuracy when distinguishing ALS from PLS on 
radiological grounds [94]. The development of accurate 
classification models that can successfully differentiate 
ALS from PLS soon after symptom onset is of utmost 
relevance given the strikingly different survival prospects 
in the two conditions [95]. From a clinical perspective, the 
specific contribution of cerebellar pathology to dexterity 
and gait impairment, dysarthria and dysphagia is difficult 
to demonstrate in the presence of considerable upper motor 
neuron dysfunction. Based on similar research studies 
in ALS, [76, 96], it is likely that extra-pyramidal [13] 
and cerebellar pathology in PLS [32] exacerbates motor 
disability in PLS. Accordingly, cerebellar components of 
motor disability should be considered in fall prevention, 
multidisciplinary rehabilitation, occupational, speech and 
physiotherapy.

Study limitations

This study is not without limitations. We acknowledge the 
relative heterogeneity of our sample with regards to symptom 
duration and that only 31 of the 43 patients had genomic 
data. We also concede that supplementary spectroscopy and 
PET data would have provided important complementary 
metabolic insights. Additional spinal MRI data would 
have permitted the direct evaluation of the spinocerebellar 
tracts instead of relying on an inferior brainstem mask for 
tractography. Notwithstanding these limitations, our data 
demonstrate considerable  intra-cerebellar and well as 
significant cerebro-cerebellar connectivity alterations in 
PLS.

Conclusions

PLS is associated with considerable cerebellar disease 
burden; cortical atrophy, dorsal dentate degeneration and 
cerebro-cerebellar connectivity alterations. Cerebellar 
components of gait impairment, bulbar dysfunction and 
pseudobulbar affect in PLS should be carefully considered 
instead of attributing characteristic symptoms to primary 
motor cortex degeneration alone.
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