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Abstract
Background The heterogeneous nature of cognitive impairment in people with multiple sclerosis (PwMS) hampers under-
standing of the underlying mechanisms and developing patient-tailored interventions. We aim to identify and classify cogni-
tive profiles in PwMS, comparing these to cognitive status (preserved versus impaired).
Methods We included 1213 PwMS (72% female, age 45.4 ± 10.7 years, 83% relapsing–remitting MS). Cognitive test scores 
were converted to Z-scores compared to healthy controls for the functions: attention, inhibition, information processing speed 
(IPS), verbal fluency and verbal/visuospatial memory. Concerning cognitive status, impaired cognition (CI) was defined as 
performing at Z ≤ − 1.5 SD on ≥ 2 functions. Cognitive profiles were constructed using latent profile analysis on all cognitive 
functions. Cognitive profiles or status was classified using gradient boosting decision trees, providing the importance of each 
feature (demographics, clinical, cognitive and psychological functioning) for the overall classification.
Results Six profiles were identified, showing variations in overall performance and specific deficits (attention, inhibition, 
IPS, verbal fluency, verbal memory and visuospatial memory). Across the profiles, IPS was the most impaired function (%CI 
most preserved profile, Profile 1 = 22.4%; %CI most impaired profile, Profile 6 = 76.6%). Cognitive impairment varied from 
11.8% in Profile 1 to 95.3% in Profile 6. Of all cognitive functions, visuospatial memory was most important in classifying 
profiles and IPS the least (area under the curve (AUC) = 0.910). For cognitive status, IPS was the most important classifier 
(AUC = 0.997).
Conclusions This study demonstrated that cognitive heterogeneity in MS reflects a continuum of cognitive severity, distin-
guishable by distinct cognitive profiles, primarily explained by variations in visuospatial memory functioning.
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Introduction

The heterogeneous distribution of multiple sclerosis (MS)-
related pathology gives rise to a variety of symptoms, 
including cognitive impairment [1, 2]. Cognitive impair-
ment, characterized by impaired information processing 
speed (IPS), and verbal and visuospatial memory [2], sub-
stantially impacts daily functioning, work participation and 
ultimately quality of life [3]. Cognitive function in people 
with MS (PwMS) is assessed by neuropsychological exami-
nation using predefined test batteries [4], offering relevant 
information on whether an individual suffers from cognitive 
impairment, i.e., being “cognitively impaired” (CI) or “cog-
nitively preserved” (CP). This dichotomization is often used 
in research. However, as individually affected domains can 
vary, a more detailed cognitive classification of PwMS could 
additionally allow health care providers to better tailor their 
treatment and offer more specific advise during a consulta-
tion, directing personalized medicine and tailored cognitive 
interventions [5].

Another way to enhance understanding of individuals’ 
cognitive performance is to identify “cognitive profiles”, 
e.g., by using latent profile analysis (LPA) [6]. LPA groups 
individuals into profiles based on specific characteristics in 
a data-driven manner [7]. Initial classification attempts in 
PwMS yielded multiple cognitive profiles [6, 8] and intro-
duced the potential of staging and stratifying cognition in 
MS [9]. Depending on whether cognitive tests were used 
solely to characterize profiles or together with patient-
reported outcome measures (e.g., mood), a different set of 
cognitive profiles emerged, i.e., five [6] versus four profiles 
[8], respectively. Interestingly, profiles could be ordered 
from preserved to impaired, possibly hinting toward a cog-
nitive severity continuum. However, it remains unclear to 
what extent these profiles follow a single continuum or rep-
resent unique trajectories of cognitive impairment in PwMS. 
As well, the degree to which individual characteristics, e.g., 
mood or fatigue, are illustrative for the identified cogni-
tive profiles and the contribution of these characteristics to 
distinguish between relevant profiles has not been studied 
before. Also, whether these profiles offer additional valuable 
insights beyond cognitive status (i.e., CP versus CI) is yet 
to be explored.

Therefore, the current study has four primary objectives: 
(1) to identify cognitive profiles in PwMS based on their 
cognitive performance, (2) to investigate the variability of 
demographic, clinical, and psychological factors (anxiety, 
mood, and fatigue) among the found profiles, (3) to assess 
which characteristics contribute the most to distinguishing 
the cognitive profiles, and (4) to evaluate whether determin-
ing cognitive profiles offers additional information on cogni-
tion beyond cognitive status (i.e., CP versus CI).

Methods

Study population and design

The study retrospectively evaluated cross-sectional data 
from ten observational studies conducted between 2008 
and 2023 at the Amsterdam UMC location VUmc and 16 
outpatient MS clinics across the Netherlands [10–16]. Data 
of PwMS were included if they had a clinically definite 
diagnosis of MS or clinically isolated syndrome, along with 
available neuropsychological and neurological assessment, 
and questionnaire data. Supplementary Table 1 summarizes 
cohort details and inclusion/exclusion criteria. If PwMS 
participated in multiple studies or visits (n = 43), only their 
initial visit was included, resulting in a total of 1213 PwMS 
eligible for subsequent analysis.

Ethical standards statement

Ethical approval for the studies was granted by the Medi-
cal Ethics Review Committee of Amsterdam UMC and the 
Medical Ethical Committee Brabant University. All included 
PwMS provided written informed consent.

Demographics and clinical and psychological 
functioning

Demographic characteristics included age, sex, and level 
of education (according to the Verhage classification) [17]. 
MS type was based on relapsing–remitting MS (RRMS), 
primary and secondary progressive MS (PPMS, SPMS), 
clinically isolated syndrome (CIS), and unknown. Disease 
duration was based on date of diagnosis. Physical disability 
was based on the Expanded Disability Status Scale (EDSS) 
score, which was collected by a certified examiner either 
physically during consultation or via a validated telephone 
version [18, 19]. Anxiety and depression symptoms were 
measured using the Hospital Anxiety and Depression Scale 
(HADS) [20], and levels of fatigue using the Checklist Indi-
vidual Strength-20 revised (CIS20-R) [21].

Neuropsychological examination

Cognitive functioning was assessed using Dutch adaptations 
of the Minimal Assessment of Cognitive Function in MS 
(MACFIMS) [22] and/or the Brief Repeatable Battery of 
Neuropsychological tests (BRB-N) [23]. As different tests 
were used in different cohorts, cognitive test scores were 
averaged and analyzed using the following cognitive func-
tions: attention, inhibition (subdomain of executive function-
ing (EF)), IPS, verbal fluency (subdomain of EF), verbal 
memory, and visuospatial memory. Cognitive test scores 
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corresponding to cognitive functions are detailed in Sup-
plementary Table 2. All scores were corrected for healthy 
control effects in age, sex and educational level, and trans-
formed into function-specific Z-scores relative to controls, 
based on normative data (n = 407). If a PwMS scored below 
− 1.5 standard deviations (SD) on a cognitive function, that 
function was considered impaired. If this criterion was met 
for at least two cognitive functions, the PwMS was catego-
rized as having cognitive impairment (CI) [24]. Otherwise, 
PwMS were classified as cognitively preserved (CP).

Statistical analyses

Cognitive profile identification

Analyses were conducted in SPSS 28.0 (IBM, Armonk, NY, 
USA) and R-Studio (v4.2.1) [25]. Cognitive profiles were 
identified using latent profile analysis (LPA) based on the 
continuous cognitive Z-scores [26]. LPA is based on prob-
ability theory and clusters in a person-centered way (using 
characteristics of individuals). Unlike K-means clustering, 
LPA uses model fit statistics to determine the optimal num-
ber of profiles, eliminating a priori cluster number speci-
fication [27]. The ‘Mclust’ algorithm (‘tidyLPA’ package) 
was used for LPA [28]. The model was specified under 
the assumption of varying variances and covariances of 
included variables, estimating a range of two to six profiles 
(based on prior research on cognitive profiles in MS) [6]. 
The missing data rate for each variable was < 9%, except 
for fatigue (40.4%; Supplementary Table 3). Missing val-
ues were imputed using the ‘MissForest’ package, utilizing 
demographics, clinical, psychological and cognitive vari-
ables, which is a random forest algorithm providing non-
parametric missing value imputation [29]. This algorithm 
has been shown to outperform other imputation strategies, 
particularly in case of mixed-type data [30]. Supplemen-
tary Table 3 describes the sample using imputed and non-
imputed data. We assessed the model fit using the Akaike 
information criterion and Bayesian information criterion, 
with lower values indicating a better fit [31]. We assessed 
classification accuracy, targeting an average posterior class 
probability of ≥ 0.70 for each profile (reflecting mean prob-
ability of belonging to a profile) and a classification reliabil-
ity coefficient (entropy values) of ≥ 0.60 [31]. PwMS were 
assigned to the profile with the highest probability of profile 
membership, thereby reflecting patterns of cognitive perfor-
mance rather than significant differences between profiles on 
each individual cognitive function.

Profile characterization

Differences between cognitive profiles on demographic, 
clinical, psychological, and cognitive functioning were 

tested using multivariate linear models for continuous vari-
ables and Chi-square tests for categorical variables. Post hoc 
tests, adjusted for multiple comparisons using Bonferroni, 
assessed profile differences. An α-level of 0.05 was consid-
ered statistically significant.

Classifying cognitive profiles and status

Classifications trees were built to classify cognitive profiles 
based on available characteristics and to assess whether 
these profiles offer additional information beyond cogni-
tive status. We constructed three classification models per 
outcome measure (outcome measures: cognitive profiles or 
status): (1) using only cognitive functions as features, (2) 
demographics and clinical functioning as features, and (3) 
demographics and clinical and psychological functioning as 
features. Using gradient boosting decision trees (‘xgboost’ 
package) [32], we were able to evaluate the contribution of 
each feature, henceforth referred to as ‘importance’ [33]. For 
gradient boosting, data was divided into a train (60%) and a 
test (40%) set. Due to small sample sizes in some profiles, 
splitting the training data into a validation set was not pos-
sible, which would be the preferred strategy. To balance the 
profiles in both datasets, we used profile classification as 
stratification factor (leading to an equal number of PwMS 
per profile in each dataset). Tuning of hyper-parameters 
of the model was done by applying a grid search to avoid 
overfitting (Supplementary Table 8 details the parameters). 
Model performance was evaluated using the area under the 
curve (AUC): an AUC of 0.6–0.7 was considered ‘poor’, 
but ‘acceptable’ from 0.7 onward [34]. Following the deci-
sion trees, we analyzed feature importance scores, which 
indicate each feature’s utility in constructing the decision 
tree. Higher importance reflects greater involvement in key 
decisions, providing a feature ranking within the model.

Results

Patients’ descriptives

The sample included 1213 PwMS (Table 1; 71.89% female, 
mean age 45.39 ± 10.67 years, median educational level 6 
(“finished high level secondary education”), median EDSS 
3.00 (interquartile range 2.00–4.00), mean disease duration 
9.84 ± 7.68 years). The distribution of MS types included: 
82.90% RRMS, 10.06% SPMS, 5.19% PPMS, 1.48% PwMS 
with an unknown type, and 0.41% CIS.

Identification of cognitive profiles

LPA identified six cognitive profiles (Fig. 1), showing the 
best model fit and an appropriate classification accuracy 
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(classification reliability coefficient = 0.61; average pos-
terior class probabilities ranged between 0.66 and 0.83, 
with Profile 1 being the lowest and Profile 3 the highest; 
Supplementary Fig. 1). Visual inspection revealed an even 
distribution of PwMS from each cohort across the six pro-
files (Supplementary Fig. 2). All profiles are described in 
Table 1 (non-imputed data in Supplementary Table 4). The 

distribution of impaired cognitive functions and cogni-
tive status is illustrated in Fig. 2 (post hoc differences are 
included in Supplementary Table 5). Supplementary Fig. 3 
highlights significant post hoc differences in cognitive func-
tions between profiles, while Fig. 3 illustrates differences in 
demographics and clinical and psychological functioning. A 
brief summary of each profile is provided below.

Table 1  An overview of the demographics, clinical functioning, cognitive functioning. and PROMS per cognitive profile

Displayed are the mean ± standard deviation
Abbreviations: RRMS relapsing–remitting MS, SPMS secondary progressive MS, PPMS primary progressive MS, CIS clinically isolated syn-
drome, EDSS Expanded Disability Status Scale, CI cognitively impaired, IPS information processing speed, PROMS patient-reported outcome 
measures, HADS-A Hospital Anxiety and Depression Scale (HADS)-Anxiety subscale, HADS-D HADS-Depression subscale, CIS20-R Checklist 
Individual Strength 20-Revised
a For ordinal or not normally distributed variables, median and (interquartile range) are displayed
b Corrected p values
*Significant between all profiles, at an α-level of 0.05, after correcting for multiple comparisons using Bonferroni

The sample
(n = 1213)

Profile 1
(n = 85)

Profile 2
(n = 277)

Profile 3
(n = 41)

Profile 4
(n = 332)

Profile 5
(n = 371)

Profile 6
(n = 107)

pb

Demographics
Sex|female (%) 872 (71.9%) 66 (77.6%) 214 (77.3%) 32 (78.0%) 217 (65.4%) 267 (72.0%) 76 (71.0%) 0.066
Age 45.4 ± 10.7 43.9 ± 10.4 43.3 ± 9.8 45.5 ± 10.3 45.9 ± 10.8 45.9 ± 10.9 48.8 ± 11.1  < 0.001*
Educationa 6.0 (5.0–6.0) 6.0 (5.0–6.0) 6.0 (5.0–6.0) 5.0 (5.0–6.0) 6.0 (5.0–6.0) 6.0 (5.0–6.0) 6.0 (5.0–6.0) 1.000
Clinical functioning
MS type|n (%)  < 0.001*
 RRMS 1005 (82.9%) 76 (89.4%) 259 (93.5%) 37 (90.2%) 267 (80.4%) 290 (78.2%) 76 (71.0%)
 SPMS 122 (10.1%) 8 (9.4%) 10 (3.6%) 4 (9.8%) 33 (9.9%) 48 (12.9%) 19 (17.8%)
 PPMS 63 (5.2%) 1 (1.2%) 5 (1.8%) 0 (0%) 22 (6.6%) 28 (7.5%) 7 (6.5%)
 CIS 5 (0.4%) 0 (0%) 1 (0.4%) 0 (0%) 3 (0.9%) 0 (0%) 1 (0.9%)
 Unknown 18 (1.5%) 0 (0%) 2 (0.7%) 0 (0%) 7 (2.1%) 5 (1.3%) 4 (3.7%)

Disease dura-
tion

9.8 ± 7.7 8.9 ± 7.4 8.3 ± 6.7 10.2 ± 7.8 7.5 ± 6.2 10.2 ± 7.8 13.1 ± 9.0  < 0.001*

EDSS 3.3 ± 1.6 3.2 ± 1.7 2.7 ± 1.5 3.5 ± 1.6 3.3 ± 1.3 3.5 ± 1.6 4.2 ± 1.5  < 0.001*
Cognitive functioning
Cognitive sta-

tus | CI (%)
402 (33.1%) 10 (11.8%) 40 (14.4%) 8 (19.5%) 111 (33.4%) 131 (35.3%) 102 (95.3%)  < 0.001*

Attention | CI 
(%)

− 0.8 ± 1.2 
(22.8%)

− 0.4 ± 0.7 
(5.9%)

− 0.1 ± 0.7 
(4.0%)

− 0.5 ± 0.3 
(0.0%)

− 0.4 ± 0.9 
(13.6%)

− 1.1 ± 1.1 
(35.6%)

− 2.6 ± 1.6 
(78.5%)

 < 0.001*

Inhibition | CI 
(%)

− 0.5 ± 1.3 
(19.0%)

0.2 ± 1.1 
(8.2%)

0.1 ± 0.8 
(1.8%)

− 0.6 ± 0.6 
(9.8%)

− 0.3 ± 1.2 
(16.0%)

− 0.9 ± 1.1 
(27.8%)

− 1.8 ± 2.0 
(55.1%)

 < 0.001*

IPS | CI (%) − 1.1 ± 1.2 
(34.2%)

− 0.5 ± 1.4 
(22.4%)

− 1.0 ± 0.8 
(27.1%)

− 1.1 ± 0.6 
(19.5%)

− 0.9 ± 1.1 
(28.6%)

− 1.2 ± 1.3 
(36.7%)

− 2.4 ± 1.1 
(76.6%)

 < 0.001*

Verbal fluency 
| CI (%)

− 0.7 ± 0.8 
(12.2%)

− 0.3 ± 0.8 
(7.1%)

− 0.3 ± 1.0 
(11.2%)

− 0.7 ± 0.4 
(0.0%)

− 0.5 ± 0.6 
(6.6%)

− 1.1 ± 0.4 
(14.3%)

− 1.2 ± 0.8 
(33.6%)

 < 0.001*

Verbal 
memory | CI 
(%)

− 0.7 ± 1.2 
(22.8%)

− 0.3 ± 0.7 
(3.5%)

− 0.8 ± 1.1 
(27.1%)

− 0.7 ± 0.4 
(7.3%)

− 0.6 ± 1.2 
(22.9%)

− 0.3 ± 0.8 
(10.0%)

− 2.3 ± 1.3 
(76.6%)

 < 0.001*

Visuospatial 
memory | CI 
(%)

− 0.4 ± 1.0 
(14.6%)

− 0.4 ± 0.4 
(1.2%)

0.1 ± 0.3 
(0.0%)

− 0.6 ± 0.9 
(17.1%)

− 0.9 ± 1.3 
(33.1%)

− 0.1 ± 0.8 
(3.5%)

− 1.4 ± 1.1 
(43.0%)

 < 0.001*

Psychological functioning
HADS-A 6.3 ± 3.7 5.5 ± 3.4 6.5 ± 3.3 6.6 ± 3.8 6.0 ± 3.5 6.3 ± 3.9 7.0 ± 4.4 0.180
HADS-D 4.6 ± 3.6 3.7 ± 3.4 4.1 ± 3.1 5.7 ± 3.9 4.4 ± 3.4 5.1 ± 4.0 5.6 ± 3.4  < 0.001*
CIS20-R 79.7 ± 21.1 72.2 ± 21.6 76.2 ± 17.4 84.6 ± 19.0 78.1 ± 21.7 82.6 ± 22.1 88.1 ± 20.7  < 0.001*
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Profile 1. In Profile 1 (n = 85), most PwMS showed pre-
served performance across all functions, with the only 
notable lower performance in IPS (Z-score = − 0.54 ± 1.35, 
impaired in 22.35%). This profile had fewer PwMS 
with CI (11.76%), compared to Profiles 4–6 (p val-
ues < 0.001) and showed limited symptoms of depression 
(mean = 3.66 ± 3.39) and fatigue (mean = 72.20 ± 21.62; 
range p values ≤ 0.001–0.042).

Profile 2. In Profile 2 (n = 277), most PwMS demonstrated 
preserved performance in attention, inhibition, verbal flu-
ency, and visuospatial memory (range Z-scores = 0.14 to 
− 0.26). Notably, 27.08% of PwMS displayed impairment in 
IPS and verbal memory, while 11.19% showed an impaired 
verbal fluency. This profile had fewer PwMS with CI 

(14.44%) than Profiles 4–6 (p values < 0.001), marked by a 
relatively young age, short disease duration, low EDSS, and 
a high proportion of RRMS (93.50%, highest of all profiles).

Profile 3. In Profile 3 (n = 41), most PwMS displayed 
preserved performance across all functions (range 
Z-scores = − 0.47 to − 0.74), with the lowest Z-score in 
IPS (Z-score = − 1.05 ± 0.63). This profile included 19.51% 
PwMS with an IPS impairment, while 17.07% showed 
impairment in visuospatial memory. This profile consisted 
of fewer PwMS with CI (19.51%), compared to Profile 5 
(p = 0.042) and 6 (p < 0.001). The relatively high propor-
tion of RRMS (90.24%) and the high scores on depression 
(mean = 5.67 ± 3.91) and fatigue (mean = 84.61 ± 19.01) 
were most characteristic (range p values ≤ 0.001–0.049).

Profile 4. In Profile 4 (n = 332), most PwMS showed pre-
served performance in inhibition, attention, and verbal 
fluency (range Z-scores = − 0.27 to − 0.47). Visuospatial 
memory was impaired in 33.13% of PwMS, while IPS 
and verbal memory were impaired in 28.61% and 22.89%, 
respectively. This profile ranked fourth, due to its higher 
percentage of PwMS with CI (33.43%), compared to the 
better-performing profiles (p values < 0.001). Considering 
cognitive performance, age, disease duration and EDSS, 
this profile could be classified as an “in-between” profile 
(range p values ≤ 0.001–0.034). Profile 4 performed worse 
compared to Profile 5 on verbal (p < 0.001) and visuospatial 
memory (p = 0.016).

Profile 5. In Profile 5 (n = 371), 36.66% of PwMS dis-
played an IPS impairment, 35.58% an attention impair-
ment, 27.76% an inhibition impairment, and 14.29% a 
verbal fluency impairment (range Z-scores = − 0.91 to 
− 1.19). Visuospatial memory in Profile 5 was higher 
(Z-score = − 0.10 ± 0.79, %CI = 3.50%) compared to all 
profiles (range p values ≤ 0.001–0.027), except compared 
to Profile 2 (Z-score = 0.14 ± 0.25, p = 0.019). Although not 
as high as visuospatial memory, verbal memory was also 
relatively preserved in this profile (Z-score = − 0.33 ± 0.83, 
%CI = 9.97%). This profile consisted of more PwMS with 
CI (35.31%) compared to Profiles 1–3, but fewer com-
pared to Profile 6 (range p values ≤ 0.001–0.042). This 
profile differed from Profile 6 in terms of a shorter disease 
duration (p = 0.002) and a lower EDSS (p = 0.003). Pro-
file 5 had fewer RRMS PwMS (78.17%), a higher age and 
EDSS, a longer disease duration, and more symptoms of 
depression and fatigue compared to other profiles (range p 
values ≤ 0.001–0.021).

Profile 6. In Profile 6 (n = 107), most PwMS were clas-
sified as being CI (95.33%), and performance was lower 
on all functions compared to other profiles, except for 

Fig. 1  Depiction of the cognitive functions (Z-scores) per cognitive 
profile. On the y-axis, the dashed line indicates average performance 
at Z = 0.0. Abbreviation: IPS information processing speed

Fig. 2  The percentage of PwMS with cognitive impairment per cog-
nitive functions or classified as cognitively impaired (cognitive sta-
tus). Abbreviations: IPS information processing speed, PwMS people 
with MS
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verbal fluency (Z-score = 1.16 ± 0.81, which was simi-
lar to Profile 5 (p = 1.000)). Percentages of impairment 
on function level ranged between 33.64% (for verbal flu-
ency) to 78.50% (for attention). This profile had the low-
est proportion of RRMS (71.03%). This profile was marked 

by an older age and worse performance on all clinical 
variables (range p values ≤ 0.001–0.022). Depression 
(mean = 5.58 ± 0.3.38) and fatigue (mean = 88.10 ± 20.65) 
were higher for Profile 6, compared to Profile 1, 2, and 3 
(range p values ≤ 0.001–0.034).

Fig. 3  Significant post hoc differences (indicated with a black stripe) 
between cognitive profiles (number on the x-axis) for age (A), dis-
ease duration (B), MS type (C), physical disability (EDSS; D), symp-
toms of depression (HADS-D; E), and level of fatigue (CIS20-R; F). 
Abbreviations: RRMS relapsing–remitting MS, SPMS secondary pro-

gressive MS, PPMS primary progressive MS, EDSS Expanded Dis-
ability Status Scale, HADS-D Hospital Anxiety and Depression Scale 
(HADS)-Depression subscale, CIS20-R Checklist Individual Strength 
20-Revised
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Classification of cognitive profiles

Cognitive profiles were classified based on cognitive 
functions, demographics, and clinical and psychologi-
cal features. No differences were observed between train 
and test data for these variables (Supplementary Table 6). 
Table 2 summarizes model performance (AUC) for both 
datasets, along with feature importance.

Model 1: cognitive functions. Visuospatial memory was 
the most important feature in classifying cognitive profiles, 
while IPS was the least important (Fig. 4A, AUC = 0.910).

Model 2: demographics and clinical functioning. Model 
2 had substantially lower classification performance 
(AUC = 0.629) compared to model 1. Age was the most 
and MS type was the least important feature in the model 
(Fig. 4C).

Model 3: demographics and clinical and psychological 
functioning. Classification performance improved slightly 
(AUC = 0.661) when adding psychological features to 
model 2. Fatigue and age were most important in classify-
ing profiles, while MS type was the least important feature 
(Fig. 4E).

Classification of cognitive status

We applied similar models to classify PwMS as CP or 
CI (Table 2 for model performance), with between-group 
differences regarding the features summarized in Sup-
plementary Table 7.

Model 1: cognitive functions. IPS was the most important 
feature in classifying cognitive status, with verbal fluency 
being the least important feature (Fig. 4B, AUC = 0.997).

Model 2: demographics and clinical functioning. As to 
classifying profiles, using demographics and clinical features 
led to a similar drop in performance (AUC = 0.633) com-
pared to model 1, when classifying cognitive status. Disease 
duration was the most important feature, while MS type was 
least important (Fig. 4D).

Model 3: demographics and clinical and psychologi-
cal functioning. A slight performance improvement was 
found when adding psychological features to model 2 
(AUC = 0.646). Disease duration remained the most impor-
tant feature, with MS type ranking the lowest (Fig. 4F).

Discussion

In this retrospective cross-sectional study (n = 1213), we 
investigated the potential of phenotyping and classifying 
cognitive performance in MS. With LPA, we distinguished 
six cognitive profiles. PwMS within these six profiles dif-
fered in cognitive performance on specific domains, but 
also in clinical functioning (MS type, disease duration, 
and EDSS), mood, and fatigue. Interestingly, visuospatial 
memory was relatively most important in classifying these 
profiles and IPS the least. For cognitive status (cognitively 
impaired versus cognitively preserved), a concept widely 
used especially in research, IPS was the most important 
classifier. These findings emphasize the existence of differ-
ent cognitive profiles in MS and their potential to provide 
additional information compared to the current standard, 
i.e., cognitive status.

Our study supports the notion of cognitive profiles in 
MS. Like other symptoms observed in PwMS, cognitive 
impairment is largely heterogeneous in prevalence and 
severity [1] and can manifest in various forms, primar-
ily affecting domains such as IPS, and verbal and visu-
ospatial memory [2]. Some PwMS experience cognitive 
impairment at disease onset, while others worsen over 
time [35]. This study aimed to enhance understanding of 
the prevalence and severity of cognitive dysfunctioning, 
by identifying and characterizing cognitive profiles using 
LPA. LPA offers the possibility to capture subtle changes 
in cognitive performance, as it is a fine-grained, “person-
centered” method that can probabilistically group indi-
viduals with similar ‘cognitive’ configurations, and hence 
profiles, using a certain set of variables [36].

We identified six profiles, which differed on overall 
performance and specific deficits (attention, inhibition, 
IPS, verbal fluency, verbal memory and visuospatial 
memory). Across the profiles, IPS was the most impaired 
function (occurring in 22.4% of PwMS in the most pre-
served profile, up to 76.6% in the most impaired profile). 
In the literature, the number and description of these pro-
files vary from previously identified cognitive profiles 
in MS depending on the chosen strategy (theory-driven 
versus data-driven clustering methods) and input vari-
ables (cognitive tests alone versus together with question-
naires). In two prior studies, four profiles were identified 
theoretically, i.e., based on Z-scores interpretation from 
predefined domains [37, 38]. In a study similar to ours 
(n = 1212), data-driven LPA yielded five cognitive profiles 
instead of six [6]. In comparison to the previous study, we 
identified similar profiles, including one with (relatively) 
preserved cognitive function, another displaying mild ver-
bal memory and verbal fluency deficits, a profile marked 
by severe attention and executive functioning, and a profile 
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Table 2  Results on the decision 
tree analyses, including the 
importance per feature in the 
model of the test data (ranking 
variable order from highest 
relative importance to lowest) 
and the area under the curve 
(AUC) per feature in the models 
of both the train and test dataset

Abbreviations: IPS information processing speed, EDSS Expanded Disability Status Scale, HADS-A Hospi-
tal Anxiety and Depression Scale (HADS)-Anxiety subscale, HADS-D HADS-Depression subscale, CIS20-
R Checklist Individual Strength 20-Revised

Importance AUC 

Relative impor-
tance

Rank of importance within 
the model

Train data Test data

Cognitive profiles
Model 1 0.969 0.910
 Attention 0.181 2
 Inhibition 0.112 5
 IPS 0.053 6
 Verbal fluency 0.173 3
 Verbal memory 0.168 4
 Visuospatial memory 0.313 1

Model 2 0.754 0.629
 Sex 0.035 5
 Age 0.382 1
 Education 0.050 4
 MS type 0.026 6
 Disease duration 0.286 2
 EDSS 0.221 3

Model 3 0.785 0.661
 Sex 0.019 8
 Age 0.250 2
 Education 0.042 7
 MS type 0.011 9
 Disease duration 0.228 3
 EDSS 0.097 4
 HADS-A 0.049 6
 HADS-D 0.048 5
 CIS20-R 0.256 1

Cognitive status
Model 1 0.999 0.997
 Attention 0.244 2
 Inhibition 0.112 4
 IPS 0.301 1
 Verbal fluency 0.064 6
 Verbal memory 0.173 3
 Visuospatial memory 0.107 5

Model 2
 Sex 0.055 5 0.741 0.633
 Age 0.172 3
 Education 0.056 4
 MS type 0.027 6
 Disease duration 0.373 1
 EDSS 0.317 2

Model 3 0.789 0.646
 Sex 0.031 8
 Age 0.174 3
 Education 0.048 7
 MS type 0.008 9
 Disease duration 0.301 1
 EDSS 0.177 2
 HADS-A 0.051 6
 HADS-D 0.087 5
 CIS20-R 0.122 4
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characterized by severe impairments in multiple cogni-
tive domains. Contrarily, the previous study identified a 
profile described as mild-multidomain, which included 
mild impairments in verbal memory, attention/inhibi-
tion, and IPS. In our cohort, this mild-multidomain pro-
file would be described as displaying mild impairment in 
IPS and visuospatial memory. Furthermore, we were also 
able to identify a profile with severe visuospatial memory 

performance, alongside mild IPS and verbal memory per-
formance. Several factors may account for these study dif-
ferences, including variations in: (1) the construction of 
cognitive functions as input variables (e.g., using single 
tests versus multiple tests, or averaging subscales versus 
using subscales separately), (2) the range of cognitive 
performance in the sample (our sample had less variabil-
ity, potentially due to test averaging), (3) the actual test 

Fig. 4  Depiction of the (relative) importance of each feature in the 
model, with either cognitive profiles or cognitive status as outcome 
measure. Panel A and B depict the use of cognitive functions as fea-
tures (model 1). Panel C and D depict the use of demographics and 
clinical functioning as features (model 2). Panel E and F depict the 
use of demographics, clinical and psychological functioning as fea-

tures (model 3).  Abbreviations: IPS information processing speed, 
EDSS Expanded Disability Status Scale, HADS-A Hospital Anxi-
ety and Depression Scale (HADS)-Anxiety subscale, HADS-D 
HADS-Depression subscale, CIS20-R Checklist Individual Strength 
20-Revised
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performance (our sample had fewer difficulties in verbal 
fluency, but more in memory, particularly visuospatial 
memory), and (4) the sample selection. Cross-cultural 
differences may have influenced cognitive performance, 
which has been increasingly recognized as challenging 
in neuropsychological testing [39]. This underscores the 
importance of careful consideration in future research and 
the improvement of normative data. We considered the 
impact of the patient sample selection minimal, given the 
overlapping selection procedures (retrospectively combin-
ing multi-center data), similar inclusion/exclusion criteria, 
and comparable demographics and clinical functioning. As 
such, cognitive profiles can be identified when combining 
multiple cohorts with varying cognitive tests, which is par-
ticularly promising in a clinical context that often involves 
various test evaluations. Ensuring international replicabil-
ity of these profiles is a crucial focus for future research.

When classifying PwMS into cognitive profiles, memory 
functioning was particularly relevant in classifying PwMS 
into cognitive profiles compared to IPS in cognitive status. 
Surprisingly, in profile classification, visuospatial memory 
was ranked most important and IPS the least. Conversely, for 
cognitive status, IPS appeared the most important feature. 
This aligns with prior research, highlighting IPS as the most 
sensitive function for detecting and monitoring cognitive 
impairment in MS, as it underlies, or at least supports, mul-
tiple cognitive processes [2, 40]. Additionally, the finding 
that IPS was fairly impaired even within the least affected 
cognitive profile fits with the concept of IPS being the initial 
impairment in the early stages of the disease [41], preced-
ing impairments in other domains [42]. Despite their high 
sensitivity, tests used to assess IPS functioning have been 
criticized for their lack of specificity, i.e., IPS being impaired 
in all PwMS [43]. Previously, it has been mentioned that in 
distinguishing cognitive impairment in PwMS from healthy 
controls, memory tests are nearly as effective as IPS tests 
[40]. Memory tests show only slightly lower effect sizes 
(with a mean Cohen’s d for the Symbol Digit Modalities Test 
measuring IPS at 1.11, while memory tests range between 
1.03, 0.89, and 0.86), despite a greater variety in the tests 
used to measure memory function [40]. Both IPS and mem-
ory impairments are highly prevalent, with IPS difficulties 
reported in 40–70% of the PwMS [44], and memory difficul-
ties reported in 40–65% of PwMS [45]. Building on recent 
research suggesting that memory impairments may develop 
following deficits in IPS and learning [42], we propose a 
significant role for memory functioning, especially visuos-
patial memory, in capturing part of the cognitive heterogene-
ity in MS. In particular, visuospatial memory displayed the 
most pronounced differences between the cognitive profiles, 
suggesting its specificity for assessing cognitive function-
ing in MS over IPS. Notably, we observed that even in a 
more impaired profile, memory function was, on average, 

preserved. These findings align with the approach of screen-
ing tools, such as the Brief International Cognitive Assess-
ment for MS [46], which assess memory function, rather 
than relying solely on IPS.

In this study, the profiles differed not only in cognitive 
functioning, but also in age, MS type, disease duration, 
EDSS, and mood and fatigue (although mean differences 
between the profiles appeared subtle). Previous studies 
offered limited insights into variations in demographical, 
clinical, and psychological characteristics. One study pro-
posed a continuum where the severity increases as the pro-
files worsen [8]. Indeed, when examining cognitive profiles, 
they often appear to result from a linear severity continuum, 
a significant observation also raised in other diseases such 
as schizophrenia [47]. Hence, it was pivotal to ascertain that 
current profiles displayed unique configurations. Fatigue 
specifically played a potentially important role in classifying 
cognitive profiles. Fatigue and cognitive functioning have 
been found to show a complex interrelationship in MS [48], 
although it remains currently unknown how both factors 
affect each other [35]. It is noteworthy to mention that here, 
reports on fatigue were available for only 60% of PwMS 
versus less than 9% for other variables, highlighting the need 
for careful interpretation. Considering the relatively low 
AUC of these classifications, suggesting an equal room for 
improvement when classifying cognitive profiles and status, 
it raises the question of whether radiological variables would 
add explained variance. In light of our classification results, 
additional efforts could explore generating profiles based on 
demographics and questionnaires, including fatigue, to gain 
further valuable insights [8]. Together, this suggests that the 
identified profiles represent a continuum rooted in the sever-
ity of cognitive impairment and can be distinguished through 
data-driven approaches to identify cognitive subtypes. These 
configurations, or profiles, hold promise to inform treatment 
and to tailor interventions. For instance, targeting memory 
functioning may not be recommended for PwMS with a 
high likelihood of belonging to Profile 5, while addressing 
depression might be suitable for those in Profile 3.

This study is not without limitations. Data-driven profiles 
prompt the question of their dependency on the cognitive 
functions used as input [36] as well as the choice of fit statis-
tics [28]. The discrepancy in the literature stresses the need 
to replicate these profiles using alternative input strategies 
and evaluating established profiles on independent datasets. 
Furthermore, the current large sample comprised retro-
spective data from ten different cohorts, which is one of the 
strengths of the study. It also presented challenges in calcu-
lating cognitive functions. For instance, not all cohorts had 
information on working memory and/or cognitive flexibility 
(functions known to be affected in MS [1]). While our data-
set did not allow for an investigation into the sub-aspects of 
overall cognitive function, such as precision or recall versus 
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recognition, exploring these aspects is crucial for a more 
comprehensive understanding of cognitive profiles. Addi-
tionally, the limited absolute differences between profiles, 
attributed to sample characteristics such as a high number of 
RRMS and level of fatigue, limit our ability to draw conclu-
sions about the clinical significance of profile differences 
and should therefore be carefully interpreted, possibly due to 
lower sample sizes in some profiles. The lower sample size 
in some of the profiles (with the lowest sample size being 41 
for Profile 3, compared to the highest sample size of 371 for 
Profile 5) also requires careful interpretation. Constructing a 
validation sample was not feasible, which would be the pre-
ferred strategy to avoid overfitting. However, this limitation 
was somewhat mitigated by splitting the dataset into a large 
test dataset (40% of the data) and a training dataset (60% of 
the data). Additionally, a stratification factor was employed 
to ensure equal proportions of people in both the training 
and test datasets. Finally, cognitive profiles have not been 
studied longitudinally, limiting our understanding of their 
stability and their predictive value. Latent mixture modeling 
techniques can be extended to include changes over time or 
within-profile variations, guiding future research directions.

In conclusion, this study showed that cognitive hetero-
geneity in MS appears as a severity continuum of cognitive 
decline, distinguishable by cognitive profiles, primarily dif-
ferentiated by visuospatial memory function. By identifying 
these profiles, our goal was to move toward tailoring treat-
ments to the individual in the future and more precise moni-
toring of cognitive function in MS. Exploring the stability, 
replicability, and the profiles’ etiology are crucial for future 
research to facilitate their clinical application.
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