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Abstract

Background and objective Parkinsonian disorders, including Parkinson's disease (PD), multiple system atrophy (MSA),
dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), and corticobasal syndrome (CBS), exhibit overlap-
ping early-stage symptoms, complicating definitive diagnosis despite heterogeneous cellular and regional pathophysiology.
Additionally, the progression and the eventual conversion of prodromal conditions such as REM behavior disorder (RBD)
to PD, MSA, or DLB remain challenging to predict. Extracellular vesicles (EVs) are small, membrane-enclosed structures
released by cells, playing a vital role in communicating cell-state-specific messages. Due to their ability to cross the blood—
brain barrier into the peripheral circulation, measuring biomarkers in blood-isolated speculative CNS enriched EVs has
become a popular diagnostic approach. However, replication and independent validation remain challenging in this field.
Here, we aimed to evaluate the diagnostic accuracy of speculative CNS-enriched EVs for parkinsonian disorders.

Methods We conducted a PRISMA-guided systematic review and meta-analysis, covering 18 studies with a total of 1695
patients with PD, 253 with MSA, 21 with DLB, 172 with PSP, 152 with CBS, 189 with RBD, and 1288 HCs, employing
either hierarchical bivariate models or univariate models based on study size.

Results Diagnostic accuracy was moderate for differentiating patients with PD from HCs, but revealed high heterogeneity
and significant publication bias, suggesting an inflation of the perceived diagnostic effectiveness. The bias observed indicates
that studies with non-significant or lower effect sizes were less likely to be published. Although results for differentiating
patients with PD from those with MSA or PSP and CBS appeared promising, their validity is limited due to the small number
of involved studies coming from the same research group. Despite initial reports, our analyses suggest that using speculative
CNS-enriched EV biomarkers may not reliably differentiate patients with MSA from HCs or patients with RBD from HCs,
due to their lesser accuracy and substantial variability among the studies, further complicated by substantial publication bias.
Conclusion Our findings underscore the moderate, yet unreliable diagnostic accuracy of biomarkers in speculative CNS-
enriched EVs in differentiating parkinsonian disorders, highlighting the presence of substantial heterogeneity and significant
publication bias. These observations reinforce the need for larger, more standardized, and unbiased studies to validate the
utility of these biomarkers but also call for the development of better biomarkers for parkinsonian disorders.
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EVs Extracellular vesicles

FPR False-positive rate

FTD Frontotemporal dementia

HCs Healthy controls

HSROC Hierarchical summary receiver operating
characteristic

P Heterogeneity statistic

L1CAM L1 cell adhesion molecule

MSA Multiple system atrophy

nEVs Neuronal extracellular vesicles

negLR Negative likelihood ratio

oEVs Oligodendroglial extracellular vesicles

PAF Pure autonomic failure

PD Parkinson’s disease

posLR Positive likelihood ratio

PSP Progressive supranuclear palsy

PRISMA Preferred reporting items for systematic
reviews and meta-analyses

QUADAS-2 Quality assessment for diagnostic accuracy
studies

RBD REM behavior disorder

ROC Receiver operating characteristic

Simoa Single molecule array

SROC Summary receiver operating characteristics

X2 Chi-square

o-Syn o-Synuclein

WB Western blot

Introduction

Parkinsonian disorders comprise a group of neurodegen-
erative conditions sharing motor symptoms, such as slow
movement (bradykinesia), stiffness (rigidity), and shak-
ing (tremor). Parkinson's disease (PD) is the most com-
mon among these conditions [28]. Other less frequent but
clinically important parkinsonian disorders include multiple
system atrophy (MSA), dementia with Lewy bodies (DLB),
progressive supranuclear palsy (PSP), and corticobasal syn-
drome (CBS) [2]. While these disorders differ in the type of
protein, cell type, and brain region afflicted, they are often
misdiagnosed by neurologists due to symptom overlap, espe-
cially in early stages [3, 31, 34]. Moreover, currently, there
is no concrete method to precisely ascertain the timing, pro-
gression, and specific outcomes of prodromal conditions like
REM behavior disorder (RBD) and pure autonomic failure
(PAF) [8, 9].

Misdiagnosis not only negatively impacts patient progno-
sis, potentially leading to inappropriate treatments and wors-
ening health outcomes, but also exacerbates emotional dis-
tress, intensifying feelings of uncertainty and anxiety about
their health conditions, and impacts appropriate patient
stratification in clinical trials. This lack of reliable diagnostic

tools also obstructs efforts to assess disease-modifying treat-
ments during the prodromal stages, a critical period where
majority of neuronal death occurs [6].

Extracellular vesicles (EVs) are tiny, bi-lipid membrane-
enclosed structures released by cells, which play vital roles
in facilitating communication among cells and regulating
various bodily processes. Unlike living cells, EVs do not
replicate and serve as carriers of biological cargo, enabling
the exchange of molecular information and contributing
to intercellular signaling. They contain a diverse array of
biomolecules, including proteins, lipids, and nucleic acids,
which mirror the condition of the originating cell [10]. Due
to their ability to traverse the blood—brain barrier to the
peripheral circulation [38], speculative central nervous
nervous system (CNS)-enriched EVs may provide a unique
insight into the brain's biochemical processes, enabling the
investigation of CNS functions and the identification of
potential biomarkers in neurodegenerative conditions such
as parkinsonian disorders [13].

As potential carriers of cell-state-specific information
from the CNS to the peripheral circulation, speculative
CNS-enriched EVs have emerged as a possible tool for
minimally invasive diagnostic and therapeutic strategies
in parkinsonian disorders. Many groups have quantified
biomarkers in speculative CNS-enriched EVs for the dif-
ferential diagnosis of these disorders from one another
and/or from healthy controls (HCs) [13]. Despite this,
there has been consistent failure in independent valida-
tions, replication, and differing outcomes even when the
same methodology is employed.

A recent meta-analysis suggested that the combined
concentration of a-synuclein (x-syn) in speculative neu-
ronal and oligodendroglial EVs (nEVs and oEVs, respec-
tively) may be higher in patients with PD in comparison
to HCs, CBS, and PSP [41]. These elevated concentrations
could potentially be utilized to develop a diagnostic test for
these diseases. However, the meta-analysis did not com-
pare the diagnostic accuracy of tests utilizing biomarkers
in speculative CNS-enriched EVs, which include a-syn
combined with other biomarkers.

Our goal is to expand upon previous findings by con-
ducting a meta-analysis of diagnostic accuracy using stud-
ies attempting to differentiate either prodromal or estab-
lished parkinsonian disorders from each other or from
HCs, using biomarkers in speculative CNS-enriched EVs.
We use the term “speculative CNS-enriched EVs” for two
key reasons. Firstly, current research has yet to conclu-
sively demonstrate that these enriched EVs originate spe-
cifically from the brain. This uncertainty is compounded
by the fact that the markers used to perform CNS enrich-
ment are also found on other cell types, or even in soluble
forms [26], which have been shown to cross-react with the
antibodies used for biomarker quantification. Secondly, the
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integrity of these EVs as purely CNS-originating is ques-
tionable. EVs are known to be absorbed and recycled by
various cells through different mechanisms, even if they
initially come from the CNS [10]. This process of uptake
and rerelease further obscures their original CNS origin.

Methodology

We performed a systematic review and meta-analysis
according to the guidelines outlined in the Preferred
Reporting Items for Systematic Reviews and Meta-Analy-
ses Protocols (PRISMA). Our research exclusively utilized
anonymized data, with no collection of personal informa-
tion or involvement of human subjects, thus obviating
the need for ethical approval. The study protocol was not
registered.

Standard protocol approvals, registrations,
and patient consents

Standard protocol approvals, registration, and patient con-
sents are not applicable to this meta-analysis.

Data sources and search strategy

We performed a thorough search for relevant articles
using specific search terms related to PD and parkinso-
nian disorders. The search was conducted in two databases
(PUBMED and EMBASE) and covered articles published
from the inception of the databases until Sept 29, 2023.
The search terms we used included combinations of “Par-
kinson's disease OR multiple system atrophy OR Lewy
body dementia OR corticobasal syndrome OR progres-
sive supranuclear palsy” AND “Extracellular Vesicle OR
exosome” AND “Diagnosis”. We manually examined the
reference lists of eligible studies and conducted thorough
literature reviews to identify suitable studies for inclu-
sion. Any discrepancies in the selection of articles were
resolved through discussions. The comprehensive search
strategy can be accessed in Table S1.

Eligibility criteria

The eligible studies included in our analysis focused on
assessing biomarkers in speculative CNS-enriched EVs
isolated from cerebrospinal fluid, plasma, serum, urine,
or saliva in patients with PD along with at least one of the
following diseases: MSA, DLB, PSP, CBS, RBD, PAF, or
HCs. The studies must have included a receiver operating
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characteristic (ROC) analysis and provided sensitivity,
specificity, area under curve (AUC), and sample size. We
excluded studies that used animals or cell lines, studies
that did not include the specified diseases, and studies
that did not report the sample size. We excluded studies
that have used general EVs as they have been reviewed
elsewhere [42]. If sensitivity, specificity, or sample size
were not included in the study, we contacted the authors to
obtain the missing information. For studies that included
longitudinal measurements or treatment interventions, we
only considered the baseline assessments. For studies that
included discovery/training and validation ROC models,
we only considered the validation model. In cases where
more than 2 ROC models existed, we chose the model with
the best AUC for reporting. In three studies [1, 16, 24],
two models performed similarly, and we included both
models. In one study [35], there were only two models,
but we excluded the one with AUC close to 0.50, indicat-
ing no accuracy.

Risk of bias assessment

The quality and the risk of bias of all eligible studies were
evaluated using the Quality Assessment for Diagnostic
Accuracy Studies (QUADAS-2) criteria [47]. The assess-
ment was carried out by independent researchers (HBT and
AB), and any disagreements were resolved through dis-
cussion until a consensus was reached. Additional details
regarding the quality assessment can be found in Table S2.

Data synthesis and statistics

In this study, we chose a hierarchical summary ROC
(HSROC) and a bivariate model [20, 30] utilizing a ran-
dom effect with a restricted maximum likelihood estimation
method in analyses where the number of studies was > 3.
This approach allows a comprehensive assessment of the
diagnostic accuracy measures, accounting for both within-
study and between-studies variability as well as the inherent
negative correlation between sensitivities and specificities
across studies. In cases where the number of studies was <3,
we utilized a univariate model as the parameters in the bivar-
iate model are not recommended when there are only a few
studies [45]. Detailed information regarding the HSROC and
bivariate models is described elsewhere [42]

In addition, we utilized informative graphical representa-
tions, including crosshair plots, which integrate both ROC
curves and forest plot means. These visualizations allow
us to simultaneously examine the bivariate relationship
between sensitivity and false-positive rate (FPR or 1-speci-
ficity) while assessing the degree of heterogeneity across
studies. Notably, wider crosshairs on the plot indicate a
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Fig. 1 PRISMA flow diagram i i i i
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Studies included in meta-

larger sample size, reflecting the level of precision and reli-
ability in the estimates. The ROC ellipse plot visually repre-
sents the estimated uncertainty of the pair (sensitivity, FPR)
in logit ROC space using confidence regions. The ellipses
in the plot symbolize the variability of the sensitivity and
FPR estimates, providing an indication of their statistical
uncertainty.

The summary ROC curve utilized both the dotted means
obtained from the bivariate model with its corresponding
confidence interval as well as the summary line obtained
from the HSROC model [32], which describes the relation-
ship between the mean sensitivity and specificity. In this
meta-analysis, when significant heterogeneity is present, the
summary line provides more informative results compared to
the point means of sensitivities and specificities, as it com-
prehensively takes into account the heterogeneity across the
included studies [45]. The accuracy of the test increases as

the point summary of sensitivities/specificities and the sum-
mary line approaches the upper left corner.

Funnel plots, Begg’s rank correlation, Egger’s and Deek’s
regression tests, and trim-and-fill method [36] were used to
evaluate publication bias [21].

Results

The systematic search identified 403 studies of which 73
duplicated studies were removed. After title and abstract
screening of 330 studies, 67 studies were considered poten-
tially eligible (Fig. 1). After full-text screening, 49 studies
were excluded. Forty-three of those studies did not enrich
for speculative CNS-enriched EVs. Five studies enriched for
speculative CNS-enriched EVs [4, 19, 22, 23, 27] but did not
include information for sensitivity and specificity from the
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diagnostic test. One study was excluded because it included
preliminary data [14]. All authors were contacted to obtain
the missing information.

In total, the meta-analysis included 18 studies [1, 5, 11,
16-18, 24, 25, 35, 37-39, 43, 46, 48-50, 52] with 1695
patients with PD, 253 with MSA, 21 with DLB, 172 with
PSP, 152 with CBS, 189 with RBD, and 1288 HCs (Table 1).
Using biomarkers in speculative CNS-enriched EVs, most
studies attempted to differentiate patients with PD from
HCs (n=16, 88.8%). Six studies attempted to differentiate
patients with PD from MSA [11, 16, 17, 43, 46, 49] while
two studies aimed to differentiate patients with PD from
PSP and CBS [16, 24]. One study attempted to differentiate
patients with PD from frontotemporal dementia (FTD), PSP
and CBS [17]. Three studies aimed to differentiate patients
with MSA from HCs [11, 43, 49] or patients with RBD
from HCs [17, 35, 48]. Most studies utilized biomarkers in
speculative nEVs (n=16, 88.8%). Only three studies used
speculative oEVs [49,11,43] while one study used specula-
tive astrocyte EVs (aEVs) [46] . To quantify biomarkers in
speculative CNS-enriched EVs, the included studies utilized
bead-based arrays such as Luminex [38, 49] and single-mol-
ecule array (Simoa) [37, 52], enzyme-linked immunosorbent
assay (ELISA) [50, 5, 39, 1,24], electrochemiluminescence
ELISA (ECLIA) [25, 18, 17, 16,11, 43], western blots (WB)
[48], flow-cytometry [46], or an in-house electrochemical
assay [35].

The studies included in the analysis were generally of
high quality as indicated in Table S3. However, there was a
lack of clear reporting on the sampling method, which made
the assessment of the risk of bias in patient selection unclear.
One study excluded participants from their analysis and was
deemed to have a high risk of bias [48]. The measurement of
biomarkers in speculative nEVs and oEV's was considered
to have a low risk of bias in the index test domain, as it is
an objective measure unaffected by prior knowledge of the
clinical status. While the majority of the articles (66.7%)
had a low risk of bias in the reference standard domain,
four studies using an in-house test [12, 35, 38, 43, 49] and
one using WBs [48] were identified as having a high risk of
bias. In terms of the Flow and Timing domain, all studies
were deemed to have a low risk of bias as the time interval
from clinical diagnosis to biomarker measurement could be
reliably estimated.

As previously indicated [40-42], several pre-analytical
elements can have a substantial effect on the purity, content,
dimensions, and amount of EVs. Such elements involve the
selection of anticoagulation molecules mixed with plasma,
EV isolation methodology, the centrifugation procedure,
the transportation characteristics, the frequency of freezing
and thawing cycles, the storage parameters, the temperature,
and the type of tube used for collection. Regrettably, these
aspects are not universally standardized across biobanks or

@ Springer

methods of clinical lab blood collection. Moreover, the use
of the anti-L1 cell adhesion molecule (L1CAM) antibody
clone UJ127 has initiated doubts regarding its possible
cross-reactivity with a-syn antibodies [26].

To tackle these concerns, we performed subgroup analy-
ses based on the medium (either plasma or serum) and the
type of antibody clone (e.g., LICAM clone UJ127 or 5G3)
for the analyses for patients with PD vs HCs. We did not
perform such analyses for other diseases due to the small
number of studies included.

Descriptive statistics of the meta diagnostic analysis
including the sensitivity, specificity, FPR, diagnostic odds
ratio (DOR), positive likelihood ratio (posLR), and negative
likelihood ratio (neglL.R) for each included analysis are sum-
marized in Table 2.

PD vs control

Sixteen studies attempted to differentiate patients with PD
from HCs using biomarkers in speculative nEVs [1, 5, 11,
16-18, 25, 35, 37-39, 43, 48, 50, 52], oEVs [11, 43], and/
or aEVs [46]. The AUC ranged between 0.610 and 0.915
with the highest AUC obtained in 2023 from Wang et al.
[46], while the sensitivity (Fig. 2A) and specificity (Fig. 2B)
ranged between 0.10-0.97 and 0.50-0.95, respectively. The
chi-square (x2) equality test revealed high heterogeneity for
sensitivity (X2 =312.45, df =23, p<0.0001) and specificity
(X2 =345.19, df =223, p <0.0001). Both crosshair and ROC
ellipse plots confirmed the heterogeneity present (Fig. S1A,
B). Univariate Forest plots of the DOR, posLR, and negL.R
for each individual analysis are shown in Fig. 2C-E.

Bivariate and HSROC models (Table 3), each dem-
onstrated a fair discriminatory ability of the diagnostic
test. These models independently suggested that measuring
biomarkers in speculative CNS-enriched EVs achieved fair
accuracy in distinguishing patients with PD from HCs.

Heterogeneity (/%) values showed significant variations
depending on the approach utilized. Zhou and Dendukuri
[51] reported a value of 35.1%, while Holling's sample size
unadjusted [33] had values ranging from 87.7% to 93.5%,
and the adjusted values ranging between 7.3% and 9.2%.
However, all approaches generally indicated substantial het-
erogeneity across the studies, suggesting that the variability
in the results cannot be attributed solely to random chance
but rather to differences between the studies themselves,
supporting the crosshair and ROC ellipse plots. It is also in
agreement with the fact that studies measuring biomarkers in
speculative CNS-enriched EVs generally suffer from failure
of independent validation, which could be due to methodo-
logical and expertise heterogeneities. Though, as mentioned
in the introduction, failure of independent validation and
replication is often observed. This is the case even when the
same methodology is employed.
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The HSROC for this model is provided in Fig. 2F. The
model suggested that measurement of biomarkers in specu-
lative CNS-enriched EVs for distinguishing patients with PD
from HCs may not be promising. The summary line shows
an inverse relationship between sensitivity and specificity,
indicative of a threshold effect, with the line being far away
from the upper left corner. Moreover, while some studies
achieved high sensitivity and specificity, the combined mean
indicated that this test only achieves a fair distinguishing
ability.

Importantly, few studies subdivided patients with PD
to early vs advanced stages [5, 18, 25, 48, 50, 52] or only
included patients with early-stage PD [39] using the Hoehn
and Yahr scale: early-PD: 1-2 and late-PD: 3-5 [5, 50, 52],
early-PD: <2 [25, 48], <2 with disease duration <5 years
[18] or 1-2.5 and drug-naive [39]. Two of these studies [18,
25] attempted to differentiate patients with early-stage PD
from HCs from similar research groups. Unfortunately, one
of them [25] had the lowest sensitivity and specificity. This
suggested that biomarkers in speculative CNS-enriched EVs
may not be a good way to discriminate early-stage patients
with PD from HCs despite it being the most clinically
desired outcome of the test.

All statistical tests conducted to assess publication bias
in our analysis consistently indicated the presence of such
bias. Begg’s correlation test revealed a significant positive
correlation between InDOR and its variance (tau=0.48, p
value=0.0016; Fig. 3A), implying that larger effect sizes
were associated with greater variances. Similarly, Egger’s
regression test showed a significant positive relationship
between the InDOR and the standard error of the InDOR
(slope=5.092, SE=1.45r=3.51, p=0.0019; Fig. 3B), sug-
gesting that smaller studies, which tend to have larger stand-
ard errors, were reporting larger effect sizes than what would
be expected if there was no bias. Finally, Deek’s regres-
sion test also indicated potential publication bias, with a
significant positive slope (slope =34.39, SE=9.19, r=3.74,
p=0.0011; Fig. 3C) showing that studies with smaller effec-
tive sample sizes were associated with larger effect sizes.
Further examination of publication bias using Deek’s funnel
plot (Fig. 3D) and a bivariate bagplot (Fig. 3E) also sug-
gested the presence of publication bias.

Importantly, Duval and Tweedie's trim-and-fill method
[36], a non-parametric method of adjusting for publication
bias, estimated that there were approximately 5 studies miss-
ing from our meta-analysis due to publication bias. These
missing studies are hypothesized to be on the left side of
the funnel plot (see white circles in Fig. 3F), indicating
smaller studies with lower DORs, and therefore may explain
why they were not published. When these missing studies
were imputed and included in a random-effects model, the
adjusted diagnostic odds ratio became 1.77 (SE=0.27,95%
CI: 1.23-2.30, z=6.46, p <0.0001). This suggested that

when adjusting for potential publication bias, the diagnos-
tic effect for using biomarkers in speculative CNS-enriched
EVs for patients with PD vs HCs is much smaller than what
is reported in the literature.

Collectively, the hierarchical bivariate model revealed
moderate diagnostic accuracy of patients with PD from HCs
using biomarkers in speculative CNS-enriched EVs, but with
high heterogeneity and unreliability. Publication bias analy-
ses showed that smaller studies with non-significant or low
effects size results have been less likely to be published.
Unsurprisingly, this is to be expected as alluded to previ-
ously [40, 41], there has been consistent failure of independ-
ent validation across studies using speculative CNS-enriched
EVs, likely due to EVs being very sensitive to various pre-
analytical factors [40], high complexity of methodologies
used to isolate speculative CNS-enriched EVs as well as
user differences in handling, among others. Even though
measuring biomarkers in speculative CNS-enriched EV's for
patients with PD vs HCs has been popular since 2014, only
few studies currently exist, further indicating that studies
with null results might not have been published. When the
trim-and-fill method was used to account for the estimated
five missing studies, the diagnostic effect for patients with
PD vs HCs decreased substantially.

PD vs control: sub-analysis by media, antibody
clone, and quantification methodology

As described above, several pre-analytical factors may affect
the EV signature obtained from plasma or serum. Recent
studies suggested that plasma provides superior accuracy
and reliability in comparison to serum for EV biomarker
analysis [40], while the anti-L1CAM antibody clone UJ127
has been reported to cross-react with a-syn proteoforms
[26].

In the present meta-analysis, we observed distinct dif-
ferences between studies using plasma and serum. The
plasma model (Table S4) yielded an overall lower diagnos-
tic accuracy in comparison to the serum model (Table S5).
Comparison of the hierarchical bivariate HSROC (Fig. 4A)
obtained from studies using plasma [5, 18, 25, 37, 38,
46, 48, 50, 52] or serum [1, 11, 16, 17, 35, 39, 43] also
suggested that the studies using serum had, on average,
slightly better accuracy, though there was a decent overlap
in the confidence intervals of both models.

It should also be noted that three [16, 17, 35] and two
[11, 43] studies using serum, respectively, originated
from the same research group while the majority of stud-
ies using plasma originated from unique research groups,
suggesting a potential overlap in methodologies in studies
using serum. Another potential explanation for the dis-
crepancy in accuracy between plasma and serum studies
is the way coagulation factors are handled. Many of the

@ Springer
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studies using plasma did not treat it with thrombin fol-
lowed by a high-speed centrifugation to remove these fac-
tors despite using ExoQuick, a polymer-based precipita-
tion technique, for EV isolation. ExoQuick's guidelines
recommend removing the coagulation factors to prevent
the precipitation of an insoluble fibrin pellet after addi-
tion of ExoQuick and subsequent centrifugation, which
can potentially skew the measurements. Moreover, the
current scientific literature lacks details on how these
coagulation factors or the presence of a fibrin pellet might
impact the quantification of biomarkers within EVs. As
such, these differences in the number of studies and poten-
tial methodological biases do not definitively establish one
medium as superior over the other. Further independent
studies focusing on these issues are needed to draw more
conclusive comparisons.

Comparisons of studies using the anti-L1CAM antibody
clone UJ127 (Table S6) vs 5G3 (Table S7) showed that stud-
ies using the 5G3 clone obtained a slightly higher accuracy
though significant overlap was observed (Fig. 4B). Moreo-
ver, the studies included quantified a-syn using bead-based
techniques (e.g., Simoa and Luminex), electrochemilumis-
cence ELISA (ECLIA) or ELISA, and as such, we compared
the diagnostic accuracy of these methodologies. The results
(Fig. 4C, Table S8) showed that ECLIA and ELISA obtained
similar accuracies while bead-based methods achieved the
lowest accuracy. We did not perform additional sub-analyses
due to the small number of studies.

PD vs HCs: speculative CNS-enriched EVs vs general
EVs

As EVs are speculated to communicate cell-state-specific
messages from the CNS to the peripheral circulation, meas-
urement of biomarkers in speculative CNS-enriched EVs
to distinguish patients with PD from HCs has been popu-
lar [13]. Speculative CNS-enriched EVs are often cap-
tured through direct immunoprecipitation or as a part of
a two-step procedure where EVs are first isolated using a
polymer-based precipitation technique (e.g., ExoQuick) or
ultracentrifugation and nEVs, oEVs, or aEVs are immuno-
precipitated using beads coupled to the chosen antibodies.
Herein, we compared the diagnostic accuracy of biomarkers
in general EVs [42] vs speculative CNS-enriched EVs.
Comparison of the bivariate and HSROC model statis-
tics revealed that biomarkers in general EVs [42] have a
higher diagnostic accuracy vs speculative CNS-enriched
EVs (Table 4). Both methodologies showed evidence of
publication bias, but the trim-and-fill method identified
fewer missing studies in general EV biomarkers (2 out of
21) compared to speculative CNS-enriched EV biomarkers
(5 out of 16), suggesting less publication bias in the former.
We observed that only a single study [48] used biomarkers in

general EVs and speculative CNS-enriched EV's for distin-
guishing between patients with PD and HCs. The rationale
for the omission of such biomarkers in general EVs for diag-
nosis before transitioning to speculative CNS-enriched EVs
remains unclear. It's important to highlight that isolation of
speculative CNS-enriched EVs is notably more complex,
time-consuming, and labor-intensive than general EVs.

PD vs MSA

Only six studies attempted to differentiate patients with
PD from MSA [11, 16, 17, 43, 46, 49]. The AUC ranged
between 0.709 and 0.980 while the sensitivity (Fig. 5A)
and specificity (Fig. 5B) ranged between 0.53-0.96 and
0.64-0.92, respectively. Similarly, to the above, the chi-
square (Xz) equality test revealed high heterogeneity for
sensitivity (X2 =131.63, df=7, p<0.0001) and specific-
ity (Xzz 57.84, df =7, p<0.0001). Both the crosshair
and ROC ellipse plots confirmed the heterogeneity pre-
sent (Fig. S2A-B). Univariate Forest plots of the DOR,
posLR, and negL.R for each individual analysis are shown
in Fig. 5C-E. Bivariate and HSROC models’ summary
statistics are provided in Table 5.

Heterogeneity (I%) values exhibited variations based
on the approach employed, similar to the aforementioned
findings. The Zhou and Dendukuri approach estimated the
heterogeneity at 49.7%. The Holling sample size unad-
justed approaches reported higher levels of heterogeneity
ranging from 90.9% to 92.2%, while adjusted approaches
indicated lower levels of heterogeneity ranging from 8.3%
to 12%. These findings suggested substantial heterogene-
ity across the studies, indicating that the variability in the
results may not be due solely to random chance but rather
to differences among the studies.

The HSROC curve for this model is provided in Fig. SF.
The summary line was found to be distant from the upper
left corner, suggesting that measurement of biomarkers in
speculative CNS-enriched EVs for distinguishing patients
with PD from MSA may not be promising. Moreover,
while some studies achieved good sensitivity and speci-
ficity, the combined mean for sensitivity and specificity
(shown as the circle) indicated that this test only achieved
a fair distinguishing ability.

Publication bias assessment using Begg’s correlation
(Fig. S3A) and Egger’s regression test (Fig. S3B) revealed
no publication bias. However, Deek’s regression indicated
that there may be some publication bias (slope =—55.86,
SE=11.35,t=-4.92, p=0.0017, Fig. S3C). Further exami-
nation using Deek’s funnel plot (Fig. S3D), bagplots (Fig.
S3E), and the trim-and-fill method (Fig. S3F) suggested no
publication bias.

@ Springer
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A Univariate forest plot for sensitivity B Univariate forest plot for specificity C Univariate forest plot for DOR
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Fig.2 Diagnostic accuracy of biomarkers

enriched EVs for the differential diagnosis of Parkinson’s disease
(PD) from healthy controls (HCs). A-E Univariate Forest plots for
sensitivity, specificity, diagnostic odds ratio (DOR), positive (posLR)
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the mean summary estimate of sensitivities and specificities using a
bivariate model. The summary line is obtained from a hierarchical
SROC model. CNS central nervous system; EVis extracellular vesicles
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Specificity
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Table 3 Meta-analysis of Model Variable Coefficient estimate + SE (95% CI)
diagnostic accuracy for patients
with Parkinson’s disease vs Summary statistic ~ Sensitivity 0.725+0.038 (0.644-0.793)
Stea‘ﬁgt‘i :?::rt‘l’lls sammary | Specificity 0.759-£0.031 (0.692-0.814)
hierarchal summary receiver DOR 8.29+2.15 (4.98-13.79)
operating characteristic posLR 3.00+0.423 (2.28-3.96)
(HSROC) models negLR 0.362+0.053 (0.272-0.482)
1/negLR 2.76+0.403 (2.07-3.67)
Bivariate Logit-transformed sensitivity 0.970+0.191 (0.595-1.34)
Logit-transformed sensitivity variance 1.14+0.170 (0.812-1.48)
Logit-transformed specificity 0.813+0.272 (0.421-1.57)
Logit-transformed specificity variance 0.618 +0.207 (0.320-1.19)
Correlation between sensitivity and specificity ~ 0.035+0.222 (-0.381-0.439)
AUC (partial AUC) 0.800 (0.692)
HSROC Lambda (A) 2.13+0.261 (1.62-2.64)
Theta (©) -0.160+0.172 (-0.498-0.178)
Beta (f) -0.137+0.237 (-0.601-0.327)
Variance A 1.47 +0.468 (0.785-2.74)

Variance ©

0.342+0.113 (0.179-0.655)
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Begg's Test Scatter Plot

Funnel Plot with Egger's Test Regression Line

Deeks' Test Scatter Plot

A Begg's Test: T = 0.48, p-value = 0.00064 B Egger's Test: slope = 5.092, SE = 1.45, t = 3.51, p = 0.0019 C Deeks' Test: slope = 34.39, SE = 9.19, t = 3.74, p = 0.0011
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Fig.3 Publication bias was assessed using A Begg’s correlation,
B Egger’s regression, C Deek’s regression, D Deek’s funnel plot,
E A bagplot and F Funnel plot after application of the trim-and-fill
method for biomarkers in speculative CNS-enriched EVs for the dif-
ferential diagnosis of Parkinson’s disease from healthy controls. Col-

PD vs PSP and CBS

As only two studies attempted to differentiate patients with
PD from PSP and CBS [16, 24] and one from FTD, PSP, and
CBS [17], we used a univariate approach for this analysis.

Crosshair (Fig. S4A) and ROC ellipse plots (Fig. S4B)
suggested low heterogeneity. Forest plots of sensitiv-
ity, specificity, DOR, posLR, and negLLR are shown in
Fig. 6A-E. The model provided an AUC of 0.961 (95% CI:
0.920-1.0), indicating high discriminatory ability. The cor-
relation estimate between sensitivity and FPR was -0.185
(95% CI: -0.973-0.944). The wide confidence interval and
the presence of both positive and negative values indi-
cated low precision, high variability, and uncertainty in the
correlation estimate. The coefficient 0 of 0.041 (95% CI:
—0.0058-0.087; plotted as SROC in Fig. 6F) provided sup-
port for the utility of this model. The smaller the coefficient
0, the larger the area under the ROC curve, resulting in larger
accuracy of the model.

With low heterogeneity (chi-square quality test under het-
erogeneity: X2 =4.11, df =2, p value=0.13), high accuracy

lectively, they suggested a substantial presence of publication bias.
The trim-and-fill method estimated five missing studies (white cir-
cles) on the left side of the figure with either small or null diagnostic
accuracy. CNS central nervous system; EVs extracellular vesicles

and larger overall standardized mean difference of biomark-
ers in patients with PD vs PSP and CBS [41], measuring
biomarkers in speculative CNS-enriched EVs to differenti-
ate patients with PD from PSP and CBS may be promis-
ing. However, as the results came only from three studies,
two of which are from the same research group [16, 17],
interpretation and generalizability are limited. A significant
challenge in the field arises from the lack of independent
validation across studies, and to combat such issue, it is
essential to obtain similar results across different laborato-
ries and cohorts.

Assessment of publication bias using Begg’s correlation
(Fig. S5A), Egger’s regression (Fig. S5B), Deek’s regression
(Fig. S5C) tests, Deek’s funnel plot (Fig. S5D), bagplots
(Fig. S5E), and funnel plots using the trim-and-fill method
(Fig. S5F) suggested no publication bias.

MSA vs control

Three studies attempted to differentiate patients with MSA
from HCs [11, 43, 49] and were analyzed using a univariate

@ Springer
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tification methodology. CNS central nervous system; ECLIA elec-
trochemilumiscence ELISA; ELISA enzyme-linked immunosorbent
assay; EVs extracellular vesicles; LI CAM L1 cell adhesion molecule

Table 4 Comparison between general EVs [42] vs speculative CNS-enriched EVs for diagnosing patients with Parkinson’s disease (PD) from
healthy controls using a bivariate and hierarchal summary receiver operating characteristics (HSROC) model. Reproduced from Taha et al. [42]

EV source Mean sensitivity (95% CI) Mean specificity (95% CI) Pooled AUC (par- Mean DOR +SE (95% CI)
tial AUC))

General EVs [42] 84.4% (77.7-90.7%) 79.1% (72.5-84.0%) 0.852 (0.672) 21.6+1.3 (12.0-38.9)

CNS-enriched EVs 72.5% (64.4-79.3%) 75.9% (69.2-81.4%) 0.800 (0.692) 8.3+2.1(5.0-13.8)

The sensitivity, specificity, pooled area under the curve (AUC) and partial AUC, focusing on a specific range of false-positive rates (FPR), are
obtained using the bivariate model. The diagnostic odds ratio (DOR) is obtained from the HSROC model

EV extracellular vesicles; CNS central nervous system; SE standard error

approach. The Forest plots for sensitivity, specificity, DOR,
posLR, and negLR are shown in Fig. 7A-E. The coefficient
0 of 0.17 (95% CI: —0.55-0.89; plotted as SROC in Fig. 7F)
indicated that this model is not promising for diagnosing
patients with MSA from HCs despite what is reported in the
literature [11, 43]. The large coefficient 0 suggested smaller
AUC and lesser accuracy of this model. Close inspection
of the SROC (Fig. 7F) also suggested large variability and
heterogeneity, in support of crosshair (Fig. S6A) and ROC
ellipse (Fig. S6B) plots.

Assessment of publication bias using Begg’s correlation
(Fig. S7A), Egger’s regression (Fig. S7B), Deek’s regression
(Fig. S7C) tests, Deek’s funnel plot (Fig. S7D), bagplots
(Fig. STE), and funnel plots using the trim-and-fill method
(Fig. S7F) revealed that only Egger’s regression test sus-
pected publication bias.

Synucleinopathy vs prodromal synucleinopathy
RBD and PAF are recognized as prodromal disorders that
are likely to progress and develop into one of the three synu-

cleinopathies [8, 29]. None of the studies with a RBD cohort
in the present meta-analysis [17, 35, 48] provided ROC

@ Springer

discriminatory models for the disease against PD or DLB
except for MSA [17]. Moreover, no study included a PAF
cohort, precluding our ability to conduct a meta-analysis.

RBD vs control

Three studies evaluated biomarkers in speculative nEVs in
an attempt to differentiate patients with RBD vs HCs [17,
35, 48] and were analyzed using a univariate approach.
The Forest plots for sensitivity, specificity, DOR, posLR,
and neglR are shown in Fig. 8A—E. The large coefficient 0
of 0.14 (95% CI: —0.17-0.45; plotted as SROC in Fig. 8F)
indicated that this model may not be promising in dis-
tinguishing patients with RBD from HCs as it suggested
smaller AUC and lesser accuracy. Close inspection of the
SROC (Fig. 8F) also suggested large variability and het-
erogeneity, in support of crosshair (Fig. S§8A) and ROC
ellipse (Fig. S8B) plots. Since the number of studies was
small, with one study not reporting any false positives
[35], we did not assess publication bias.



Journal of Neurology (2024) 271:1680-1706

1699

Univariate forest plot for sensitivity

A
Yu et al. 2020 —a— 0.62[0.50, 0.73]
Yu et al. 2020 —a— 0.53 [0.41, 0.65]
Wang et al. 2023 - 0.78[0.71, 0.84]
Jiang et al. 2020 L] 0.96 [0.93, 0.98]
Jiang et al. 2021 ] 0.82[0.73, 0.89]
Jiang et al. 2021 (] 0.91[0.83, 0.95]
Dutta et al. 2021 (il 0.89[0.82, 0.94]
Taha et al. 2023 0.80 [0.70, 0.88]
Taha et al. 2023 0.95[0.88, 0.98]

i
.
—r T T 1
0.41 0.69 0.98
Sensitivity

Univariate forest plot for posLR

D
Yu et al. 2020 i 3.42[1.98, 5.89]
Yu etal. 2020 [ 350[1.89, 6.47]
Wang et al. 2023 ——i 7.50 [4.68, 12.01]

Jiang et al. 2020 —a—— 12.04[8.13, 17.84]

Jiang et al. 2021 —— 6.08 [ 3.56, 10.39]
Jiang et al. 2021 - 2.53[1.90, 3.37]
Dutta et al. 2021 - 6.57 [4.02, 10.74]

Taha et al. 2023 —— 7.63[3.92,14.82]

Taha et al. 2023 L3l 3.22[2.34, 4.44)

T 1 1 1
1.89 9.87 17.84

Positive Likelihood Ratio

Fig.5 Diagnostic accuracy of biomarkers in speculative CNS-
enriched EVs for the differential diagnosis of Parkinson’s disease
(PD) from multiple system atrophy (MSA). A-E Univariate Forest
plots for sensitivity, specificity, diagnostic odds ratio (DOR), positive
(posLR) and negative (negLR) likelihood ratios, respectively. F Sum-

Univariate forest plot for specificity

Univariate forest plot for DOR

0.54 0.74 0.95

Specificity

Univariate forest plot for negLR

F
Yu et al. 2020 —— 0.46 [0.33, 0.64] 1
Yu et al. 2020 —— 0.55[0.42, 0.73] 8
Wang et al. 2023 [ 0.24[0.18, 0.33] ‘E‘ 6
Jiang etal. 2020 m 0.05[0.03, 0.08] ?, 4
Jiang et al. 2021 . 0.21[0.13,0.33] @ >
Jiang et al. 2021 . 0.14[0.07, 0.28] .0
Dutta et al. 2021 e 0.12[0.07,0.22] 1
Taha et al. 2023 - 0.22[0.14,0.35)
Taha et al. 2023 - 0.08[0.03,0.18]

T T 1 1
0.03 0.38 0.73

Negative Likelihood Ratio

vesicles

C

Yu et al. 2020 e 0.82[0.71, 0.89] Yu etal. 2020 M 7.38[ 3.32, 16.41)
Yu et al. 2020 —e— 0.85[0.74,0.92] Yu et al. 2020 " 6.32[ 2.76, 14.48)
Wang et al. 2023 - 0.90[0.84,0.93] Wang et al. 2023 - 31.14[16.33, 59.37)
Jiang et al. 2020 e 0.92([0.88, 0.95] Jiang et al. 2020 a1 266.96 [130.21, 547.34]
Jiang et al. 2021 —a— 0.87[0.78,0.92] Jiang et al. 2021 - 20.28[12.97, 66.08]
Jiang et al. 2021 | 0.64 [0.54, 0.73] 5

Jiang et al. 2021 - 18.04 [ 7.74, 42.01)
Dutta et al. 2021 e 0.86 [0.78, 0.92]

Dutta et al. 2021 it 53.17[22.91, 123.37)
Taha et al. 2023 —a—i 0.89[0.81, 0.95]

Taha et al. 2023 - 34.57[13.71, 87.18]
Taha et al. 2023 —a— 0.71[0.61,0.79]

Taha et al. 2023 i 41.8915.30, 114.65)

T T T
| N R S —

2.76 275.05 547.34

Diagnostic Odds Ratio

°  Study estimate
®  Summary point
—— HSROC curve
95% confidence
region
95% prediction
region

8 6 4 2 0
Specificity

mary receiver operating characteristics (SROC). The dotted circle
shows the mean summary estimate of sensitivities and specificities
using a bivariate model. The summary line is obtained from a hier-
archical SROC model. CNS central nervous system; EVs extracellular

Té.lble 5 Meta—analysis of Model
diagnostic accuracy for

Variable

Coefficient estimate + SE (95% CI)

patients with Parkinson’s
disease vs multiple system
atrophy summary statistics for
the bivariate and hierarchal
summary receiver operating
characteristic (HSROC) models

Bivariate

HSROC

Summary statistic

Sensitivity

Specificity

DOR

posLR

negLR

1/negLR

Logit-transformed sensitivity
Logit-transformed sensitivity variance
Logit-transformed specificity
Logit-transformed specificity variance
Correlation between sensitivity and specificity
AUC (partial AUC)

Lambda (A)

Theta (®)

Beta (f)

Variance A

Variance ©

0.845+0.042 (0.743-0.912)
0.845+0.027 (0.784-0.891)
29.71 +10.825 (14.54-60.68)
5.44+0.959 (3.85-7.68)
0.183+0.050 (0.107-0.312)
5.46+1.49 (3.20-9.32)
170 +0.325 (1.06-2.33)
1.69+0.207 (1.29-2.10)
0.855 +0.448 (0.306-2.39)
0.303+0.171 (0.100-0.915)
-0.140 +0.394 (-0.729-0.569)
0.903 (0.866)
3.51+0.385 (2.75-4.26)
0.443+0.381 (-1.19-0.304)
-0.520+0.382 (-1.36-0.230)
0.875+0.488 (0.293-2.61)
0.290+0.161 (0.098-0.859)

@ Springer



1700

Journal of Neurology (2024) 271:1680-1706

Univariate forest plot for sensitivity

Univariate forest plot for specificity

A
Jiang et al. 2020 3! 0.94[0.91, 0.96]
Jiang etal. 2021  —=— 0.82[0.75, 0.87]
Jiang et al. 2021 =] 1.00 [0.97, 1.00]
Meloni et al. 2023 —a 0.94[0.88, 0.97]
T 1 T 1

0.75 0.87 1.00

Sensitivity

Univariate forest plot for posLR

Univariate forest plot for DOR

c

Jiang et al. 2020 23] 5.88 [5.26, 6.50]
Jiang et al. 2020 e 0.96 [0.93, 0.97]

Jiang et al. 2021 H 3.23[2.63, 3.83]
Jiang et al. 2021 [a— 0.85[0.78, 0.90]

Jiang et al. 2021 ——a—— 859[5.73, 11.45]
Jiang et al. 2021 - 0.95[0.90, 0.97]

Meloni et al. 2023 = 3.49[2.61, 4.38]
Meloni et al. 2023  —=— 0.67 [0.58, 0.75] Summary (DSL) Q 4.92[3.18, 6.67]

T T 11
0.58 0.78 0.97

Specificity

Univariate forest plot for negLR

—r 1 T 1
261 7.03 11.45

log diagnostic odds ratio

SROC curve (univariate model) for PD vs. PSP and CBS

D E F
2 o
o — o
o | / o
Jiang et al. 2020 = 22.60 [14.28, 35.78] Jiang et al. 2020 . 0.06 [0.04, 0.09] ° <
© o
@4
Jiang etal. 2021 jmi 543[3.71, 7.93] Jiang et al. 2021 —=—  0.22]0.15,0.30] Z
3
]
Jiang et al. 2021 = 18.20[9.51,35.17] Jiang etal. 2021 w— 0.00 [0.00, 0.05] <
©
S
Meloni et al. 2023  w 2.86[2.19, 3.75] Meloni et al. 2023 —-— 0.09 [0.04, 0.19]
<
]
| I . 1 1 T 1 T T T T T T T
219 18.98 35.78 0.00 0.15 0.30 0.0 0.1 0.2 03 0.4 0.5 0.6

Positive Likelihood Ratio

Fig.6 Diagnostic accuracy of biomarkers in speculative CNS-
enriched EVs for the differential diagnosis of Parkinson’s disease
(PD) from progressive supranuclear palsy (PSP) and corticobasal
syndrome (CBS). A-E Univariate Forest plots for sensitivity, speci-

Discussion

The lack of precise and accurate biomarkers for parkinsonian
disorders, including PD, MSA, DLB, PSP, and CBS, often
leads to misdiagnoses, hampering patients' ability to receive
appropriate and timely care. The inability to predict prodro-
mal disease conversion from RBD and/or PAF to a synucle-
inopathy further compounds this problem. These challenges
are not only distressing for the patients who are left uncer-
tain about their health status and future, but also for the phy-
sicians who strive to provide optimal care. Measurement of
biomarkers in speculative CNS-enriched EVs isolated from
the blood has been popular due to their hypothesized abil-
ity to contain cell-state-specific biomarkers and traverse the
blood-brain barrier to the peripheral circulation. The current
meta-analysis encompassed 18 studies [1, 5, 11, 16-18, 24,
25, 35, 37-39, 43, 46, 48-50, 52] with 1695 patients with
PD, 253 with MSA, 21 with DLB, 172 with PSP, 152 with
CBS, 189 with RBD and 1288 HCs (Table 1) and aimed to
evaluate the diagnostic accuracy of biomarkers in specula-
tive CNS-enriched EVs for parkinsonian disorders (Fig. 9).

@ Springer

Negative Likelihood Ratio

False Positive Rate

ficity, diagnostic odds ratio (DOR), positive (posLR) and negative
(negLR) likelihood ratios, respectively. F Summary receiver oper-
ating characteristics (SROC) using a univariate model. CNS central
nervous system; EVs extracellular vesicles

Studies (n=16) attempting to differentiate patients
with PD from HCs exhibited considerable variability in
sensitivity (Fig. 2A) and specificities, (Fig. 2B), indicat-
ing potential methodological inconsistencies among them.
The analysis showed that while biomarkers in speculative
CNS-enriched EVs achieved a fair ability in distinguishing
patients with PD from HCs (Fig. 2F, Table 3), the results
were plagued by high heterogeneity and potential publica-
tion bias (Fig. 3A-F), casting doubts on the reliability of
these findings. Furthermore, our examination using the trim-
and-fill method suggested that smaller studies with lower
or non-significant diagnostic odds ratios (n=35) have been
less likely to be published (white circles in Fig. 3F). This
revealed a substantial overestimation of the diagnostic utility
of biomarkers in speculative CNS-enriched EVs for patients
with PD.

Comparing the diagnostic accuracy of biomarkers in
speculative CNS-enriched EVs isolated from the plasma
(Table S4) vs serum (Table S5), suggested that serum may
be superior in accuracy (Fig. 4A). However, three and two
studies out of 7 using serum were from the same research
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Fig.7 Diagnostic accuracy of biomarkers in speculative CNS-
enriched EVs for the differential diagnosis of multiple system atrophy
(MSA) from healthy controls (HCs). A-E Univariate Forest plots for
sensitivity, specificity, diagnostic odds ratio (DOR), positive (posLR)

group while all studies using plasma were mostly from
unique research groups, suggesting possible bias in stud-
ies using serum. Further comparisons by the anti-L1CAM
antibody clone UJ127 (Table S6) vs 5G3 (Table S7) did
not reveal substantial differences with large overlap in the
confidence intervals, though studies using the 5G3 clone
obtained a slightly higher accuracy (Fig. 4B). Comparison
of studies based on quantification methodology (Fig. 4C,
Table S8) revealed that ELISA achieved the highest diag-
nostic accuracy followed by ECLIA and bead-based arrays
(i.e., Simoa, Luminex). We also noted that general EVs [42]
obtained better diagnostic accuracy and less publication than
speculative CNS-enriched EVs (Table 4) as the trim-and-fill
method estimated 2 missing studies out of 21 vs 5 out of 16
for the former and latter, respectively.

On the other hand, six studies [11, 16, 17, 43, 46, 49]
attempted to differentiate patients with PD from MSA and
provided mixed results. The analysis (Table 5) revealed wide-
ranging values for sensitivity (Fig. SA), specificity (Fig. 5B),
and DOR (Fig. 5C), underlining the significant variability

and negative (negLR) likelihood ratios, respectively. F Summary
receiver operating characteristics (SROC) using a univariate model.
CNS central nervous system; EVs extracellular vesicles

among these studies. Although the collective AUC was 0.903
(Fig. 5F), suggesting a reasonable diagnostic test's discrimina-
tory capacity, the substantial heterogeneity in the results raises
concerns about the reliability of the findings.

Only three studies [16, 17, 24] attempted to distinguish
patients with PD from those with PSP and CBS. The results,
while promising with an AUC=0.961 (Fig. 6F), are under-
mined by wide confidence intervals and both positive and
negative values in the correlation estimate between sensitiv-
ity and FPR (-0.185, 95% CI: —0.973-0.944). This vari-
ability indicated uncertainty in the reliability of these find-
ings. The studies exhibited low heterogeneity, which usually
strengthens the findings; however, considering two of the
three studies originated from the same research group [16,
17], this limited pool restricted the conclusions' generaliz-
ability. More diverse research is required to confirm these
results and establish the potential of biomarkers in specula-
tive CNS-enriched EVs in differentiating patients with PD
from PSP and CBS.
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Fig.8 Diagnostic accuracy of biomarkers in speculative CNS-
enriched EVs for the differential diagnosis of REM behavior disorder
(RBD) from healthy controls (HCs). A—E Univariate Forest plots for

Three studies attempted to differentiate patients with MSA
from HCs, but despite prior reports of successful differen-
tiation [11, 43], our analysis suggested that this approach
may not be as promising. A high coefficient 6 (0.17, 95%
CI: —0.55-0.89, Fig. 7F), indicating smaller AUC and lesser
accuracy, along with large variability and heterogeneity raises
concerns about the reliability of this diagnostic approach.

The prodromal disorders RBD and PAF are considered to
eventually convert into one of the three synucleinopathies: PD,
MSA, and/or DLB. However, none of the studies that included
an RBD cohort [17, 35, 48] provided a ROC discriminatory
model for the disease against patients with PD or DLB, except
for MSA [36], while no study to date examined biomarkers
in speculative CNS-enriched EVs for the prodromal disorder
PAF. The attempt to differentiate patients with RBD from
HCs in three studies [17, 35, 48] also appears unpromising, as
suggested by the large coefficient 0 (0.14, 95% CI: -0.17-0.45;
Fig. 8F) indicating smaller AUC and lesser accuracy, along
with significant variability and heterogeneity.

Notably, one critical challenge is that studies measuring
biomarkers in speculative CNS-enriched EVs suffer from
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sensitivity, specificity, diagnostic odds ratio (DOR), positive (posLR)
and negative (negLR) likelihood ratios, respectively. F Summary
receiver operating characteristics (SROC) using a univariate model

a failure of independent validation and replication, even
when the same methodology is employed. There is also a
lack of standardization of pre-analytical factors in obtaining
speculative CNS-enriched EVs despite them being highly
sensitive to these pre-analytical factors [40], which further
complicates the generalizability of such a test in the clinic.

Importantly, most studies did not adequately detail infor-
mation concerning pharmacological treatments, such as type,
duration and dosage, which are likely to alter the EVs signa-
ture. There was also a notable absence of data on race/eth-
nicity and potential comorbidities, all of which can influence
the outcomes. It is imperative that studies using speculative
CNS-enriched EVs or general EVs provide a thorough and
detailed methodology of blood handling through the EV-
TRACK platform [7] as previously reported [40—42] along
with comprehensive information on the pre-analytical factors.
These include but are not limited to fasting status before blood
collection, the time of day when blood was collected, the dura-
tion of the blood collection process, the needle size used, the
specific method and duration for blood layer separation, and
the type of tube utilized. Additionally, considerations such as
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Fig.9 Summary receiver operating characteristic (SROC) compari-
sons for patients with Parkinson’s disease (PD), multiple system atro-
phy (MSA), progressive supranuclear palsy (PSP), corticobasal syn-
drome (CBS) and REM behavior disorder (RBD)

the nature of transport, whether the tube was oriented vertically
or horizontally, the chosen anticoagulation agent mixed with
plasma, centrifugation techniques, the number of freeze—thaw
cycles, platelet-depletion processes, storage conditions (includ-
ing time and temperature), defibrinization treatments, and the
methodologies for freezing EVs or EV lysates after isolation
and lysis should also be meticulously documented [40].

In the broader landscape of clinical practice, this meta-
analysis uncovers crucial concerns. Though individual stud-
ies may seem promising, the current meta-analysis suggested
otherwise. Diverse methodologies and variations among the
studies using speculative CNS-enriched EVs challenge the
reliability of these findings for everyday clinical application.
Most critically, such inconsistencies hampers the successful
development of a dependable biomarker for parkinsonian
disorders. Finding such biomarkers could serve multifaceted
roles: diagnosing the diseases, providing prognosis insights,
distinguishing the mamong one another or from HCs, track-
ing disease progression, monitoring and anticipating how a
patient might respond to treatment, initial screening, evaluat-
ing patient risk, stratifying patients in clinical trials, inter-
preting drug behavior and responses in the body, discover-
ing the origins and mechanisms of the disorder, identifying
environmental triggers or exposures, and playing a key role
as primary or alternative measures in clinical research trials.
Moreover, having a reliable biomarker would alleviate the
undue stress and concerns faced by patients and their fami-
lies due to uncertainties in diagnosis or prognosis.

As the search for reliable biomarkers in parkinsonian dis-
orders persists, it becomes evident that a more standardized
and rigorous approach is imperative in the field. As we move
forward, greater emphasis should be placed on improving study
design and minimizing bias, enhancing the comparability and
reproducibility of findings, and addressing the heterogene-
ity in the results. Current efforts by the International Society
for Extracellular Vesicles (ISEV) [44] and others [7, 15] aim
toward more rigorous reporting and standardization to enhance
accuracy and reproducibility of research utilizing EVs.

Conclusion

Our comprehensive meta-analysis underscores current lim-
itations and challenges associated with the use of specu-
lative CNS-enriched EVs as diagnostic biomarkers for
parkinsonian disorders. The significant methodological
inconsistencies across studies, combined with high levels
of heterogeneity and potential publication bias, considerably
undermine the reliability of these findings. Furthermore, the
occasional signs of diagnostic promise are frequently off-
set by the presence of considerable variability, publication
bias, and the lack of independent validation across differ-
ent research groups. The absence of standardized protocols
for pre-analytical factors, which are critical in determining
the accuracy of EV-based biomarkers, further compounds
these issues. All these aspects culminate in a rather sober-
ing picture, suggesting that this approach may not provide
the anticipated breakthrough in the diagnosis of parkinso-
nian disorders. As we navigate through the complexities of
these debilitating diseases, it is becoming increasingly clear
that we may need to re-evaluate our strategies, either by
adopting more rigorous standardization and reporting [15]
as suggested through current efforts by ISEV [44] and others
[7] or exploring alternative avenues for effective biomarker
discovery. While the journey ahead may be challenging,
our continued pursuit of this endeavor remains crucial in
transforming the landscape of discovering biomarkers for
parkinsonian disorders diagnosis and management.
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