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Abstract
Background Stroke-associated pneumonia (SAP) is a preventable determinant for poor outcome after stroke. Machine learn-
ing (ML) using large-scale clinical data warehouses may be able to predict SAP and identify patients for targeted interven-
tions. The aim of this study was to develop a prediction model for identifying clinically apparent SAP using automated ML.
Methods The ML model used clinical and laboratory parameters along with heart rate (HR), heart rate variability (HRV), 
and blood pressure (BP) values obtained during the first 48 h after stroke unit admission. A logistic regression classifier was 
developed and internally validated with a nested-cross-validation (nCV) approach. For every shuffle, the model was first 
trained and validated with a fixed threshold for 0.9 sensitivity, then finally tested on the out-of-sample data and benchmarked 
against a widely validated clinical score (A2DS2).
Results We identified 2390 eligible patients admitted to two-stroke units at Charité between October 2020 and June 2023, 
of whom 1755 had all parameters available. SAP was diagnosed in 96/1755 (5.5%). Circadian profiles in HR, HRV, and BP 
metrics during the first 48 h after admission exhibited distinct differences between patients with SAP diagnosis vs. those 
without. CRP, mRS at admission, leukocyte count, high-frequency power in HRV, stroke severity at admission, sex, and 
diastolic BP were identified as the most informative ML features. We obtained an AUC of 0.91 (CI 0.88–0.95) for the ML 
model on the out-of-sample data in comparison to an AUC of 0.84 (CI 0.76–0.91) for the previously established A2DS2 
score (p < 0.001). The ML model provided a sensitivity of 0.87 (CI 0.75–0.97) with a corresponding specificity of 0.82 (CI 
0.78–0.85) which outperformed the A2DS2 score for multiple cutoffs.
Conclusions Automated, data warehouse-based prediction of clinically apparent SAP in the stroke unit setting is feasible, 
benefits from the inclusion of vital signs, and could be useful for identifying high-risk patients or prophylactic pneumonia 
management in clinical routine.
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Introduction

Prognosis after stroke is often poor, with more than 40% of 
patients becoming disabled, institutionalized, or dying within 
3 months of the index event [1]. Early medical intervention 
to treat major modifiable factors may limit mortality and 
morbidity in stroke [2, 3]. In particular stroke-associated 
pneumonia (SAP) is consistently associated with a high risk 
of early mortality in acute stroke [4–6]. The pathogenesis of 
SAP includes a stroke-induced immunodepression character-
ized by lymphopenia as well as lymphocytic and monocytic 
dysfunction impairing antibacterial defenses [14, 15, 30, 32]. 
The stroke-induced immunodepression may protect against 
excessive neuroinflammation but increases the risk of post-
stroke infections, especially pneumonia [7, 8]. Several clinical 
parameters are associated with SAP including old age, stroke 
severity, autonomic dysfunction, impaired consciousness and, 
most importantly, dysphagia and immune dysfunction [8–10, 
33–35]. However, identifying patients at high risk for SAP 
remains challenging and is currently not broadly implemented 
in clinical routine despite the availability of widely validated 
risk scores like the A2DS2 score [15]. The increasing avail-
ability of clinical data warehouses for large-scale data acquisi-
tion and analysis in many clinical centers may provide novel 
opportunities for automated, machine learning (ML)-based 
predictions of SAP and targeted timely interventions.

To gauge SAP risk caused by immune dysfunction, mark-
ers related to the intricate interaction between the autonomic 
nervous system (ANS) and the immune system may be par-
ticularly useful. Specifically, while a well-regulated ANS is 
crucial for maintaining immune homeostasis, stroke may lead 
to altered cardiovascular function and dysregulation of the 
ANS, affecting the balance between sympathetic and para-
sympathetic activity. These changes in the ANS are reflected 
in the electrocardiography and blood pressure monitoring data 
of stroke patients [36].

In this retrospective study, we developed, validated and out-
of-sample tested a prognostic ML model for predicting the 
risk of pneumonia after stroke. Taking into consideration ANS 
and immune system interactions and relying on our previous 
work [36], in addition to common predictive features based 
on demographics, comorbidities, and clinical characteristics, 
we incorporate features derived from electrocardiography and 
blood pressure monitoring data into an ML model to inves-
tigate their impact on SAP prediction for the first time. The 
model is applicable for automated use in the stroke unit setting 
during the acute phase after admission.

Materials and methods

Dataset

All patients diagnosed with nontraumatic hemorrhagic 
(ICD-10: I61.-) or ischemic stroke (ICD-10: I63.-) in one 
of two separate stroke units at Charité—Universitätsmedi-
zin Berlin, Germany, between October 2020 and June 2023 
were initially selected. The two stroke units, consisting 
of a total of 20 monitoring beds, allowed data transfer 
and integration into the Data Warehouse Connect (DWC) 
system (Philips) for long-term storage of monitoring data. 
The Charité/BIH (Berlin Institute of Health) Health Data 
Lake (HDL), a Hadoop-based platform that allows the 
storage of a multitude of clinical, epidemiological, lab-
oratory, and monitoring data, was used for further data 
integration, harmonization, and analysis. Usage and analy-
sis of the data were approved by the Institutional Review 
Board of Charité—Universitätsmedizin Berlin. Electrocar-
diogram (ECG) data were recorded with Philips MP30 and 
MP50 monitors and stored for analysis in the data lake. 
We collected all beat-to-beat intervals from heartbeats 
marked by the Philips monitors for up to 48 h after admis-
sion. Besides ECG measures, the data lake also contained 
a comprehensive set of additional parameters from each 
patient, including blood pressure values, laboratory values, 
clinical scores, and diagnoses. SAP was diagnosed by the 
treating physician based on clinical symptoms and/or sug-
gestive clinical examination and/or radiological findings 
and/or microbiological evidence of pulmonary infection 
in the stroke unit.

A2DS2—a clinical score to benchmark machine learn-
ing (ML)-based prediction.

The A2DS2 score was developed previously as a prog-
nostic score for predicting the risk of pneumonia after 
ischemic stroke [10]. Table 1 summarizes how the score 
is composed on an ordinal scale from 0 to 10. We used this 
score to benchmark ML-based predictions of SAP.

Table 1  A2DS2 score

Clinical Variables on Admission Assigned Points

Age 75 +  + 1
Atrial fibrillation  + 1
Dysphagia  + 2
Sex (male)  + 1
Stroke severity (NIHSS, National Institutes of Health Stroke Scale)
 0–4 0
 5–15
 16 + 

 + 3
 + 5
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Feature selection for machine learning

Our goal was to develop a prediction algorithm for SAP 
based on data from the first 48 h after stroke unit admis-
sion, which would be suitable for automated use in a data 
warehouse setting. Based on previous studies [10, 11], the 
following selection of risk factors was coded into features 
and included in this study for the ML-based prediction of 
SAP. First, A2DS2 score variables requiring little patient 
history were collected: age (numeric), sex (binary), and 
National Institute of Health Stroke Scale (NIHSS, numeric) 
at admission. Furthermore, we included a modified Rankin 
Scale (mRS, numeric) at admission and the presence of 
ischemic or intracranial hemorrhage (I63, binary) as addi-
tional features along with laboratory values, including CRP 
(binary, < 5 mg/l or not) and leukocyte count (binary, within 
3.9–10.5 ×  109/L or not), that were recorded within 48 h after 
admission. Finally, based on the available monitoring data, 
heart rate (HR, from ECG), heart rate variability (HRV, from 
ECG), and blood pressure (BP) metrics were calculated for 
the first 48 h after patient admission. Both non-invasive 
(NBP) and arterial (ABP) blood pressure measurements 
were included based on availability.

Calculation of heart rate, heart rate variability, 
and blood pressure metrics.

HRV measured within 24–72 h after stroke onset has been 
investigated as a potential prognostic indicator [36–38]. 
Accordingly, we evaluated HR, HRV, and BP during the 
initial 48 h after admission.

For the calculation of HR/HRV-associated metrics, we 
collected heartbeat data in the form of beat-to-beat inter-
vals (RR) of consecutive heartbeats directly from the Philips 
monitors. Adhering to common standards we divided the 
data into 5-min segments [39]. Removing ectopic beats 
entirely from the data led to a high decrease in patient num-
bers. Therefore, instead of exclusively analyzing normal 
heartbeat data, we deployed an artifact detection and correc-
tion, as well as a detrending method, described by Lipponen 
and Travainen [41, 42].

Keeping in mind the circadian variations of the monitor-
ing metrics over the day, we calculated a 24-h time course 
for each patient and metric. For HR and BP (systolic, dias-
tolic, mean), we derived the median value for each hour 
of the day from the averaged 5-min segments of the hour, 
respectively. The median of the HRV metrics was equally 
obtained by considering the values of all available 5-min 
segments for the respective hour. Patients were only consid-
ered for analysis if all metrics could be derived for at least 
10 out of 24 h (Fig. 1).

Compliant with current field standards, we calculated the 
following five HRV measures using the NeuroKit2 python 
toolbox [39, 40]: SDNN (standard deviation of beat-to-beat 
intervals), RMSSD (root mean square of successive RR 
intervals), LF (low-frequency power, 0.04–0.15 Hz), HF 
(high-frequency power, 0.15–0.4 Hz) and the ratio of LF/
HF. Finally, ML features were generated by averaging each 
metric over the 24 values of individual hours, with an excep-
tion of the HR, where only values between 21:00 and 7:00 
were averaged to better capture the circadian characteristics 
following previous work [36] (Fig. 2, gray shaded area).

Fig. 1  Flow chart of patient 
selection. # No SAP diagnosis 
documented in quality manage-
ment system, but other pneumo-
nia documented within 7 days 
of admission in a separate data 
asset; patients thus removed due 
to unclear classification.
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Machine learning: training, validation, 
out‑of‑sample testing

We employed a supervised logistic regression model to 
predict the development of clinically apparent SAP as a 
binary classification. We assessed algorithm performance 
using a nested cross-validation (nCV) approach: The 
whole data set was split 100 times 4:1 into 80% training 
and validation sets and 20% out-of-sample testing sets. For 
reproducibility and comparability, we deployed Stratified-
ShuffleSplit of the scikit-learn python library with a fixed 
random state. For every shuffle, we applied a fivefold-CV 
grid search on the training and validation set, optimiz-
ing the area under the receiver-operating curve. Within 
the grid search, we trained a logistic regression classifier 
with a newton-cg solver and L2 penalty. Hyperparameters 
(C-values 0.001, 0.1, 1, 10, 100, 1000) were tuned for 
every fold and the best performing model was selected. 
Using the selected parameters of the best estimator, the 
logistic regression classifier was subsequently trained 
on the entire training and validation set of the respective 

shuffle. A threshold was then chosen to obtain a sensitivity 
of 0.9 or larger. This threshold was based on clinical con-
siderations [10, 13]. Finally, these trained models along 
with their selected thresholds were tested and evaluated 
on the unseen, out-of-sample test sets and performance 
metrics were averaged over the 100 shuffles.

The ML pipeline was compiled to balance and nor-
malize the data (using sklearn’s MinMaxScaler). We 
applied the Synthetic Minority Over-sampling Technique 
(SMOTE) to balance the two classes (SAP vs. no SAP) 
during training within the grid search. SMOTE is a form 
of data augmentation, where new samples are synthesized 
from existing examples. The new synthetic data points are 
generated by applying k-nearest-neighbors to a random 
sample of the minority class, then selecting a random 
member of the resulting k-neighbors and finally creating 
the synthetic sample at a randomly selected point between 
the initial point and its randomly chosen neighbor in the 
feature space. This way, synthetic samples are created until 
the dataset is balanced.

Fig. 2  Circadian profiles for the first 48  h after admission in HR, 
HRV, and BP metrics. Differences between SAP patients (red) and 
the non-SAP control group (blue) include an overall lower HR and 
a pronounced dip during the night (gray shaded area), significant dif-
ferences in all HRV metrics, as well as higher diastolic BP values in 

the control group. Error bars denote the standard error of the mean. 
ABP/NBP refers to invasive or non-invasive blood pressure values, 
whichever were available. *indicates p < 0.05 for difference between 
individual hours; Mann–Whitney-U-Test, Bonferroni corrected
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Performance assessment

We assessed average ML model performance on 100 ensem-
bles of unseen, out-of-sample test sets by calculating the 
area under the receiver-operator-characteristics (AUC), 
sensitivity, and specificity for every shuffle. Additionally, 
we calculated the A2DS2 score [10, 13] and assessed its 
classifying capabilities on every iteration both on the train-
ing and validation set as well as on hold-out test set and 
benchmarked the results against the ML performance. We 
obtained 95% confidence intervals of all metrics from boot-
strapping (n = 200).

Results

We identified 2390 eligible patients admitted to two stroke 
units between October 2020 and June 2023 matching our 
diagnosis criteria (Fig. 1A). From the initial selection, 635 
patients were excluded from further analysis due to either 
(1) missing laboratory or clinical values, (2) because no SAP 
diagnosis was recorded in the quality management system, 
but pneumonia was indicated within 7 days after admission 
in a broader clinical dataset, (3) missing blood pressure data, 
or (4) insufficient ECG data within the first 48 h (see flow-
chart in Fig. 1). To fully evaluate the circadian profiles of 
HR and HRV, we required HR/HRV data to cover at least 
10 h in each patient. For the remaining 1755 patients, SAP 
was diagnosed in 96/1,755 (5.5%). The baseline character-
istics of the patients are summarized in Table 2.

Figure 2 shows HR, HRV, and BP values for patients with 
(red) and without (blue) SAP diagnosis. Differences between 
the groups included an overall lower HR and a pronounced 
HR dip during the night (gray shaded area), lower values 
for HRV (with exception for LF/HF), as well as generally 
higher diastolic BP in the control group. The distinct dif-
ferences between the groups thus motivated the use of HR, 
HRV, and BP as additional features in ML. Average values 
of these metrics were consequently combined with clinical 
and laboratory features to obtain a feature vector for each 
patient consisting of age, sex, main diagnosis (I61.- or I63.-
), NIHSS at admission, mRS at admission, CRP, leukocyte 
count, HR, SDNN, RMSSD, LF, HF, LF/HF, systolic BP, 
diastolic BP and mean BP. These features were selected to 
allow for maximized automation when implemented in a 
data warehouse and stroke unit setting, as they only require 
minimal patient history or clinical tests.

With these features, we obtained an AUC of 0.91 (95% 
CI 0.88–0.95) for the ML model on the out-of-sample 
test data. Similarly, we calculated an AUC of 0.84 (CI 
0.76–0.91; Fig. 3A) for the A2DS2 score as a benchmark 
for our model. ML provided a significantly higher AUC 
than A2DS2 (p < 0.001, Wilcoxon signed-rank test). With 

the fixed sensitivity thresholds of 0.9 obtained during train-
ing and validation, the ML model provided a sensitivity 
of 0.87 (CI 0.75–0.97) and a corresponding specificity of 
0.82 (CI 0.78–0.85) on the out-of-sample test data. The ML 
model demonstrated superior performance compared to the 
A2DS2 score, achieving higher specificity at A2DS2 cutoffs 
of 2 (specificity 0.42, CI 0.37–0.46), 3 (specificity 0.62, CI 
0.58–0.66), and 4 (specificity 0.71, CI 0.67–0.75), all while 
maintaining a high level of sensitivity.

Shapley values identified the most informative features 
during training and validation as CRP, mRS at admission, 
leukocyte count, HF, NIHSS at admission, sex, and diastolic 
BP followed by systolic BP, age, and HR while LF, LF/HF, 
SDNN, RMSSD and type of stroke (I63/I61) only had a mar-
ginal impact on model classification (Fig. 4).

Discussion

Our study developed a prognostic ML model for predict-
ing the risk of post-stroke pneumonia during the acute 
phase of the index event. It is applicable for automated use 
in the stroke unit. We used clinical and laboratory param-
eters known to be predictive for SAP, which are routinely 
collected and do not require extensive history taking or 
additional tests. We extended these features by including 
physiological parameters from HR, HRV, and BP obtained 
during the first 48 h after admission, which exhibited distinct 
profiles in SAP patients compared to controls.

Importantly, to our knowledge, our study represents the 
first clinical-scale and ML-based investigation to include 
heart rate variability (HRV) and associated variables and 
vitals related to ANS function for SAP prediction. We aimed 
to integrate these distinct circadian profiles in our model, 
including the nocturnal non-dipping of heart rate [36]. On 
out-of-sample data, the ML method provided good discrimi-
nation performance between patients developing SAP vs. 
those that did not, outperforming a previously developed 
scoring system [10].

Previous research has identified several predictive bio-
markers of SAP [15, 26]. Blood-based biomarkers included 
immune, inflammatory, and stress-related proteins as well 
as ratios and indices such as the neutrophil-to-lymphocyte 
ratio (NLR), systemic immune-inflammation index (SII), 
platelet-to-lymphocyte ratio (PLR), and systemic inflamma-
tion response index (SIRI), of which the NLR was reported 
as the best predictor for SAP occurrence [24]. Heart rate 
variability [27] and in particular very low-frequency HRV 
[28], an index of integrative autonomic-humoral control, has 
been reported as an early marker of sub-acute post-stroke 
infections, including in experimental models [29]. However, 
these biomarkers only marginally improved the prediction 
of SAP over routine clinical parameters [23, 28]. Thus, 
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careful evaluation of prognostic markers is needed [25]. It 
is reassuring that our data-driven approach identified CRP, 
leukocyte count, HR, and diastolic BP among the informa-
tive ML features which are classical parameters for infection 
diagnosis.

Using prognostic markers, several SAP prediction 
scores have been proposed, including the A2DS2 score, the 
22-point ISAN score, the PNA score, and the ACDD score. 
The ICH-LR2S2 score has been developed specifically for 
SAP after acute intracranial hemorrhage [19]. Comparative 
internal or external validations of these scores have been 
performed [13, 20–22]. A large external validation study 
reported the A2DS2 score to have the highest sensitivity 
(87%) and the AIS-APS score to have the highest specific-
ity (92.8%) [20]. Another comparative study concluded that 

the clinical prediction scores varied in their simplicity of 
use and, while comparable in performance, their utility for 
preventive intervention trials and in clinical practice required 
further investigation [21]. More recently, ML-based predic-
tion of SAP, including methods based on natural language 
processing, has also been explored [17, 18]. These studies 
reported AUCs of 0.84 which is below the AUC of 0.91 
reported here.

In this context, it is important to note that any score and 
ML model also requires a cutoff or threshold to be provided 
along with the respective score or ML model to be useful 
for everyday clinical application and decision support. While 
AUC is a convenient measure that takes into account many 
potential cutoffs or thresholds to quantify the general dis-
criminative power of a score or ML model, a pre-determined 

Table 2  Baseline characteristics

* Values between 21:00–07:00 h averaged to capture circadian dynamics
# Feature coding (binary) explained in Methods section

Characteristics total SAP no SAP

No 1,755 96 1,659
Age (years)
 Mean (SD) 73.8 (13.1) 81.1 (8.8) 73.4 (13.1)
 Median (IQR) 77.0 (67.0–83.0) 82.0 (75.0–86.2) 77.0 (65.0–83.0)
 Male sex, no. (%) 960 (54.7) 46 (47.9) 914 (55.1)

Stroke type, no. (%)
 I61.* 95 (5.4) 10 (10.4) 85 (5.1)
 I63.* 1,660 (94.6) 86 (89.6) 1,574 (94.9)

NIHSS (admission)
 Mean (SD) 4.8 (5.6) 12.7 (7.1) 4.4 (5.2)
 Median (IQR) 3.0 (1.0–6.0) 12.5 (7.0–18.0) 2.0 (1.0–6.0)

mRS (admission)
 Mean (SD) 2.5 (1.6) 4.3 (1.1) 2.4 (1.6)
 Median (IQR) 2.0 (1.0–4.0) 5.0 (4.0–5.0) 2.0 (1.0–4.0)
 Dysphagia, no. (%) 44 (2.5) 6 (6.2) 38 (2.3)

Comorbidities, no. (%)
 Hypertension 1360 (77.5) 77 (80.2) 1283 (77.3)
 Diabetes mellitus 424 (24.2) 28 (29.2) 396 (23.9)
 Atrial fibrillation 453 (25.8) 42 (43.8) 411 (24.8)

Laboratory, mean (SD)
  CRP# 0.45 (0.5) 0.96 (0.2) 0.42 (0.5)
 Leukocyte  count# 0.31 (0.46) 0.77 (0.42) 0.29 (0.45)

Monitoring, mean (SD)
 Heart rate (beats/min)* 70.9 (13.2) 81.2 (16.6) 70.3 (12.7)
 SDNN (ms) 64.5 (53.3) 81.7 (56.9) 63.5 (52.9)
 RMSSD (ms) 75.1 (83.3) 105.9 (83.9) 73.3 (82.9)
 LF  (ms2/Hz) 0.0182 (0.0102) 0.0232 (0.0119) 0.0179 (0.0101)
 HF  (ms2/Hz) 0.0272 (0.0259) 0.0456 (0.0281) 0.0262 (0.0254)
 LF/HF 2.0 (2.0) 1.1 (1.3) 2.0 (2.0)
 Systolic blood pressure (mmHg) 134.3 (16.4) 137.8 (16.4) 134.1 (16.3)
 Diastolic blood pressure (mmHg) 74.6 (11.5) 69.7 (13.1) 74.9 (11.3)
 Mean blood pressure (mmHg) 94.6 (11.3) 92.4 (11.6) 94.7 (11.2)
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threshold is required to be established for clinical use. Many 
studies have not provided such a pre-determined, fixed cutoff 
based on which to derive sensitivity and specificity when 
externally testing the performance. By choosing the best 
threshold post hoc, sensitivity, and specificity values may 
thus potentially appear over-optimistic. In contrast, we here 
determined a threshold from training data only and based on 
clinical considerations (i.e., sensitivity equal or above 0.9) 
to make the approach applicable for real-world use. We then 

applied this fixed threshold to the out-of-sample test data for 
evaluation of sensitivity and specificity.

The development of a prediction score that identifies 
stroke patients at risk for stroke-associated pneumonia has 
important clinical implications. By identifying high-risk 
patients, healthcare providers could take proactive steps 
to prevent the development of pneumonia, like to intensify 
methods of pneumonia prophylaxis such as implementing 
measures to reduce the risk of aspiration (such as optimizing 

A B

Fig. 3  Performance of the trained logistic regression model. A aver-
aged receiver-operating-characteristics curves with averaged con-
fidence intervals (filled) for the out-of-sample testing data indicate 
a performance gain of the ML model in comparison to the A2DS2 
benchmark. B sensitivity (filled) and specificity (hatched) of the ML 
model (orange) benchmarked against the A2DS2 score (blue) for dif-

ferent cut-off points (2, 3, 4). With a fixed sensitivity threshold of 0.9 
or larger (fixed during validation), the model achieved a higher speci-
ficity when compared to the A2DS2 score at similar sensitivity levels 
in validation and out-of-sample test data. Error bars denote 95% con-
fidence intervals

A B

Fig. 4  Shapley values (SHAP) indicate feature importance on the 
model decision for 100 shuffles of nested cross-validation. A SHAP 
summary plot. Positive/negative values indicate the impact of a par-
ticular feature to make SAP diagnosis more/less likely, while colors 

denote whether feature values driving this decision were high or low. 
B SHAP feature importance measured as the mean absolute Shapley 
values. Error bars indicate standard deviations across 100 shuffles
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the patient's position during feeding and adapting food con-
sistency), targeted speech and language therapy, more in-
depth clinical examinations as well as more frequent blood 
tests to check for signs of infection [12, 31].

While preventive antibiotic therapy did not improve 
functional outcomes after stroke, local immunomodulation 
could open up a new research opportunity to find preventive 
management for SAP [15, 26]. The benefits of robust SAP 
prediction regarding patient wellbeing, but also health care 
costs could be substantial: shorter hospital stays, less—or 
timelier and more targeted—use of expensive antibiotics 
with potential side effects (which could slow the develop-
ment of antibiotic resistances), and better long-term outcome 
after stroke and much more. In this context, it is an interest-
ing question whether the altered HRV biomarkers analyzed 
here could also serve as potential targets for preventive 
measures. Exploring the therapeutic implications and the 
possibility of mitigating the risk of aspiration pneumonia 
by modulating HRV should be a relevant focus of future 
research.

Limitations of this study are inherited in its retrospec-
tive setting. Prospective validation in an external patient 
cohort would enhance validity. In our study, the presence of 
SAP was defined according to the discretion of the treating 
physician. Although the diagnosis of SAP follows PISCES 
recommendations, standardized recording and evaluation of 
all diagnostic criteria in each case would improve interpre-
tation of the results [16]. Compared with previous inter-
nal and external validation studies, we found a surprisingly 
high level of discrimination for the A2DS2 score. Previous 
analyses showed this capability to be highly dependent on 
the thoroughness of the SAP definition applied. However, 
the reported frequency of SAP in this cohort is well in line 
with previous studies. The A2DS2 score exhibited similar 
performance compared to previous studies [10]. From the 
ML perspective, the comparatively low frequency of SAP 
in both the training and the testing datasets is a challenge, 
as in unbalanced datasets ML algorithms tend to classify all 
instances as the majority class (in this case, no SAP), if not 
addressed properly. We have tried to solve this problem by 
using the widely used Synthetic Minority Over-sampling 
Technique (SMOTE) which helped to improve the perfor-
mance of our algorithm. Finally, it will be interesting to 
replicate our results in other post-stroke infections, such as 
urinary tract infections (UTIs) or colitis. We here chose to 
focus on SAP as the target outcome as it is the most com-
mon post-stroke infection that occurs only a few days after 
stroke. Future work should determine the generalizability of 
our approach to other post-stroke infections.

In summary, our results show that automated, data 
warehouse-based predictions of clinically apparent SAP in 
the stroke unit setting are feasible and benefit from includ-
ing parameters of autonomic nervous system function. 

Such predictions could be useful for identifying high-
risk patients, tailor monitoring, and facilitate studies on 
prophylactic pneumonia management in clinical routine. 
Future prospective validation studies, however, are needed 
to fully assess its performance and generalizability prior to 
a potential implementation into the clinical routine.
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