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Abstract
Background Treatment-related motor complications may develop progressively over the course of Parkinson’s disease (PD).
Objective We investigated intrinsic brain networks functional connectivity (FC) at baseline in a cohort of early PD patients 
which successively developed treatment-related motor complications over 4 years.
Methods Baseline MRI images of 88 drug-naïve PD patients and 20 healthy controls were analyzed. After the baseline 
assessments, all PD patients were prescribed with dopaminergic treatment and yearly clinically re-assessed. At the 4-year 
follow-up, 36 patients have developed treatment-related motor complications (PD-Compl) whereas 52 had not (PD-no-
Compl). Single-subject and group-level independent component analyses were used to investigate FC changes within the 
major large-scale resting-state networks at baseline. A multivariate Cox regression model was used to explore baseline 
predictors of treatment-related motor complications at 4-year follow-up.
Results At baseline, an increased FC in the right middle frontal gyrus within the frontoparietal network as well as a decreased 
connectivity in the left cuneus within the default-mode network were detected in PD-Compl compared with PD-no-Compl. 
PD-Compl patients showed a preserved sensorimotor FC compared to controls. FC differences were found to be independent 
predictors of treatment-related motor complications over time.
Conclusion Our findings demonstrated that specific FC differences may characterize drug-naïve PD patients more prone to 
develop treatment-related complications. These findings may reflect the presence of an intrinsic vulnerability across frontal 
and prefrontal circuits, which may be potentially targeted as a future biomarker in clinical trials.
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Introduction

Despite considerable advances in pharmacotherapy, levo-
dopa remains the mainstay for treatment of Parkinson 
disease (PD) due to its superior efficacy [1]. However, 
long-term levodopa stimulation is associated with the devel-
opment of treatment-related motor complications, mainly 
motor fluctuations and levodopa-induced dyskinesia (LID). 
These disabling phenomena occur in 40–60% of patients 

with PD after 5 years of treatment [2] and can markedly 
impair patients’ quality of life [2].

Several factors have been associated with later treatment-
related motor complications, yet not able to comprehen-
sively explain their risk over time [1–3]. A combined effect 
of chronic dopaminergic stimulation together with intrinsic 
biological factors such as sex, age, genetic expression pro-
file, and the progressive neuronal alterations induced by the 
neurodegeneration has been proposed to be involved in the 
development of these troublesome symptoms [2].

Individual prediction of motor complications would be 
dramatically helpful for therapeutic management in patients 
with PD, particularly since treatment options are limited.

Functional MRI (fMRI) provides evidence of brain 
neural connectivity and plasticity by means of the blood 
oxygenation level-dependent phenomenon [4]. When fMRI 
sequences are acquired at rest (i.e., resting-state fMRI, 
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rs-fMRI), it is possible to map the spontaneous fluctuations 
of the BOLD signals which synchronically coactivated in 
different brain regions over specific time series within the 
so-called resting-state functional networks (RSNs) [4]. Evi-
dence that the reorganization of RSNs occurs in aging and 
in pathological brains [4, 5] even before neuronal death or 
brain atrophy suggests a potential for rs-fMRI to provide 
sensitive and early markers of neurodegenerative processes.

Previous MRI studies in patients with treatment-related 
motor complications showed the presence of disrupted func-
tional and structural connectivity within the cortico-striatal 
pathway [6]. However, the modulatory effect of dopaminer-
gic treatment over this network has been consistently shown 
in PD patients, with and without motor complications [6]. 
Thus, while these studies may provide evidence of disease- 
and treatment-related connectivity changes occurring in 
the brain at the time of complications development, it is 
yet not possible to infer whether those differences repre-
sent an intrinsic predisposing vulnerability to be potentially 
anticipated.

Two PET studies showed that higher dopaminergic levels 
and turnover may predict the future development of motor 
complications in early PD patients [7, 8]. In previous stud-
ies, we have demonstrated the presence of early connectivity 
differences within frontal and frontostriatal circuits in drug-
naïve PD patients [9–11], also showing a specific divergence 
by sex [10] and sensitivity to dopaminergic treatments [9].

In this study, we aimed to investigate whether baseline 
functional connectivity patterns over motor and non-motor 
networks may be associated to later treatment-related motor 
complications in a longitudinal cohort of drug-naïve PD 
patients. We hypothesize that early dysfunctional or even 
compensatory deviations may be detected in the early stages 
of PD and may represent a disease-intrinsic predisposing 
factor likely interplaying with dopaminergic treatment and 
other neurodegeneration-related processes occurring over 
the disease course. This unique architecture may potentially 
be used to predict disease progression in the early stages of 
the disease and to foster individualized treatment strategies.

Materials and methods

Study population

The study sample was recruited from an ongoing longitu-
dinal project enrolling consecutive patients with early PD 
diagnosed according to the modified diagnostic criteria of 
the UK Parkinson’s Disease Society Brain Bank [12] at the 
Movement Disorders Unit of the First Division of Neurology 
at the University of Campania “Luigi Vanvitelli” (Naples, 
Italy). As previously described [10, 11], patients enrolled in 
this longitudinal cohort underwent an extensive motor and 

non-motor assessment at the time they were diagnosed with 
PD. After the baseline assessments, patients were prospec-
tively followed with a full clinical evaluation every year.

In this study, drug-naïve PD patients with a modified 
Hoehn and Yahr (mH&Y) [13] stage ≤ 2.5 at baseline were 
included. Exclusion criteria were: (1) PD onset before age 
40 years; (2) any previous treatment with dopaminergic, 
anticholinergic, antidepressant, or other centrally acting 
drugs, to rule out a potential effect on functional connec-
tivity from these agents; (3) relevant cognitive impairment 
associated with PD according to consensus criteria [14, 15]; 
and (4) any other neurological disorder or clinically signifi-
cant medical condition. Moreover, 20 healthy age- and sex-
matched healthy controls (HC), with no familiar history of 
PD nor parkinsonism, were also enrolled.

All the subjects signed their written informed consent 
prior the inclusion in the study. The study was approved by 
the ethics committee of the University of Campania “Luigi 
Vanvitelli”, Naples, Italy.

Study design

At baseline, we collected clinical and imaging data in the 
morning, in the same day, in distinct sessions. One week 
after the baseline assessments, all patients started a dopa-
minergic treatment which was determined according to their 
motor status by two trained clinicians, following current 
international guidelines [16]. Then PD patients were fol-
lowed for an observation period, lasting 4 years, undergoing 
an extensive clinical follow-up every 12 months.

At each follow-up visit, motor features were re-assessed 
by the same clinicians, and treatment details were registered. 
According to the motor outcome of each patient and to the 
presence of complications, dopaminergic regimen was modi-
fied as needed.

Each patient who was diagnosed with treatment-related 
motor complications (as described below), at the time of 
any follow-up visit, was sub-grouped as PD-Compl and 
discharged from the observation period. Patients with PD 
who did not develop any treatment-related motor compli-
cations throughout the observation period of 4 years were 
sub-grouped as PD-no-Compl.

Clinical motor and neuropsychological assessments

Disease severity and motor performance were assessed 
using the mH&Y stages [13] and the Unified Parkinson’s 
Disease Rating Scale part III (UPDRS III) [17], at base-
line and at each follow-up visit. Moreover, the presence of 
any treatment-related motor complications was assessed by 
means of the UPDRS part IV [17] (A-B subscales). Patients 
were considered to present motor complications if the total 
score of A-B subscales was ≥ 1. At each follow-up visit, the 
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levodopa equivalent daily dose (LEDD) was calculated for 
both dopamine agonists (LEDD-DA) and dopamine ago-
nists + L-dopa (total LEDD) [18].

Global cognition in patients and HC was assessed by 
means of Montreal Cognitive Assessment (MoCA) [14, 19] 
and Mini-Mental State Examination (MMSE) [20], respec-
tively. All patients performed a comprehensive neuropsy-
chological battery including tests to explore the following 
cognitive domains: attention and working memory (digit 
span backward [21, 22], and Trail Making Test-A [23, 24]), 
memory (Rey’s Auditory Verbal Learning Test—delayed 
recall [25, 26], and prose recall test [27, 28]), executive 
functions (letter fluency task [26, 29] and Modified Card 
Sorting Test [30, 31], number of achieved categories), visu-
ospatial abilities (Judgment of Line Orientation test [32, 
33] and drawing copying test [34]), and language (noun 
and verb denomination task [35]). Moreover, for noun and 
verb denomination tasks, we used internal normative data 
developed on 59 healthy controls (age: 61.50 ± 9.93; educa-
tion: 12.89 ± 3.77; male/female: 22/37) who were free from 
cognitive impairment (all had age- and education-adjusted 
MoCA scores higher than Italian cutoff score (15.5) [19]), 
and were matched to patients for age and education. Finally, 
cognitive domain z-scores (i.e., z-score executive, z-score 
attention/working memory, z-score visuospatial, z-score 
memory, z-score language) were computed by averaging 
z-scores of the neuropsychological tests included in the same 
domain.

Imaging parameters

Magnetic resonance images were acquired on a General 
Electric 3 Tesla MRI scanner equipped with an eight-chan-
nel parallel head coil. A 6-min fMRI sequence was acquired, 
consisting of 240 volumes of a repeated gradient-echo echo 
planar imaging T2*-weighted sequence (TR = 1508 ms, axial 
slices = 29, matrix = 64 × 64, field of view = 256 mm, thick-
ness = 4 mm, interslice gap = 0 mm). During the functional 
scan, subjects were asked to simply stay motionless, awake, 
with their eyes closed. Three-dimensional high-resolution 
T1-weighted sagittal images (GE sequence IR-FSPGR, 
TR = 6988 ms, TI = 1100 ms, TE = 3.9 ms, flip angle = 10, 
voxel size = 1 × 1 × 1.2  mm3) were acquired for registration 
and normalization of the functional images as well as for 
voxel-based morphometry (VBM) analysis.

Resting‑state fMRI pre‑processing and statistical 
analysis

Image data pre-processing and statistical analysis were 
performed with BrainVoyager QX (Brain Innovation BV, 
The Netherlands). Before statistical analyses, translational 
motion parameters were verified to be always less than 1 

functional voxel for all included participants. We further 
verified that there were no statistically significant differ-
ences in the mean frame-wise displacement (a surrogate 
metric of head motion accounting for intra-voxel residual 
motion effects) when carrying group comparisons and that 
adjusting the scores for mean frame-wise displacement 
did not affect the significance of the group effects. Then 
individual functional data were co-registered to their own 
anatomical data and spatially normalized to the standard 
Talairach space. Single-subject independent component 
analysis (ICA) was carried out on each pre-processed 
fMRI time series with the fastICA [36]. The ICASSO step 
was added to the extraction of single-subject ICA com-
ponents: ICASSO [37] is a validated procedure to ensure 
the maximal algorithmic and statistical stability of ICA 
components of neuroimaging time series and entails with 
running the FastICA algorithm many times (in our study, 
we set the number of repetitions to 20) with different ini-
tial values (algorithmic reliability) and with differently 
bootstrapped data sets (statistical reliability).

For each subject, 40 ICA components were extracted. 
The best matching between each single-subject ICA com-
ponent map and the network masks of the main physi-
ological RSNs (as derived from an external HC group) 
was determined from the highest goodness-of-fit, i.e., the 
highest difference between the average ICA score inside 
the mask and the average ICA score outside the mask [38]. 
Here we considered the most reported and investigated 
RSNs, i.e., the default-mode network (DMN), the senso-
rimotor network (SMN), the frontoparietal network (FPN), 
the ventral (VAN), and dorsal-attention (DAN) networks 
[39].

For homologue components corresponding to a given 
RSN template mask, a multi-subject random effects (RFX) 
analysis was carried out that treated the individual subject 
map values as random observations at each voxel. The net-
work masks were also applied to define the search volume 
for within-network group comparisons in a voxel-wise 
analysis of the ICA scores (i.e., PD-Compl vs. PD-no-
Compl; PD-Compl vs. HC; PD-no-Compl vs. HC). Then, 
a two-sample t test was computed at each voxel of the 
mask to produce a t-map of the differences. To correct for 
multiple comparisons across all voxel-wise comparisons, 
regional effects were only accepted for clusters of voxels 
exceeding a minimum size determined with a non-para-
metric randomization approach. Namely, an initial voxel-
level threshold was set to p < 0.05 (uncorrected) and then 
a minimum cluster size was estimated after 1000 Monte 
Carlo simulations that protected against false positive clus-
ters up to 5%. Sex effects were considered as covariates 
of no interest and linearly regressed out from the series of 
maps prior to statistical comparisons.
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VBM analysis

Data were processed and examined using SPM12 software 
(Wellcome Trust Centre for Neuroimaging, London, UK; 
http:// www. fil. ion. ucl. ac. uk/ spm), with default parameters 
incorporating the DARTEL toolbox, which was used to obtain 
a high-dimensional normalization protocol [40]. Images were 
bias-corrected, tissue-classified, and registered using linear 
(12-parameter affine) and non-linear transformations (warp-
ing) within a unified model. Subsequently, the warped grey 
matter (GM) segments were affine-transformed into Montreal 
Neurological Institute (MNI) space and were scaled by the Jac-
obian determinants of the deformations to account for the local 
compression and stretching that occurs as a consequence of the 
warping and affine transformation (modulated GM volumes). 
Finally, the modulated volumes were smoothed with a Gauss-
ian kernel of 8-mm full-width at half maximum (FWHM). The 
GM volume maps were statistically analyzed using the general 
linear model based on Gaussian random field theory. Statisti-
cal analysis consisted of an ANCOVA with total intracranial 
volume (TIV) and age as covariates of no interest. Statistical 
inference was performed at the voxel level, with a family-wise 
error (FWE) correction for multiple comparisons (p < 0.05).

Statistical analysis of clinical, motor, 
and neuropsychological data

Demographic data between PD sub-groups and controls 
were compared using ANOVA models. t test was used to 
compare clinical variables between PD-Compl and PD-no-
Compl sub-groups. Chi-square was used to determine differ-
ences in the distribution of categorical variables. Analyses 
were all Bonferroni corrected for multiple comparisons. To 
determine the independent predictors of treatment-related 
motor complications over time, univariate Cox regression 
was run including clinical (i.e., age, sex, disease duration 
and UPDRSIII at baseline and total LEDD at the end of the 
observation period) and functional imaging measures (i.e., 
average ICA scores). Factors significantly associated with 
the development of treatment-related motor complications 
at the 4-year follow-up in the univariate model as well as on 
the basis of clinical interest were included in a multivariate 
regression model. A p < 0.05 was considered statistically 
significant. Analyses were performed with SPSS version 20 
(SPSS Inc. Chicago, IL).

Results

Clinical findings

One hundred fifty-one drug-naïve PD patients were initially 
enrolled in the study. Four patients were excluded as they 

received an alternative diagnosis over the clinical observa-
tion (two subjects were diagnosed with multiple system 
atrophy; two cases with dementia with Lewy body). Over 
the observation period, 36 PD patients developed treatment-
related motor complications and were labeled as PD-Compl. 
In detail, 9 PD-Compl patients had only LID, while 17 had 
only motor fluctuations. Ten patients presented both LID 
and other motor fluctuations. Fifty-two PD patients did not 
develop motor complications and agreed to complete the 
4-year assessments, and were, therefore, labeled as PD-no-
Compl. We also enrolled 20 age- and sex-matched HC. At 
baseline, no significant demographic and clinical differences 
were detected between the two patients sub-groups (i.e., 
PD-Compl and PD-no-Compl). No differences in terms of 
LEDD and LEDD-DA were detected between PD-Compl 
and PD-no-Compl at the end of the observation period. Clin-
ical and demographic characteristics of patient sub-groups at 
baseline and at follow-up are shown in Table 1.

.

Imaging findings

Functional connectivity

PD‑Compl vs. PD‑no‑Compl (Fig.  1) Compared to PD-no-
Compl, PD-Compl showed an increased functional connec-
tivity in the right middle frontal gyrus (MFG, x = 39; y = 46; 
z = 10) within the FPN as well as a decreased functional 
connectivity in the left cuneus (x = − 3; y = − 70; z = 19) 
within the DMN (p < 0.05, corrected for multiple compari-
sons).

PD‑Compl vs. HC (Supplementary Fig. 1) Compared to HC, 
PD-Compl showed a decreased connectivity in the left 
superior parietal lobule within the DAN (x = − 16; y = − 67; 
z = 55); a decreased connectivity in the left medial frontal 
gyrus within the DMN (x = − 7; y = 62; z = 1); an increased 
functional connectivity in the right MFG (x = 39; y = 49; 
z = 13) within the FPN; a decreased connectivity in the right 
medial frontal gyrus within the VAN (x = 12; y = 5; z = 55). 
No differences were detected between PD-Compl patients 
and HC within the SMN (p < 0.05, corrected for multiple 
comparisons).

PD‑no‑Compl vs. HC (Supplementary Fig.  2) Compared 
to HC, PD-no-Compl showed an increased connectivity 
within the right precuneus (x = 15; y = − 67; z = 46) as 
well as a decreased connectivity in the left superior pari-
etal lobule (x = − 27; y = − 67; z = 58) within the DAN; 
a decreased connectivity in the left medial frontal gyrus 
(x = − 6; y = 62; z = 4) within the DMN; a decreased con-
nectivity in the left angular gyrus within the FPN (x = − 
46; y = − 70; z = 37); a decreased connectivity in the left 

http://www.fil.ion.ucl.ac.uk/spm
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paracentral lobule within the SMN (x = − 3; y = − 11; 
z = 46); a decreased connectivity in anterior cingulate cor-
tex within the VAN (x = − 6; y = 5; z = 46) (p < 0.05, cor-
rected for multiple comparisons).

VBM

No statistically significant differences in local gray matter 
atrophy were found between the two PD sub-groups and 
between all patients and HC (p < 0.05 FWE).

Regression analyses

Univariate and multivariate (including age, sex, disease 
duration, and UPDRSIII at baseline, total LEDD at the 
end of the observation period) Cox regression models indi-
cated that functional connectivity within the MFG (x = 39; 
y = 46; z = 10) and the left cuneus (x = − 3; y = − 70; z = 19) 
were independent predictors of treatment-related motor 

complications at 4-year follow-up in PD patients (p ≤ 0.001 
and p = 0.005, respectively) (Table 2).

Discussion

In this study, we analyzed the brain functional architecture 
within motor and non-motor networks at the disease onset 
in a cohort of drug-naïve PD patients who eventually devel-
oped treatment-related complications. Even before starting 
any dopaminergic treatment, PD-Compl patients showed: (i) 
an increased functional connectivity within the FPN com-
pared to PD-no-Compl patients and controls; (ii) a decreased 
functional connectivity within the DMN compared to PD-
no-Compl patients; (iii) a preserved functional connectivity 
within the SMN compared to controls.

Moreover, functional connectivity within the FPN and 
the DMN was found to be an independent predictor of treat-
ment-related motor complications over a 4-year follow-up 
period.

Table 1  Demographic and clinical features of PD patients and controls at baseline and at the end of the observation period

p values refer to ANOVA models, pairwise t test or χ2 as appropriate. Analyses were also Bonferroni corrected for multiple comparisons (for 
baseline variables 0.004 (0.05/12); for follow-up variables 0.02 (0.05/3)
PD Parkinson’s disease; HC healthy controls; SD  standard deviation; m months; mH&Y  modified Hoehn and Yahr; UPDRS Unified Parkinson’s 
Disease Rating Scale; MoCA Montreal Cognitive Assessment; MMSE Mini-Mental State Examination; WM working memory; LEDD levodopa 
equivalent dose; DA dopamine agonist

Variable HC (n = 20) mean ± SD PD-Compl (n = 36) 
mean ± SD

PD-no-Compl (n = 52) 
mean ± SD

p value

Baseline
 Age (y) 58.90 ± 5.83 59.92 ± 8.40 63.13 ± 9.04 0.96
 Education (y) 11.31 ± 3.90 10.36 ± 4.21 10.52 ± 3.79 1.00
 Sex (M/F) 12/8 14/22 31/21 1.00
 Disease duration (m) – 17.67 ± 6.52 14.65 ± 8.04 0.72
 mH&Y – 1.43 ± 0.54 1.48 ± 0.53 1.00
 UPDRS III – 19.72 ± 6.78 17.75 ± 8.07 1.00
 MoCA – 23.47 ± 4.28 23.20 ± 3.45 1.00
 MMSE 28.5 ± 1.12 – – –
 z-score attention/WM – − 0.30 ± 0.77 − 0.43 ± 0.98 1.00
 z-score memory – − 0.92 ± 0.73 − 0.90 ± 0.78 1.00
 z-score executive – − 0.29 ± 0.62 − 0.70 ± 1.20 1.00
 z-score language – − 0.02 ± 0.67 − 0.04 ± 0.49 1.00
 z-score visuospatial – − 1.15 ± 0.70 − 1.20 ± 1.32 1.00

Follow-up
 Dyskinesia (yes/no) – 19/17 – –
 Wearing-off (yes/no) – 27/9 – –
 UPDRS IV – 4.55 ± 1.61 – –
 Time to motor complications (m) – 33.78 ± 15.80 – –
 L-Dopa at treatment initiation (yes/no) – 13/23 28/24 0.30
 LEDD-dopa (end of study) – 326.39 ± 107.39 273.08 ± 170.19 0.30
 LEDD-DA (end of study) – 68.19 ± 116.43 69.77 ± 97.46 1.00
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Fig. 1  Resting-state network connectivity differences in PD patients 
with and without treatment-related motor complications. A, B Whole-
network significant connectivity differences between PD-Compl and 
PD-no-Compl patients. C, D Bar plots of the average ICA scores 

within the default-mode and the frontoparietal networks (**p < 0.001; 
*p < 0.05). Cold colors represent less, and hot colors represent more 
connectivity. ICA independent component analysis; R right; L left, 
MFG middle frontal gyrus

Table 2  Baseline predictors 
of treatment-related motor 
complications at 4-year 
follow-up in PD patients

Significant differences are reported in bold
PD-Compl Parkinson’s disease patients with treatment-related motor complications; LEDD levodopa 
equivalent daily dose; UPDRS Unified Parkinson’s disease Rating Scale; DMN default-mode network; 
FPN frontoparietal network

PD patients (n = 88)

Univariate  
analysis

 Multivariate  
analysis

Coefficient Hazard ratio

p value p value

Demographic and clinical variables
 Age 0.897 0.349 0.025 1.025
 Sex 0.109 0.213 0.504 1.656
 Disease duration at baseline 0.459 0.565 − 0.016 0.985
 UPDRS III at baseline 0.195 0.232 0.037 1.037
 Total LEDD (end of study) 0.641 0.561 − 0.001 0.999

Functional connectivity PD-Compl vs. PD-no-Compl (average ICA scores)
 FPN—right middle frontal gyrus  < 0.001  < 0.001 0.615 1.849
 DMN—left cuneus 0.033 0.005 − 0.278 0.757
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We found an increased functional connectivity in the 
MFG within the FPN in PD-Compl patients compared to 
PD-no-Compl and HC. The FPN has a pivotal role as a 
flexible hub for coordinating the activity of other brain net-
works and is critical for our ability to coordinate behavior in 
a rapid, accurate, and flexible goal-driven manner [41]. Even 
though with a degree of heterogeneity among studies, the 
FPN mainly maps in frontal and parietal association cortices 
[41]. Among other cortical areas, the MFG has been shown 
to be involved in motor task preparation [42]. In previous 
studies, LID have been linked to a neurochemical cascade 
triggered by drug-induced pulsatile stimulation of dopamine 
receptors but also involving downstream changes in genes 
expression, and abnormalities in non-dopaminergic transmit-
ter systems [2–6]. All these phenomena eventually interfere 
with the firing pattern from the basal ganglia over the cortex, 
leading to excessive disinhibition of thalamocortical neurons 
and overactivation of frontal areas, including motor, pre-
motor, and prefrontal cortices [43]. Thus, we hypothesize 
that an increased connectivity within the FPN, occurring 
early in the disease course, may be considered a disease-
intrinsic predisposing factor over this frontal overdrive, 
eventually promoting the development of treatment-related 
motor complications under chronic dopaminergic stimula-
tion. This parallels with a recent study showing the pres-
ence of white matter differences within frontostriatal and 
parietal regions in drug-naïve PD patients more vulnerable 
to develop LID over 5 years [44]. Our regression analysis 
further corroborate this hypothesis showing that functional 
connectivity within the MFG may predict the development 
of treatment-related motor complications at 4-year follow-
up in PD patients even after accounting for clinical relevant 
factors such as age, sex, disease severity, and dopaminergic 
treatment.

Within the DMN, we revealed a decreased connectiv-
ity in the cuneus in PD-Compl compared to PD-no-Compl 
patients. The cuneus is crucial for visuospatial attention/
working memory, but it is also implicated in visuomotor 
integration [45]. Interestingly, significant local grey matter 
atrophy of this area has been shown to differentiate schizo-
phrenic patients with tardive dyskinesia from those with-
out [45, 46]. An aberrant functional connectivity within 
the DMN has been found to be the most consistent find-
ing to differentiate PD patients with and without cognitive 
impairment [47]. However, recent studies have shown that 
functional connectivity within the DMN may be modulated 
and restored by dopaminergic treatment [48]. An increased 
effect of dopaminergic medications on the DMN functional 
dynamics has been found in PD patients without LID com-
pared to those with LID [49]. Based on these findings, we 
may hypothesize that the presence of a dysfunctional DMN 
connectivity could be present even before treatment ini-
tiation, as we found in our cohort in PD-Compl patients, 

but later on, it may be affected from chronic dopaminergic 
stimulation.

We found a decreased functional connectivity in the para-
central lobule within the SMN in PD-no-Compl compared 
to controls. This region is directly involved in the control 
of voluntary movements and sensory innervations [50] 
and it has been already found to be functionally disrupted 
in patients with PD [51]. Similarly, functional connectiv-
ity changes within the SMN have been consistently shown 
in PD patients all across disease stages [5]. This is quite 
reasonable as many SMN key nodes are direct targets of 
early PD-related neurodegenerative processes leading to 
the development of motor symptoms. Surprisingly, we did 
not find any SMN connectivity differences in PD-Compl 
patients compared to controls, likely suggesting that patients 
more prone to develop treatment-related motor complica-
tions may present at the time of diagnosis a more preserved 
SMN connectivity compared to others.

All in all, an abnormal connectivity within frontal and 
prefrontal areas could reflect the presence of synaptic 
remodeling and plasticity phenomena, perhaps following the 
presence of intrinsic biological factors, that may arise in the 
early stage of the disease and eventually lead to an increased 
cortico-striato-cortical firing, which have been related to the 
development of motor complications [2, 6, 52]. An abnor-
mal dopaminergic modulation of resting‐state connectivity 
between the sensorimotor areas and the putamen has been 
indeed found to be associated with the development of LID 
in PD patients with treatment-related motor complications 
at the time of the fMRI data collection [53].

Our study has some limitations. We included, in the 
same PD sub-group (namely the PD-Compl), patients with 
both motor fluctuations (i.e., wearing-off phenomena) and 
LID. Study comparisons were not performed separately for 
patients presenting with LID (n = 9) or motor fluctuations 
alone (n = 17) as for their relatively small sample size. How-
ever, it is noteworthy that these phenomena are correlated 
and often detected together in the same patients [1], and this 
is reflected also in our cohort.

A longer follow-up would have allowed us to exclude the 
later development of treatment-related motor complications 
in other PD patients which have been labeled as PD-no-
Compl after 4 years. On the other hand, by including only 
subjects presenting motor complications within the first 
4 years of treatment, we had more chance to select more 
vulnerable patients irrespectively from the chronic long-term 
effect of dopaminergic medications.

Finally, a comparison with patients not taking dopaminer-
gic medications and a longitudinal MRI assessments would 
have also provided more insights into the possible interplay 
between dopaminergic treatment, PD-related neurodegenera-
tive processes, and intrinsic susceptibility to develop motor 
complications at a patient level.
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These limitations notwithstanding our findings suggest 
the presence of early functional connectivity differences 
characterizing drug-naïve PD patients more prone to develop 
treatment-related complications over time.

This pattern may reflect the presence of a specific vulner-
ability across frontal and prefrontal circuits likely interplay-
ing with dopaminergic treatment and other neurodegenera-
tion-related processes occurring over the disease course and 
may be potentially targeted as a future biomarker in clinical 
trials. Future studies including larger PD populations are 
needed to support our observations.
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