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Abstract
Migraine is an extremely disabling, common neurological disorder characterized by a complex neurobiology, involving a 
series of central and peripheral nervous system areas and networks. A growing increase in the understanding of migraine 
pathophysiology in recent years has facilitated translation of that knowledge into novel treatments, which are currently 
becoming available to patients in many parts of the world and are substantially changing the clinical approach to the dis-
ease. In the first part of this review, we will provide an up to date overview of migraine pathophysiology by analyzing the 
anatomy and function of the main regions involved in the disease, focusing on how these give rise to the plethora of symp-
toms characterizing the attacks and overall disease. The second part of the paper will discuss the novel therapeutic agents 
that have emerged for the treatment of migraine, including molecules targeting calcitonin gene-related peptide (gepants and 
monoclonal antibodies), serotonin 5-HT1F receptor agonists (ditans) and non-invasive neuromodulation, as well as providing 
a brief overview of new evidence for classic migraine treatments.
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Introduction

Migraine is currently listed as the sixth most disabling dis-
order globally, with the highest ranking among all neuro-
logical disorders [1]. The biology of migraine is complex, 
multifactorial and still, for certain aspects, unsolved. The 
underlying feature seems to be a, probably complex, genetic 
predisposition combined with behavioral and environmental 
conditions that causes an alteration of sensory brain process-
ing, resulting in increased sensory susceptibility. This in turn 
results in otherwise normal sensory inputs being perceived 
as bothersome in migraineurs [2].

Over the years, our knowledge around migraine has 
improved considerably, largely thanks to basic science 
and imaging studies allowing us to better understand the 
complex models that are needed to explain the plethora of 
migraine symptoms. In fact, pain, the cardinal symptom of 
the disorder, is not necessarily the most bothersome for all 
patients at all times [3, 4]. Migraine is characterized by a 
succession of key phases that often overlap: the premonitory 
(prodromal), aura, pain and postdromal phases [5, 6]. Better 
recognition of these events has allowed us to conceptualize 
migraine as a network disorder involving multiple cortical, 
subcortical and brainstem regions, generating a wide con-
stellation of signs and symptoms [7]. These areas, which we 
will analyze in detail in the following sections, have altered 
function and structure in individuals with migraine and in 
animal models of the disease.

The current review follows a translational and anatomi-
cal approach, beginning with an outline of the mechanisms 
and regions that are known to be a part of migraine biology, 
before moving on to current acute and preventive treatments, 
providing updated references and insights with respect to our 
previous review of 5 years ago [8].
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Migraine: functional anatomy 
and pathophysiology

The trigeminovascular system and brainstem nuclei

The trigeminovascular system consists of peripheral axons 
from the trigeminal ganglion that innervate the meninges 
and intracranial blood vessels peripherally, and converge 
centrally in the trigeminocervical complex (TCC), com-
posed of the spinal trigeminal nucleus caudalis and upper 
cervical spinal cord [9, 10]. Second-order neurons ascend 
from the TCC to thalamocortical neurons and further pro-
ject to key brain nuclei in the diencephalon and brain-
stem, such as the locus coeruleus (LC), periaqueductal 
gray (PAG) and hypothalamus [11, 12]. Activation of the 
trigeminovascular pain pathways is thought to mediate 
part of the qualities of migraine pain by release of neuro-
peptides, such as calcitonin gene-related peptide (CGRP) 
and pituitary adenylate cyclase activating polypeptide 
(PACAP), at the level of the dura mater [13–15]. CGRP is 
widely expressed in both peripheral and central neurons 
and has potent dilatator qualities. It also shows a regu-
latory action on second- and third-order neurons, which 
seems to underlie its modulatory role in central pain mech-
anisms. CGRP elevation in migraineurs has been linked to 
a decrease in descending inhibitory mechanisms, which in 
turn might lead to migraine susceptibility through sensiti-
zation of multiple central neuronal circuits [13].

Neurogenic inflammation in the periphery was initially 
proposed to be the generator of migraine pain [16], although 
this role has been revisited largely due to the fact that block-
ers of plasma protein extravasation have failed to treat 
migraine in clinical trials [17, 18]. While trigeminal acti-
vation with associated neurogenic inflammation continues 
to be discussed [19], direct evidence for a dural inflamma-
tory component in migraine is lacking. As described above, 
migraine is associated with a spectrum of sensory dysfunc-
tions with cycling behavior, during which the headache 
phase represents the plateau of trigeminal nociceptive acti-
vation [20]. One hypothesis is that peripheral trigeminovas-
cular neurons are sensitized, and thereafter sensitize second-
order neurons in the trigeminal nucleus caudalis and upper 
cervical spinal cord, and project rostrally to thalamic nuclei 
and key medullary, brainstem and diencephalic regions [21]. 
Studies have reliably provided evidence for early brainstem 
involvement in the nociceptive migraine phase; however, it 
is becoming clearer that the initiation of a migraine attack 
is linked to intrinsic brain dysfunction in more central areas 
such as the hypothalamus, and possibly to external factors 
as well [22]. Whether the central dysfunction, very clearly 
demonstrated in the premonitory phase, facilitates central 
sensitization remains an intriguing area of study.

The role for brainstem regions, such as the PAG and the 
dorsolateral pons in migraine is well established thanks to 
observational [23] and neuroimaging studies [24–26], as 
well as animal models of migraine showing that the brain-
stem acts as a driver of changes in cortical activity during 
migraine [27–30]. Indeed, nuclei such as the LC, rostral 
ventral medulla, superior salivatory and cuneiform nucleus 
are key in modulating trigeminovascular pain transmission 
and autonomic responses in migraine and represent a site 
of action for triptans [31, 32], ergot derivatives [33, 34] 
and the novel CGRP receptor antagonists [35, 36]. Further, 
direct and indirect trigeminal activation of the parabrachial 
nucleus may explain why head and facial pain is so intense 
when compared with noncephalic pain, whereas upward 
trigemino–parabrachial–limbic connections, particularly 
to the amygdala, can explain affective-motivational aspects 
of migraine and even appetite and taste abnormalities 
[12]. Linking the premonitory phase and the onset of pain, 
neurons in the ventral tegmental parabrachial pigmented 
 (VTAPBP) nucleus can modulate trigeminocervical nocic-
eptive traffic in rat. These effects can be seen with gluta-
mate, naratriptan  (5HT1B/1D receptor agonist), PACAP and 
dopamine  D2/3 mediation [37]. Given the role of the  VTAPBP 
in hedonic feeding, and the influence of glucose on trigemi-
nocervical nociceptive transmission [38], the data suggest 
plausible pathways to explain the much celebrated, yet sel-
dom clinically useful, issues of food triggers [39]. One might 
re-think some triggers in terms of behaviors arising from 
central nervous system activation in the premonitory phase 
[40], with very different conclusions concerning cause and 
effect. Finally, central sensitization of the trigeminovascu-
lar system, especially the trigeminal nucleus caudalis, plays 
an important role in the development of chronic migraine, 
possibly influenced by cytokines release and increased astro-
cytic activation [41, 42]. Interestingly, as shown by neuro-
physiological [43] and neuroimaging studies [44], brainstem 
activations seems most prominent in the 24 h preceding the 
headache onset, and declines during the attack.

The hypothalamus

The theories on migraine as a cyclic sensory threshold disor-
der have highlighted the importance of the hypothalamus as 
a central facilitator of pain, and also of the constellation of 
premonitory symptoms such as yawning, thirst and polyuria 
[45], which can precede and continue into the pain phase. 
Functional neuroimaging performed during spontaneous and 
nitroglycerin-triggered attacks has consolidated the role of 
the hypothalamus in migraine initiation [46]. Altered hypo-
thalamic-brainstem connectivity with the spinal trigeminal 
nuclei and the dorsal rostral pons has been shown in the 
premonitory phase of migraine [44] for up to 48 h preced-
ing pain onset [47]. Positron emission tomography has also 
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previously revealed hypothalamic activation during both 
spontaneous migraine headache [48] and the premonitory 
phase [49]. Recent functional imaging studies have even 
shown that changes in hypothalamic connectivity with the 
spinal trigeminal nucleus and cortical regions are associated 
with the development of chronic migraine [50, 51].

The mechanism(s) by which the hypothalamus can 
become ‘overactive’ in migraine, leading to sensitization 
of trigeminal nociceptors is still unclear. Anatomically, the 
hypothalamus has direct and indirect connections to the thal-
amus [52], the trigeminovascular system [53] and to sym-
pathetic and parasympathetic brainstem neurons [54], influ-
encing nociceptive and autonomic regulation in migraine. 
Stress, which is said to be a common trigger of migraine, 
can activate the kappa opioid receptor on tuberoinfundibular 
dopaminergic neurons and lead to an increase in circulat-
ing prolactin causing sensitization of trigeminal afferents, 
particularly in females [55]. Further, the hypothalamus has 
chemosensitive neurons that can detect metabolic changes in 
the brain and periphery. Exogenous stimuli causing a change 
in homeostasis and this intrinsic biorhythm could thus pos-
sibly ‘tip’ the brain towards a migraine attack via activation 
of the hypothalamus [56].

The thalamus

The thalamus has a critical role in sensory processing, 
receiving inputs from the extracranial skin and dura mater 
from second-order trigeminovascular neurons, and project-
ing to cortical regions involved in autonomic, affective, and 
cognitive functions—all of which explains in part the com-
plexity of migraine features [57]. Thalamocortical synchro-
nization is affected by a network of neurotransmitters and 
neuropeptides in the brainstem (glutamate, serotonin, and 
noradrenaline), reticular thalamic regions (γ-aminobutyric 
acid—GABA) and hypothalamic nuclei (dopamine, hista-
mine, orexin, and melanin-containing hormone [58]). There 
is abundant clinical and preclinical evidence showing that 
the thalamus is crucial for the development of central sen-
sitization, photophobia and allodynia in migraine [59–64].

Structural neuroimaging studies have shown differences 
in volume of thalamic nuclei with microstructural abnor-
malities [65–67]. However, such changes were not seen 
in a recent large study involving female patients with aura 
[68]. Functional MRI studies have also shown important 
changes in the thalamus, both within and outside of attacks. 
In migraine without aura, connectivity between the thala-
mus and pain modulating areas seems to be affected during 
the ictal phase [69]. Abnormal low-frequency oscillations 
in dynamic thalamocortical networks  are implicated in 
the interictal phase [70], with changes in pulvinar activity 
allowing differentiation between migraineurs and controls 
[71]. Another recent study showed that both episodic and 

chronic migraine patients have greater activation of ascend-
ing trigeminal somatosensory pathways and lower activation 
of top-down pain modulatory circuits. This could indicate 
interictal dysfunction of the descending pain modulatory 
system and amplification of nociceptive processing in 
migraineurs, mediated by the thalamus and possibly con-
tributing to central sensitization [72].

The processing of trigeminovascular nociceptive informa-
tion in the thalamus can represent a target for management, 
and indeed several migraine treatments including triptans 
[31, 73], preventives [74–77] and non-invasive neuromodu-
lation have been shown to modulate thalamocortical activity 
[78, 79].

The cortex

The role of the cerebral cortex in migraine was initially 
linked to the aura phenomenon and its peculiar symptoms 
[80, 81]. Aura is thought to be generated by cortical spread-
ing depression (CSD) [82], which has been indirectly evi-
denced in humans through functional neuroimaging [83]. 
Although CSD can activate the trigeminovascular system in 
animals [84, 85] possibly through CGRP-mediated mecha-
nisms [86], it is unlikely to contribute to the headache and 
possibly constitutes an epiphenomenon of migraine [87, 88].

Regardless of CSD, the cortex has been increasingly 
implicated in migraine genesis, and in fact many changes in 
the structure and function of key cortical areas associated 
with pain processing have been reported in patients, both 
in the ictal and interictal period [89]. During the headache 
phase, cortical networks including the salience, sensorimo-
tor, default mode, executive and attentional networks, show 
functional changes; this reflects the cognitive, painful and 
emotional symptoms of migraine [90]. Studies in patents 
with aura have consistently shown differences in brain struc-
ture [91, 92], functional connectivity [92], cortical excit-
ability [93–95] and pain modulation in the visual pathways 
[96]. Occipital cortex involvement in particular can explain 
the plethora of visual symptoms associated with migraine, 
from light sensitivity to visual aura and visual snow [97]. 
Menstrual migraine has recently been linked to structural 
and functional connectivity changes in the right anterior cin-
gulum [98] an area involved in the cognitive processing of 
pain and previously associated with migraine biology [99]. 
However, evidence from neuroimaging studies has been 
inconclusive at times [100], with meta-regression analyses 
failing to pinpoint alterations that are specific to migraine 
[101], showing that further research on the topic is needed.

Of note, the association of white matter hyperintensity 
(WMH) in migraine has long been debated [102], particu-
larly in migraine with aura [103, 104]. Recently, an asso-
ciation was identified between the presence of juxtacortical 
WMHs within the frontal lobe with patient age and duration 
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of disease [105]. WMHs have also been associated with nau-
sea, vomiting, dizziness and pain intensity during attacks, 
[106].

Dysfunctional cortical mechanisms and in particular 
thalamocortical dysrhythmia have also been implicated in 
the mechanism underlying the lack of habituation typical of 
migraine [107]; in this, repeated sensory stimuli cause an 
incremental, instead of a reduction, increase in the ampli-
tudes of sensory responses [108, 109]. Lack of habituation, 
measured for different sensory modalities, usually occurs 
during the pain-free period and reverts during the ictal phase 
or when attacks become more frequent [110].

Finally, large genome-wide association studies (GWAS) 
have identified susceptibility gene variants in migraine 
patients, mostly involved in glutamatergic neurotransmis-
sion, which could lead to abnormal cortical excitability and 
altered plasticity [111], as evidenced by numerous magnetic 
resonance spectroscopy studies performed over the years 
[112]. Readers interested in the genetics are referred to this 
recent article [113]. Given the complexity that has emerged 
from GWAS work, in which each change has such a modest 
effect on the overall phenotype, one might reflect on whether 
clinically useful genetic changes will emerge in the near 
term that will have an impact on management and treatment.

Novel therapies in migraine

The last few years have represented an exciting and promis-
ing time in the field of migraine, thanks to the introduction 
of several new medications in clinical practice, and with 
other therapeutic targets, such as glutamate, amylin, adre-
nomedullin, orexins and pituitary adenylate cyclase activat-
ing polypeptide, currently all in the therapeutic pipeline 
[114, 115]. The new novel treatments have rapidly changed 
the paradigm of migraine management, particularly chal-
lenging the dichotomous division between acute and pre-
ventive medication, which we will however, follow in this 
review for simplicity. Further, patient-reported outcomes 
such as interictal burden and time lost due to an attack are 
becoming more relevant in the consideration of efficacy and 
tolerability of these drugs [116, 117], allowing for signifi-
cant advances in the management of this condition [118].

Acute treatments

Therapy for migraine attacks includes non-steroidal anti-
inflammatory drugs (NSAIDs), combination analgesics, 
ergotamine preparations and migraine-specific medications. 
The latter class, which until a few years ago meant triptans, 
has recently grown to include ditans, serotonin  5HT1F 
receptor agonists, and gepants, CGRP receptor antagonists. 
Triptans are full agonists of presynaptic serotonin receptors 

5-HT1B and 5-HT1D [119], which inhibit CGRP release 
[120]. The class includes seven options in different formu-
lations [121], which can be switched to find the optimal 
combination for efficacy and tolerability in the individual 
patient and which can be combined with NSAIDs to prolong 
therapeutic effect and limit rebounds [122, 123]. There are 
gender-related differences in triptan tolerability, as women 
seem to present higher adverse event frequency and head-
ache recurrence rates with these drugs [124].

Non-responsiveness to triptans may be categorized into 
refractory: failure of three triptans, one of which should be 
subcutaneous sumatriptan; and resistant: failure of at least 
two triptans [125]. Non-responsiveness can have a signifi-
cant impact on health-related quality of life and work pro-
ductivity [126] and has been linked by recent neuroimaging 
data to changes in hippocampal volume [127]. Importantly, 
even if clinical practice has not demonstrated strong drug-
related cardiovascular risk [128], triptans are still con-
traindicated in at-risk patients due to their vasoconstrictive 
qualities [129]. The new classes of ditans and gepants do not 
present this disadvantage.

Ditans

Lasmiditan is the only ditan currently available; it is a 
potent and selective 5-HT1F receptor agonist [130], acting 
in migraine by blocking activation of neurons in the trigemi-
nal nucleus caudalis [131] without affecting the vasculature 
[130]. Lasmiditan has now been studied in two-phase two 
studies [132, 133] and three large phase three randomized 
controlled trials [134–136] and shown to have better efficacy 
compared to placebo on rates of 2-h pain freedom and free-
dom from most bothersome symptoms, particularly with the 
100 and 200 mg doses. Pooled data from the phase 3 studies 
showed no cardiovascular safety concerns, and in fact, these 
included patients with coronary artery disease, complicated 
cardiac arrhythmias and/or hypertension [137]. Across these 
studies, neurological side effects—particularly dizziness, 
nausea and somnolence—were common, but mostly mild 
to moderate and self-limiting [138].

Gepants

Gepants are small-molecule CGRP receptor antagonists 
developed for use in the acute treatment of migraine. Six 
gepants were initially developed for acute use in migraine, 
with two being discontinued due to liver toxicity [139, 140], 
one due to lack of oral availability [141] and one for com-
mercial reasons [142]. Ubrogepant and rimegepant repre-
sent a new generation of oral gepants that have received 
FDA approval for acute migraine therapy [143, 144] fol-
lowing phase 3 studies: Achieve I [145] and II [146] for 
ubrogepant, and Study 301 [147], 302 [148] and 303 [149] 
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for rimegepant. Ubrogepant has been approved at 50 and 
100 mg doses and Rimegepant is available in an orodis-
persible (lyophilized) form at a dose of 75 mg. Preliminary 
evidence also shows effectiveness of the zavegepant nasal 
spray, a non-oral gepant [150]. Importantly, gepants do not 
seem to cause medication overuse headache, making them 
a useful option when managing this complication [151] and 
can be taken in multiple doses during the attack with good 
rates of success [152]. The low side effect profile of gepants 
is appealing; however, caution in the early days of real-world 
use is merited [153].

Metabotropic and ionotropic glutamate receptors may 
become important targets in the future acute therapy of 
migraine, although adverse event issues need to be over-
come. Experimental and clinical studies have shown an 
effect of NMDA, AMPA, iGluR5 and mGluR5 recep-
tor antagonists in migraine, although their efficacy was 
lower than that of sumatriptan and visual side effects were 
observed [154–156]. Blockers of the metabotropic glutamate 
receptor 5 in particular, or glurants, have a strong clinical 
potential for becoming a candidate drug class for migraine, 
if the relevant issues of hepatoxicity and transient dizziness 
can be resolved [157]. The NMDA receptor is also relevant 
for migraine with aura, as evidenced by a small RCT show-
ing the efficacy of ketamine on reducing the severity of auras 
[158].

Preventive treatments

Preventive therapy is recommended in patients who are 
affected by migraine on at least 2 days per month, when 
there is medication overuse and/or when quality of life is 
impaired [159]. The application of this guidance will be 
governed by clinical judgment in the individual case. Clas-
sic prevention includes different drug categories, such as 
β blockers, anticonvulsants, tricyclic antidepressants and 
calcium channel modulators, which, however, often lead 
to tolerability issues and poor compliance [160]. In recent 
years, monoclonal antibodies (mABs) against the CGRP 
peptide (galcanezumab, fremanezumab, eptinezumab) or 
its canonical receptor (erenunmab) have been widely intro-
duced in clinical practice and treatment guidelines [161]. 
These treatments have persistently confirmed their efficacy 
in phase 3 trials [162–174], with convenient dosing, faster 
onset of efficacy and mild to moderate adverse events [175, 
176]. Further, real-world studies have shown improvement 
with mABs and worsening of migraine frequency follow-
ing discontinuation, with most patients resuming treatment 
as soon as possible following breaks due to regulatory 
restrictions [177–180]. The European Headache Federa-
tion currently recommends CGRP mABs as a first-line 

option for migraine prevention, with treatment to be con-
tinued as long as needed [181], although in most jurisdic-
tions, this is not possible to operationalize easily.

Two gepants, atogepant and rimegepant, have recently 
been introduced into the market after proving effective 
and well tolerated for the preventive treatment of migraine 
[182–184]. Both have a similar short half-life of around 
11 h [185, 186], which facilitates their preventive indica-
tion. They bring the advantage of fewer adverse events 
and increased safety, particularly in women who have 
unplanned pregnancies given the difference in half-life 
compared to monoclonal antibodies [151]. Atogepant was 
directly designed as a preventive agent, and has been FDA-
approved for episodic migraine [187]. The most common 
side effects in the phase 2b and 3 studies were constipation 
and nausea, each at 10% at the 60 mg daily dose. The cur-
rently available data suggests safety on cardiac repolari-
zation even with supratherapeutic doses and, in contrast 
with the first gepants, no elevation of serum alanine ami-
notransferase [188, 189]. A further study for the preven-
tive treatment in chronic migraine has been reported in 
abstract form [190]. It is being studied in combination with 
onabotulinumtoxinA (NCT05216263) and for long-term 
safety and tolerability in another trial (NCT04686136).

Rimegepant, initially trialed for acute use, can prevent 
episodic migraine in adults when taken every other day 
[184] with the additional benefit of it being used concomi-
tantly during a migraine attack. It is well tolerated, with 
nausea occurring in 2% of cases and this is the most com-
mon side effect.

New evidence on efficacy and tolerability has also 
emerged for well-known migraine preventives. A meta-
analysis has documented the efficacy in chronic migraine 
of OnabotulinumtoxinA, which allows for a reduction of 
over 50% in migraine days after 24 weeks of treatment 
[191]. Several open-label studies have also shown a benefit 
of combining onabotulinumtoxinA with mAbs to CGRP 
for CM [192–194]. A recent head-to-head trial for chronic 
migraine showed non-inferiority between propranolol and 
topiramate, with no significant difference in adverse events 
incidence between the two [195]. Another prospective ran-
domized trial in chronic migraine compared flunarizine 
10 mg with topiramate 50 mg daily, showing both drugs 
had a similar safety profile, with flunarizine being overall 
more effective [196]. Recent retrospective studies have 
confirmed the usefulness of candesartan as a first-line 
migraine preventive, even in patients who failed numer-
ous previous drugs [197, 198]. Finally, meta-analyses have 
been conducted on melatonin [199, 200] and memantine 
[201], both showing favorable side effect profiles and good 
efficacy in migraine.
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Neuromodulation

Non-invasive neuromodulation is an evolving field and is 
of particular clinical interest for migraine management as 
it offers the option of being used both as an acute and pre-
ventive treatment. It also presents near to no systemic side 
effects and can thus be offered to patients that present toler-
ability issues or who need to avoid medication interaction 
[202].

The devices used in migraine target the nervous system 
through a transcutaneous approach, either centrally (single-
pulse transcranial magnetic stimulation, or sTMS) or in the 
periphery (non-invasive vagus nerve stimulation or nVNS, 
supraorbital nerve stimulation or SNS and transcranial direct 
current stimulation or tDCS).

A handheld sTMS device is now approved in the USA and 
Europe for the acute and preventive treatment of migraine, 
following positive results as an acute migraine treatment in 
a RCT involving 164 migraineurs with aura [203] and sub-
sequent post-marketing survey [204] and open-label study 
[205] demonstrating an effect on headache day reduction 
and 50% responder rate. The efficacy of sTMS in migraine 
prevention has also been shown in difficult-to-treat patients 
[206].

External trigeminal (supraorbital) nerve stimulation has 
also shown promise with supporting evidence for the treat-
ment of migraine, with one RCT showing higher efficacy 
and tolerability than sham in 109 patients after 1 h of acute 
treatment [207]. For prevention, its effect seems greater in 
episodic migraine [208] than in refractory [209] or chronic 
migraine patients [210].

Regarding non-invasive vagus nerve stimulation 
(nVNS), it has shown evidence of efficacy in a RCT for the 
acute treatment of migraine [211], but not for prevention 
[212–214]. From a mechanistic perspective, this approach at 
the bench can suppress cortical spreading depression [215] 
and inhibit trigeminocervical neurons responding to duro-
vascular nociceptive activation [216].

Another approach has focused on the application of 
repeated cathodal or anodal transcranial direct current stimu-
lation over the cortex, although data on its therapeutic effect 
in migraineurs has been conflicting [217, 218]. This may be 
due to methodological differences regarding the techniques, 
the targeted brain regions and stimulation types [219], war-
ranting further investigation.

Novel options for neuromodulation include the remote 
noncephalic electrical neurostimulation of the upper arm 
skin. The device works non-invasively through conditioned 
pain modulation and [220] has been evaluated in a RCT 
involving 253 patients. Participants reported clinically 
meaningful relief from migraine pain and pain freedom after 
2 h of treatment compared to sham, with a low incidence 
of device-related adverse events [221]. A recent open-label 

study showed preliminary evidence supporting its use in 
chronic migraine [222]. Finally, repetitive peripheral mag-
netic stimulation (rPMS) targeting the muscles in the neck 
and shoulder muscles has shown efficacy in the prevention of 
episodic migraine, particularly in patients with a high level 
of muscular involvement [223, 224].

Although these techniques are promising for the man-
agement of a disabling condition with often little treatment 
options, further evidence is needed to evaluate the scope of 
their effect in migraine, including novel mechanisms and 
targets [225, 226].

Conclusions

The last 2 decades have been an incredibly exciting period 
for clinicians and researchers interested in migraine, as they 
have seen a rapid increase in studies that have led to a greater 
knowledge and understanding of the neurobiology of the 
disorder. From suffering with a condition that was often 
overlooked and under-managed, migraineurs are now being 
offered novel treatments that are more and more tailored 
to their needs, and that are fundamentally re-shaping our 
approach to the disease.

More research and progress is needed and is expected in 
the coming years, and hopefully this will continue to raise 
awareness around a complex phenomenon affecting millions 
of people all over the world.
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