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Abstract

Motor—cognitive training in Parkinson’s disease (PD) can positively affect gait and balance, but whether motor—cognitive
(dual-task) performance improves is unknown. This meta-analysis, therefore, aimed to establish the current evidence on the
effects of motor—cognitive training on dual-task performance in PD. Systematic searches were conducted in five databases
and 11 studies with a total of 597 people (mean age: 68.9 years; mean PD duration: 6.8 years) were included. We found a
mean difference in dual-task gait speed (0.12 m/s (95% CI 0.08, 0.17)), dual-task cadence (2.91 steps/min (95% CI 0.08,
5.73)), dual-task stride length (10.12 cm (95% CI 4.86, 15.38)) and dual-task cost on gait speed (— 8.75% (95% CI — 14.57,
— 2.92)) in favor of motor—cognitive training compared to controls. The GRADE analysis revealed that the findings were
based on high certainty evidence. Thus, we can for the first time systematically show that people with PD can improve their

dual-task ability through motor—cognitive training.
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Background

Everyday life requires us to perform tasks simultaneously
and pay attention while doing so. This act of dual-tasking is
by definition conducted when two tasks with distinct goals
are performed simultaneously [1]. People with neurological
disorders typically experience greater difficulties while dual-
tasking compared to healthy controls [2, 3]. In Parkinson’s
disease (PD) specifically, gait impairments are well docu-
mented and show that during dual-task walking conditions,
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gait speed [4—14] and step length [4-14] decrease, while gait
variability [4, 8, 9, 12—-14], and the number of freezing epi-
sodes increase [15]. Interview studies with people with PD
elucidate the need to concentrate to maintain a basic walking
rhythm even at early stages of the disease, [16] and to use
self-talk to anticipate and plan for the next step ahead [17].

Although not yet fully understood, it is believed that exec-
utive dysfunction, together with a gradual loss of automatic-
ity in PD may partly explain the impaired ability to dual task
[18]. According to the model proposed by Fitts and Posner
(1967), motor learning occurs through a three-stage process
[19]. At first, we familiarize ourselves with the task through
conscious performance and information processing (cogni-
tive stage). In the second, associative stage, we start carrying
out the task, adjust it and finetune its performance. Finally, in
the autonomous stage, the task can be performed with mini-
mal cognitive and attentional demand [19]. As a movement
becomes automatic, imaging studies on the healthy brain
have shown that brain activity in the dorsolateral prefrontal
cortex and the anterior cingulate cortex decreases, whereas
connectivity increases between the putamen and different
motor areas. However, in PD, due to dopamine depletion in
the putamen, no such connectivity increase occurs, resulting
in difficulties acquiring automaticity [18, 20].
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The extent to which people with PD can improve their
ability to dual task through training is unclear, despite an
increase in the number of trials focusing on motor—cognitive
training during the past decade. This is because previous
efforts to systematically study the effects of motor—cognitive
training in PD [21-23] have focused on effects on single-task
gait and balance, and not on dual-task performance per se.
In consideration of the principles of motor learning, com-
bining motor and cognitive training (motor—cognitive train-
ing) should provide the added advantage of task specificity,
when compared to the consecutive training of these tasks.
However, it has also been debated whether in certain PD
subgroups, such as individuals with cognitive impairment or
those suffering from freezing of gait, consecutive training is
a safer option [24]. The prevalence of both these symptoms
is reported as 40%, even at early disease stages [25, 26], and
increases in line with disease progression [26, 27].

In older adults at various stages of cognitive impairment,
motor—cognitive training has shown beneficial effects for
both physical [28, 29] and cognitive function, as well as
in reducing dual-task cost on gait speed (i.e., the propor-
tion by which gait speed is reduced compared to single-task
walking) [28]. Interestingly, motor—cognitive training also
appears to have a larger effect on executive function than
cognitive training alone which suggests that physical exer-
cise might act as an aggregate [30]. Nonetheless, due to the
lack of systematic evidence to support whether dual-task
training techniques can improve motor—cognitive function
in PD, it is unknown whether these more complex inter-
ventions lead to benefits for this group when performing
dual-task activities. Thus, the aim of this systematic review
and meta-analysis is to establish the current evidence on the
effects of motor—cognitive training on dual-task performance
in people with PD.

Methods

This systematic review adhered to the Preferred Reporting
Items for Systematic Reviews and Meta-analysis (PRISMA)
statement [31]. It was preregistered in the International
Prospective Register of Systematic Reviews (PROSPERO;
CRD42021278518).

Keywords, databases, and review process

Searches were conducted by information specialists in the
following databases up to September 28th, 2021, CINAHL,
Web of Science, MEDLINE Ovid and Cochrane Central
Register of Controlled Trials (CENTRAL). Reference lists
of all studies that were found to be eligible for this review
were hand searched for further eligible trials. Language was
restricted to English, Swedish, and German. No restrictions

were set for publication date. Databases were searched with
an elaborate search string (see Online Resource 1).

Studies retrieved through the electronic database searches
were screened based on title and abstract independently by
two review authors (HJ and IH) in Rayyan [32]. After com-
pleted screening, authors were unblinded to each-others’
decisions. Disagreements were discussed and resolved with
other members (BL, EK and AKF) of the review team. After
the initial screening, a full text review of the included stud-
ies was performed independently by two authors (HJ and
IH), and unblinded upon completion. In case of uncertainty,
further review authors (BL, EK and AKF) were consulted
until consensus was reached. Final decisions for inclusion
were hereafter discussed within the review team.

Eligibility criteria

Eligible study designs were randomized controlled tri-
als (RCT) or quasi-RCT. Reviews and meta-analysis were
excluded as well as letters to the editors, comments, con-
ference posters, and further conference contributions, study
protocols and trial register entries, books and book chap-
ters were excluded. Studies were eligible for inclusion if
they were conducted on human adults (> 18 years) of all
sexes with a clinical diagnosis of idiopathic PD. Data from
patients with atypical, genetic, or secondary Parkinsonism
were not included. Regarding interventions, we focused on
motor—cognitive training (dual-task training), i.e., train-
ing involving motor tasks (e.g., walking) and cognitive
tasks (e.g., counting down) performed simultaneously.
Motor—cognitive interventions were eligible regardless of
approach (e.g., traditional or virtual reality/exergaming)
and setting (in-clinic or home-based), but the minimum
number of training sessions needed to be >?2. Both passive
(no exercise or other type of organized activity) and active
(e.g., exercise without elements of dual-tasking, or educa-
tion) control groups were eligible. Reporting of any type
of measurable dual-task performance (e.g., dual-task gait
speed) was required for inclusion.

Data extraction

A pre-piloted form was used to extract data from the
included studies. Extracted information included: partici-
pant demographics, details of disease stage and cognitive
function, details of the motor—cognitive intervention and
the control intervention; details of the dual-task outcomes
pre and post intervention pertaining to both motor task and
cognitive task.

One review author (IH) extracted the data, and another
reviewer (HJ) double-checked it. Ambiguity was resolved
through discussion where necessary. Missing data was
requested from study authors. If data were still not obtained

@ Springer



2892

Journal of Neurology (2023) 270:2890-2907

after two reminders to study authors, the data were con-
sidered as missing. Data were requested from six reports
[33-38], whereof data from four reports were retrieved [33,
36-38].

Data analyses

Three studies had more than one report included, and for
this reason only the main reports [36, 38, 40] were refer-
enced for sample characteristics, and more than one report
for each study never included in the same meta-analysis.
One study [36] was a cross-over RCT, and therefore only
midpoint data was used in the meta-analyses. Descriptive
data on study participants were pooled among the studies
(i.e., not reports).

Review Manager (RevMan) version 5.4 was used for
meta-analyses [41]. The outcomes available for meta-analy-
ses (dual-task gait speed, dual-task cadence, dual-task stride
length, dual-task stride length standard deviation (SD), dual-
task stride time SD, dual-task double support, dual-task cost
on gait speed, dual-task reaction time, Timed Up and Go
cognitive (TUG cog)) were continuous and treatment effect
measures were therefore given as mean differences (MDs)
with 95% confidence intervals (CI). As we expected some
heterogeneity in the trial designs, a random-effect model
was used. Additional outcomes that were only reported by a
single study (i.e., dual-task cost on stride length, dual-task
accuracy, dual-task cost on accuracy, and dual-task unipedal
stance test) were also meta-analyzed and can be found in
Online Resource 2, Fig. 1a—d. Two types of sensitivity anal-
yses were performed; one comparing meta-analyses using
fixed-effect models, and one comparing meta-analyses with
and without including studies using a passive control group
[38].

Risk of bias assessment

Risk of bias was assessed on outcome level (dual-task per-
formance) using Cochrane Risk of Bias tool 2.0 (RoB2)
which considers bias arising from the randomization pro-
cess, bias due to deviations from intended interventions, bias
due to missing outcome data, bias in measurement of the
outcome, bias in selection of the reported result and overall
risk of bias. Two authors (HJ and BL) assessed risk of bias
using RoB2 independently and unblinded after completion,
whereafter any discrepancies were resolved through discus-
sion with a third author (AKF).

In accordance with our protocol registration, no fun-
nel plots for publication bias were created as each of the
meta-analyses performed included less than ten stud-
ies according to the Cochrane Handbook for Systematic
Reviews of Interventions [42]. Publication bias was instead
assessed by searching trial registries (ClinicalTrials.gov and
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International Clinical Trials Registry Platform (ICTRP)) to
identify completed but not published trials. In cases where
no publication could be retrieved from a completed trial,
the principal investigator of the respective trials was con-
tacted in order to obtain more information. Principal inves-
tigators of the following trial register entries were con-
tacted: NCT03902990, RBR-365tkt, NCT01156714, and
NCT02904837, without response.

Two authors (HJ and BL) independently assessed the cer-
tainty of the body of evidence for studies that contributed
to the meta-analyses using the five GRADE considerations
(study limitations, consistency of effect, imprecision, indi-
rectness, and publication bias). The GRADEpro GDT soft-
ware was used to prepare the Summary of findings tables
(GRADEpro GDT 2022) [43]. Any decisions to downgrade
the certainty of studies were justified in footnotes.

Results
Study selection

The database searches up to September 2021 yielded a total
of 2252 records after duplicates were removed. A total of
2136 records were excluded based on the aforementioned
eligibility criteria, leaving 116 records for full text evalua-
tion. During full text evaluation, 99 reports were excluded,
see Online Resource 3, Table 1, for detailed information on
reasons for exclusion. A final of 11 studies (reported in 17
articles) were included for further qualitative and quantita-
tive analyses. See Fig. 1 for a PRISMA flow diagram of the
screening process.

Study characteristics
Population characteristics

All included studies were of RCT design and had been
conducted in the following countries: Belgium, Israel, the
Netherlands, Spain, Sweden, Taiwan, and the United States
of America (USA). A total of 597 people were randomized
into the studies, for which descriptive characteristics were
reported in 573 (37.2% women) and 564 were analyzed
post the interventions. Participants included in the studies
had a pooled mean age of 68.9 years (pooled SD 7.4), a
pooled mean H&Y of 2.0 (pooled SD 0.4), and a pooled
mean disease duration of 6.8 years (pooled SD 4.8). Six
reports [35-37, 40, 45, 46] from two main studies [36, 40]
stated the percentage of individuals suffering from freez-
ing of gait (FOG) in their respective samples. Five reports
[35, 36, 46—48] described FOG symptoms using either the
freezing of gait questionnaire (FOGQ) [47, 48] or the new
FOGQ (NFOGQ) [35, 36, 46]. Two studies used severe
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Fig.1 PRISMA flow diagram
of the screening process. Modi-
fied from Page et al. [44]

Identification of studies via databases and registers

Records identified from:
5 Databases (total n = 3,789)
£ Medline n = 1,039 Records removed before screening:
o Cochrane n = 485 Duplicate records removed (n =
= Web of Science n = 1,787 1,537)
s Cinahl n = 478 )
3
Records screened Records excluded
(n = 2252) | (n=2136)
Reports sought for retrieval Reports not retrieved
o (n=116) ’ (n=0)
[=
c
']
e
o '
n
Reports assessed for eligibility
(n=116) »| Reports excluded:
Duplicate (n = 4)
Withdrawn from publication (n = 1)
Wrong publication format (n = 51)
Wrong language (n = 1)
Wrong study design (n = 8)
Wrong population (n = 1)
Wrong intervention (n = 12)
— No dual task outcome (n = 21)
S Studies included in review
3 (n=11)
= Reports of included studies
2 (n=17)

motor fluctuations as an exclusion criterion [47, 48], but
none of the included studies described the occurrence or
severity of motor fluctuations in their respective samples.
Levodopa equivalent daily dosage (LEDD) was described
in 11 [33, 38-40, 45-51] of the 17 reports. Nine studies
used a cutoff for global cognition as an inclusion criteria
[33, 34, 38, 40, 48, 49, 51-53], one study [36] used ability
to consent and follow testing and intervention procedures
as an inclusion criteria, and one study [47] did not specify
any exclusion based on cognitive ability. For information
on individual reports and characteristics on included par-
ticipants, see Table 1.

Interventions and comparisons

The content of the motor—cognitive interventions varied
and included highly challenging dual-task balance train-
ing [38, 49], circuit training progressed with cognitive dual
tasks [36], treadmill training with virtual reality (VR) [33],

Wii-based motor and cognitive training [34], dual-task gait
training [40, 48, 52], and balance training with VR [53]. The
dose ranged between 30 and 80 min (mean 51.8), 2—4 times
per week (mean 2.6) for 4-12 weeks (mean 7.7). Two studies
used an added home training program to the motor—cogni-
tive intervention to be performed for an additional 60 min
per week [40, 49]. Six of the interventions were conducted
in a group setting [36, 38, 49, 52], and five as individual
training [33, 34, 40, 48, 53]. Two studies used a passive
control group [38, 47], one study used both a passive and an
active control group [53], seven studies used an active con-
trol group [33, 34, 36, 40, 49, 52], and one study used two
different active control groups [48]. Active control group
content included gait and cognitive training performed con-
secutively [40, 51], gait training [52], motor dual-task gait
training [48], balance training [53], treadmill training [33],
global exercises and balance training [34], speech and com-
munication therapy [49], and education [36]. The dose of
the active control group interventions ranged between 30

@ Springer
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and 80 min (mean 48.3), 1-4 times per week (mean 2.4)
for 4—10 weeks. Three studies used an added home train-
ing program in addition to the active control group training,
and these increased the weekly training by 60—180 min. For
detailed information on the content of each intervention, see
Table 2.

Outcomes of dual-task performance

Various spatiotemporal aspects of gait during dual-task
walking were the most commonly reported outcomes of
dual-task performance in the included studies. Most fre-
quent was the reporting of dual-task gait speed, followed
by cadence, stride (or step) length, percent of the gait cycle
spent in double support, and stride length- and stride time
variability (standard deviations). Five studies reported dual-
task performance of a cognitive task (e.g., reciting every
other letter of the alphabet, an auditory Stroop task, and a
subtraction task) that was carried out simultaneously with
a motor task, and presented in terms of accuracy rate, dual-
task cost on accuracy rate, error rate and/or reaction time
[36, 38, 40, 49, 53]. Other assessments evaluating dual-task
performance included the Timed Up and Go cognitive (TUG
cog), a dual-task test of functional mobility, and the unipedal
stance test performed with a simultaneous cognitive task.

Results of syntheses
Dual-task gait speed

Eight studies were included in the meta-analysis for the
outcome dual-task gait speed [33, 36, 38, 40, 48, 49, 51,
52], see Fig. 2a. In terms of overall risk of bias, two studies
were assessed as having high risk of bias, six studies some
concerns, and one study was considered to have low risk of
bias. The random-effects model showed a significant mean
difference in gait speed of 0.12 m/s (95% CI 0.08, 0.17) in
favor of the motor—cognitive training in contrast to passive
and active control groups.

Dual-task cadence

Five studies were included in the meta-analysis for the out-
come dual-task cadence [38, 45, 48, 51, 52], see Fig. 2b.
Two studies had high overall risk of bias, two studies were
assessed as some concerns, and one study as low. The
random-effect model showed a significant mean difference
cadence of 2.91 steps/min (95% CI 0.08, 5.73) in favor of
the motor—cognitive training in contrast to passive and active
control groups.

Dual-task stride length

Six studies were included in the meta-analysis for the out-
come stride length [33, 36, 38, 45, 48, 52], see Fig. 2c. Two
studies had high overall risk of bias, three studies were
assessed as some concerns, and one study as low. The ran-
dom-effect model showed a significant mean difference in
stride length of 10.12 cm (95% CI 4.86, 15.38) in favor of
the motor—cognitive training in contrast to passive and active
control groups.

Dual-task gait variability

Two studies reported synthesizable data on gait variabil-
ity [45, 50]. One study had low overall risk of bias, and
one had some concerns. Neither of the two random-effect
models showed significant results regarding stride length
SD (p=0.42), Fig. 2d, or stride time SD (p =0.26), Fig. 2e.

Dual-task double support

Three studies were included in the meta-analysis for the
outcome double support [38, 45, 48], see Fig. 2f. One study
had low overall risk of bias, one had some concerns, and
one had high. The random-effects model was not significant
(p=0.13) regarding any mean difference in double support
between motor—cognitive training and control.

Dual-task cost on gait speed

Two studies were included in the meta-analysis for the
outcome dual-task cost on gait speed [36, 48], see Fig. 2g.
Both studies had some concerns in overall risk of bias. The
random-effects model showed a significant mean difference
in dual-task cost on gait speed of — 8.75% (95% CI-14.57,
— 2.92) in favor of the motor—cognitive training in contrast
to active control groups.

Dual-task reaction time

Two studies were included in the meta-analysis for the
outcome reaction times of the cognitive task during dual-
tasking [40, 53], see Fig. 2h. The random-effects model was
not significant (p =0.47) regarding any mean difference in
reaction time between motor—cognitive training and control.

Timed Up and Go cognitive

Three studies were included in the meta-analysis for the out-
come TUG cog [38, 47, 49], see Fig. 2i. Regarding overall
risk of bias, two of the studies were assessed as having high
risk of bias, and one study as some concerns. The random-
effects model was not significant (p =0.17) regarding any

@ Springer
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a

Motor-cognitive training

Control

Mean Difference

Mean Difference

Study or Subgroup Mean SD Total Mean SD Total Weight 1V, d 95% CI v, d 95% CI
Conradsson 2015 (1) 1.07 0.27 47 0.96 0.32 44 12.8% 0.11[-0.01, 0.23] T
Johansson 2020 (2) 1.31 0.24 7 108 032 5 1.9%  0.23[-0.10, 0.56] 7
Jung 2020 (3) 0.94 0.18 44 0.79 0.2 42 25.5% 0.15[0.07, 0.23] -
Maidan 2018 (4) 0.85 0.2 30 0.72 0.28 34 13.6% 0.13[0.01, 0.25] —
Rosenfeldt 2019 (5) 1.49 0.26 10 1.32 0.37 10 2.7%  0.17[-0.11, 0.45] 7
San Martin Valenzuela 2020 (6) 11 0.17 23 091 0.8 17 15.3% 0.19 [0.08, 0.30] I —
Strouwen 2017 (7) 1.06 0.2987 56 1.04 0.1614 65 22.4% 0.02[-0.07,0.11] i
Yang 2019 (8) 0.768  0.1925 6 0.603 0.1363 6 5.8% 0.17[-0.02, 0.35] T
Total (95% CI) 223 223 100.0% 0.12 [0.08, 0.17] L 4
Heterogeneity: Tau? = 0.00; Chi? = 7.91, df = 7 (P = 0.34); I* = 12% _3 S _0525 ) o 525 055
Test for overall effect: Z = 5.14 (P < 0.00001) Favours control Favours motor-cognitive
Footnotes
(1) Reciting every second letter of the alphabet
(2) Auditory Stroop task
(3) Reciting every second letter of the alphabet
(4) 3-digit serial subtraction
(5) 7-digit serial subtraction
(6) Walking while listening and recognizing different daily noises.
(7) Auditory Stroop task
(8) 3-digit serial subtraction
b
Motor-cognitive training Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight 1V, Random, 95% CI IV, Random, 95% CI
Conradsson 2015 (1) 103 20.1 47 929 19.4 44 12.2% 4.00[-4.12,12.12]
Geroin 2018 (2) 105.65 10.19 56 103.86 10.34 65 59.6% 1.79 [-1.88, 5.46]
Rosenfeldt 2019 (3) 118 9 10 111 21 10 4.0% 7.00[-7.16, 21.16] —
San Martin Valenzuela 2020 (4) 113.68 10.61 23 109.41 8.45 17 22.9% 4.27[-1.64,10.18] T
Yang 2019 (5) 94.9 24.2035 6 88 17.9144 6 1.4% 6.90[-17.19, 30.99]
Total (95% CI) 142 142 100.0%  2.91[0.08, 5.73] >
Heterogeneity: Tau? = 0.00; Chi? = 1.06, df = 4 (P = 0.90); I* = 0% 7210 7{0 110 210
Test for overall effect: Z = 2.01 (P = 0.04) Favours control Favours motor-cognitive
Footnotes
(1) Reciting every second letter of the alphabet
(2) Auditory Stroop task
(3) 7-digit serial subtraction
(4) Walking while listening and recognizing different daily noises.
(5) 3-digit serial subtraction
Cc
Motor-cognitive training Control Mean Difference Mean Difference
Study or Subgroup Mean Total Mean SD Total Weight 1V, Random, 95% ClI IV, Random, 95% CI
Conradsson 2015 (1) 125.99 20.67 47 116.61 19.57 44 19.0%  9.38[1.11, 17.65] —
Geroin 2018 (2) 119.52 16.09 56 118.08 17.86 65 24.3% 1.44 [-4.61, 7.49] -
Jung 2020 (3) 102 16 44 89 20 42 20.3% 13.00[5.32, 20.68] -
Maidan 2018 (4) 102 22 30 89 30 34 11.5% 13.00[0.21, 25.79]  ——
San Martin Valenzuela 2020 (5) 118 12 23 103 16 17 17.4% 15.00 [5.95, 24.05] —
Yang 2019 (6) 99.05 20.0584 6 82.55 6.5273 6 7.6% 16.50 [-0.38, 33.38]
Total (95% CI) 206 208 100.0% 10.12 [4.86, 15.38] L 2
Heterogeneity: Tau? = 20.17; Chi? = 9.87, df = 5 (P = 0.08); I* = 49% 1_100 _%0 510 100‘
Test for overall effect: Z = 3.77 (P = 0.0002) Favours control Favours motor-cognitive
Footnotes
(1) Passive control, Reciting every other letter of the alphabet
(2) Active control, Auditory Stroop task
(3) Reciting every second letter of the alphabet
(4) 3-digit serial subtraction
(5) Walking while listening and recognizing different daily noises.
(6) 3-digit serial subtraction
d
Motor-coghnitive training Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI v, 95% CI
Geroin 2018 (1) 5.15 3.06 56 5.43 4.2 65 49.0% -0.28[-1.58, 1.02]
Lofgren 2018 (2) 5.42 3.43 47 5.89 2.75 44  51.0% -0.47[-1.74,0.80]
Total (95% Cl) 103 109 100.0% -0.38[-1.29,0.53]
Heterogeneity: Tau? = 0.00; Chi? = 0.04, df = 1 (P = 0.84); I> = 0% 54 52 ) 25 j‘

Test for overall effect: Z = 0.81 (P = 0.42)

Footnotes
(1) Auditory Stroop task
(2) Reciting every other letter of the alphabet

Fig.2 Forest plot. a Motor—cognitive training vs control. Outcome:
dual-task gait speed. b Motor—cognitive training vs control. Outcome:
dual-task cadence. ¢ Motor—cognitive training vs control. Outcome:
dual-task stride length. d Motor—cognitive training vs control. Out-
come: dual-task stride length SD. e Motor—cognitive training vs con-
trol. Outcome: dual-task stride time SD. f Motor—cognitive training

@ Springer

Favours motor-cognitive Favours control

vs control. Outcome: dual-task double support. g Motor—cognitive
training vs control. Outcome: dual-task cost on gait speed. h Motor—
cognitive training vs control. Outcome: dual-task reaction time.
i Motor—cognitive training vs control. Outcome: Timed Up and Go
cognitive
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e
Motor-cognitive training Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% ClI
Geroin 2018 (1) 0.04 0.05 56 0.05 0.04 65 87.5% -0.01[-0.03,0.01]
Lofgren 2018 (2) 0.08 0.11 47 0.08 0.1 44  12.5% 0.00 [-0.04, 0.04]
Total (95% CI) 103 109 100.0% -0.01[-0.02,0.01]
Heterogeneity: Tau? = 0.00; Chi? = 0.18, df = 1 (P = 0.67); I = 0% _05 2 —(; 1 ) 051 052
Test for overall effect: Z = 1.12 (P = 0.26) Favours motor-cognitive Favours control
Footnotes
(1) Auditory Stroop task
(2) Reciting every second letter of the alphabet
Motor-cognitive training Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI 1V, Random, 95% CI
Conradsson 2015 (1) 28.9 4.65 45 30.95 5.93 42  40.1% -2.05[-4.30,0.20]
Geroin 2018 (2) 30.43 4.19 56 30.98 4.36 65 53.0% -0.55[-2.08,0.98]
Yang 2019 (3) 30.3 7.242 6 37.8 6.2891 6 6.9% -7.50[-15.17,0.17]
Total (95% CI) 107 113 100.0% -1.63 [-3.76, 0.49] o
Heterogeneity: Tau? = 1.61; Chi? = 3.83, df = 2 (P = 0.15); I> = 48% —50 —10 5 1§0 ZQO
Test for overall effect: Z = 1.51 (P = 0.13) Favours motor-cognitive Favours control
Footnotes
(1) Reciting every other letter of the alphabet
(2) Auditory Stroop task
(3) 3-digit serial subtraction
Motor-cognitive training Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight 1V, Rand 95% ClI IV, Random, 95% CI
Jung 2020 (1) 8.8 10.9 44 18.2 17.7 42 86.9% -9.40[-15.65, -3.15]
Yang 2019 (2) 27.2  8.1949 6 31.6 18.3908 6 13.1% -4.40[-20.51, 11.71] —
Total (95% CI) 50 48 100.0% -8.75[-14.57, -2.92] L 2
Heterogeneity: Tau? = 0.00; Chi* = 0.32,df = 1 (P = 0.57); I> = 0% f + t {
. -100 -50 0 50 100
Test for overall effect: Z = 2.94 (P = 0.003) Favours motor-cognitive Favours control
Footnotes
(1) Reciting every second letter of the alphabet
(2) Serial subtraction
Motor-cognitive training Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight 1V, Random, 95% CI IV, Random, 95% CI
Strouwen 2017 1,150 212.844 56 1,122 213.8926 65 79.4% 28.00 [-48.23, 104.23] %'.7
Yen 2011 737 195.2692 13 724 194.1108 13 20.6% 13.00[-136.67, 162.67] -
Total (95% CI) 69 78 100.0% 24.91 [-43.02, 92.84]
Heterogeneity: Tau? = 0.00; Chi? = 0.03, df = 1 (P = 0.86); I> = 0% u + | } }
i -200 -100 O 100 200
Test for overall effect: Z = 0.72 (P = 0.47) Favours motor-cognitive Favours control
1
Motor-coghnitive training Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
Conradsson 2015 (1) 13.74 4.206 47 16.67 6.561 44  55.3% -2.93[-5.21, -0.65] ——
Johansson 2020 (2) 11.0971 3.18989 7 13.454 4.36349 5 24.5% -2.36[-6.85,2.14] |
Pohl 2020 (3) 19.4  7.8625 23 17.5 7.7648 15 20.3% 1.90 [-3.18, 6.98] N R
Total (95% CI) 77 64 100.0% -1.81[-4.38,0.75] -
Heterogeneity: Tau? = 1.74; Chi? = 2.90, df = 2 (P = 0.23); I = 31% —iO _#5 é 1#0
Test for overall effect: Z=1.38 (P = 0.17)

Footnotes

(1) Timed Up and Go with serial 3 subtractions
(2) Timed Up and Go with serial 3 subtractions
(3) Timed Up and Go with serial 7 subtractions

Fig.2 (continued)

Favours motor-cognitive Favours control

@ Springer



2902

Journal of Neurology (2023) 270:2890-2907

Fig. 3 Risk of bias of included

. First author, year
studies

Conradsson, 2015
Geroin, 2018
Hasegawa, 2020
Johansson, 2020
Jung, 2020

King, 2020
Lofgren, 2019
Maidan, 2018
Pohl, 2020
Pompeu, 2012
Rosenfeldt, 2019
San Martin Valenzuela, 2020
Strouwen, 2017
Strouwen, 2019
Wallen, 2018
Yang, 2019

Yen, 2011

000000000-0000000-

mean difference in performance between motor—cognitive
training and control.

Sensitivity analysis

The results of the sensitivity analyses showed a significant
training effect on TUG cog using a fixed-effects model, but
not using a random-effects model (the fixed-effects model
showed a significant mean difference in TUG cog of — 2.16 s
(95% CI — 4.05, — 0.27) in favor of the motor—cognitive
training). Regarding time spent in double support (%), the
fixed-effects model showed significant mean difference
(= 1.19% (95% CI — 2.44, 0.05)), but the random-effects
model did not. The sensitivity analyses further showed a sig-
nificant mean difference in dual-task cadence with passive
controls included [38], but not significant without (p =0.07).
No other differences between random and fixed-effects mod-
els, or with/without passive control groups were found. See
Online Resource 4, Tables 2 and 3, for a detailed outline of
the sensitivity analyses.

Risk of bias

We used the RoB2 tool to assess risk of bias for each of the
included reports. A summary of the assessments is provided
in Fig. 3. A majority of the reports (10/17) were considered
to have some concerns in terms of overall risk of bias, and
four reports were assessed as having a high overall risk of
bias. In all but three of the reports assessed as either high
risk of bias or some concerns, the overall risk of bias was
driven by the domain pertaining to selection of the reported
results. A lack of preregistered or published analysis plan

@ Springer
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D1 Randomisation process

D2 Deviations from the intended interventions
D3 Missing outcome data
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was the primary reason for raised concern regarding selec-
tion of the reported results.

Certainty of evidence

Compared with no training or training without elements
of dual-tasking, high certainty evidence suggests that
motor—cognitive training increases dual-task gait speed,
dual-task cadence, and dual-task step length, and decreases
dual-task cost on gait speed (Table 3).

Discussion

The aim of this systematic review was to establish the cur-
rent evidence on the effects of motor—cognitive training on
dual-task performance in people with PD. To the best of our
knowledge, this is the first systematic review and meta-anal-
ysis providing evidence that people with PD can improve
their dual-task abilities through motor—cognitive training.
The results show that the spatiotemporal gait parameters
speed, cadence and stride length increased, while dual-task
cost on gait speed decreased, in comparison to passive and/
or active controls. No effects were shown on measures of
gait variability or percentage of time spent in double sup-
port. Results regarding TUG cog were conflicting, with the
fixed-effects model significant and the random-effects model
not.

Gait speed is an important biomarker of mobility and is
widely accepted as the sixth vital sign [55]. Encouragingly,
but in contrast to the one previous meta-analysis investi-
gating the effect of motor—cognitive training on dual-task
gait speed [22], we did find an effect compared to controls.
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Although the analyses do not disclose the mean increase in
gait speed or contrast the results to single-task gait speed,
the results are the first to show that motor—cognitive training
can impact bradykinetic dual-task gait. Speed, step length
and cadence are highly interrelated and so it is unsurpris-
ing that improvements in respective gait parameter follow
a similar pattern. The clinically meaningful difference in
single-task gait speed in PD ranges from 0.06 m/s (small
effect) to 0.22 m/s (large effect) [55], but no such cut-offs are
currently available for dual-task gait speed. To what extent
the cut-offs can help the interpretation of differences in dual-
task gait speed is unclear. Previous research have shown that
although single and dual-task gait speeds are highly related
[57], the latter is also associated with, for example, execu-
tive function [57] and functional balance [58]. The analyses
did not indicate any post-intervention, across group differ-
ences in gait variability. Although these two meta-analyses
are based on two studies only, the results are disconcerting
as gait variability is associated with both gait automaticity
[59] and fall risk [60].

According to a survey of physiotherapists working with
PD patients in Sweden, the most commonly used standard-
ized measurement tool was the TUG test (used by >97%)
[61]. Both the TUG [62] and the TUG with an added cogni-
tive task (TUG cog) [63] can also help identify individuals
with PD with a high or low risk of falls. The result of this
study showed that the group participating in a motor—cogni-
tive intervention took in mean 2.6 fewer seconds to complete
the TUG cog compared to controls (using a fixed-effects
model). This may be of clinical importance as deterioration
of gait under dual-task straight walking have not shown an
association to prospective falls [62]. The TUG test presum-
ably mirrors everyday indoor movements to a larger extent
than straight walking tests. Evaluating dual-task perfor-
mance after motor—cognitive interventions is important, but
perhaps a test of straight walking is insufficient if we also
want to predict whether the training can affect fall risk in a
PD population.

Participants in the studies included in this review typi-
cally had mild to moderate disease severity (mean H&Y 2.0).
Although this is reflective of PD exercise trials in general,
this mild-moderate sample diminishes the ability to under-
stand how motor—cognitive training affects de novo PD or
people with severe disease severity. Interestingly, responder
analyses from two of the included studies indicate that those
benefiting most from motor—cognitive training were people
who at baseline had higher global cognition [46], lower dual-
task gait speed [46, 50], and took longer time to complete
the TUG test [50]. In PD, higher levels of cognitive function,
and especially episodic memory and attention, is associated
with a faster motor learning acquisition rate [64]. This reli-
ance on episodic memory for motor learning in PD has been
suggested as a cognitive compensatory strategy [64], and
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could partly explain why preserved cognition could be criti-
cal for better outcomes after motor—cognitive training. The
combined interpretation of findings from these studies sug-
gests that people with impaired motor performance but who
have preserved cognition, may be the most suitable target
group for motor—cognitive training.

Exploring which type and dose of motor—cognitive
training that has the best effect on dual-task performance
is beyond the scope of this systematic review. As the field
progresses and more high-quality trials are published, it will,
however, be of great importance to update and perform such
analyses. The interventions described in this review varied
in nature, dose, and setting which may have contributed to
a clinical heterogeneity. As most included studies had not
reported on the amount of time per session spent dual-task-
ing it is also impossible to infer what proportion of dual-
tasking is sufficient. For future studies, we recommend that
information regarding the mean individual training dose is
included. Data from future studies should provide sufficient
power to perform meta-analyses in which subgroup analyses
regarding different dual-task training paradigms and inter-
vention doses can be calculated.

There was an overall lack of reporting of performance on
the cognitive task in the studies. Such information is crucial
for several reasons and should always be considered when
designing and/or deciding on a suitable assessment method
of dual-tasking. Using standardized and reliability tested
cognitive tasks such as the digit span or auditory Stroop
[65] allows researchers to evaluate performance on both the
motor task and the cognitive task. By doing so, the inter-
pretation of a dual-task gait analyses can be better nuanced
and reveal patterns of postural strategies and prioritization.

In the included studies, there was an overall lack of a
preregistered or published analysis plan causing concerns
during risk of bias assessment in the domain pertaining to
selection of the reported results. With the rapid acceleration
of open science over the last decade the practice of preregis-
tration has undoubtedly increased. However, several studies
in this review were published before such approaches were
custom or advocated.

Whereas previous reviews on motor—cognitive train-
ing in PD have investigated the general effects on e.g.,
gait and balance, this is the first study focusing on actual
dual-task performance. Although potential transfer effects
are interesting, we believe that our novel findings of task-
specific effects on dual-task performance after motor—cog-
nitive training in PD is of even higher clinical relevance.
Collating all available evidence on a certain topic does
however not come without challenges. The search strategy,
although striving to be broad in scope, may have failed
to identify suitable motor—cognitive interventions if the
authors had not described them as such, or as address-
ing dual-task components. We did however also perform
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manual searches of the reference lists as well as checking
registers for ongoing trials. A total of only 11 studies were
included which ultimately limited the ability to perform
subgroup analyses. Our results can, therefore, not reveal
for example whether people in early versus advanced dis-
ease stages, or individuals with or without freezing of gait,
benefit differently from motor—cognitive training. A fur-
ther limitation to this review is that the impact of cognitive
state cannot be defined, due to the fact that the cognitive
profile of patients is poorly or not described in most stud-
ies. Future studies should, therefore, report information
on whether study participants suffered from cognitive dys-
function (i.e., subjective cognitive decline, mild cognitive
impairment, or dementia) and analyze in which way cogni-
tive state is related to motor-cognitive training response.
Finally, the impact of sociodemographic factors including
age, education, and sex should be considered in future
research. With the rapid advancement in the field and sev-
eral ongoing trials focusing on motor—cognitive interven-
tions, future systematic reviews will have the opportunity
to explore these issues.

This is the first systematic review to show that
motor—cognitive interventions as compared with no train-
ing or training without elements of dual-tasking have
the ability to improve various spatiotemporal aspects of
dual-task gait in people with PD. As more studies become
available for meta-analysis, future research should focus
on discerning who benefits most from this type of inter-
vention, as well as exploring knowledge gaps concrening
optimal dose and approach.
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