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Abstract
Background Proenkephalin (PENK) and prodynorphin (PDYN) are peptides mainly produced by the striatal medium spiny 
projection neurons (MSNs) under dopaminergic signaling. Therefore, they may represent candidate biomarkers in Hunting-
ton’s disease (HD) and Parkinson’s disease (PD), two neurodegenerative diseases characterized by striatal atrophy and/or 
dysfunction.
Methods Using an in-house established liquid chromatography−tandem mass spectrometry (LC–MS/MS) method in multiple 
reaction monitoring mode (MRM) we measured cerebrospinal fluid (CSF) levels of PENK- and PDYN- derived peptides in 
patients with HD (n = 47), PD (n = 61), Alzheimer’s disease (n = 11), amyotrophic lateral sclerosis (n = 14) and in 92 control 
subjects. Moreover, we investigated the possible associations between biomarkers and disease severity scales in HD and PD 
and the effect of dopaminergic therapy on biomarker levels in PD.
Results In HD, CSF PENK- and PDYN-derived peptide levels were significantly decreased compared to all other groups 
and were associated with disease severity scores. In PD, both biomarkers were within the normal range, but higher PDYN 
levels were found in dopamine-treated compared to untreated patients. In PD, both CSF PENK and PDYN did not correlate 
with clinical severity scales.
Conclusions CSF PENK- and PDYN-derived peptides appeared to be promising pathogenetic and disease severity markers 
in HD, reflecting the ongoing striatal neurodegeneration along with the loss of MSNs. In PD patients, CSF PDYN showed a 
limitative role as a possible pharmacodynamic marker during dopaminergic therapy, but further investigations are needed.

Keywords Biomarkers · Cerebrospinal fluid · Huntington’s disease · Parkinson’s disease · Mass spectrometry · Endogenous 
opioids

Introduction

Parkinson’s disease (PD) and Huntington’s disease (HD) are 
slowly progressive neurodegenerative diseases which share 
an impairment of striatal medium spiny projection neurons 
(MSNs) [1–3]. The latter play a role in the direct and indi-
rect basal ganglia pathways by producing endogenous opi-
oids under dopaminergic signaling [1–3]. In PD, the loss of 
nigrostriatal dopamine neurons induces a reduction in the 
number of dendritic spines on MSNs, whereas a selective 
neurodegeneration of MSNs occurs in HD [1, 2, 4, 5].

Endogenous opioids are a group of peptides that act on 
opioid receptors and derive from proteolytic cleavage of 
three main precursors: proenkephalin (PENK), prodynor-
phin (PDYN) and pro-opio-melanocortin (POMC) [6, 7]. 
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Given their high expression in the striatum [6, 7], PENK and 
PDYN peptides might represent candidate biofluid markers 
reflecting striatal atrophy and/or dysfunction.

Using a newly established liquid chromatography−tan-
dem mass spectrometry (LC–MS/MS) method in multiple 
reaction monitoring mode (MRM), we previously showed 
decreased cerebrospinal fluid (CSF) PDYN-derived pep-
tide levels in HD and a tendency towards reduced levels 
in PD patients [8]. However, we did not investigate neither 
CSF PENK-derived peptides, which were also found to be 
reduced in HD [9, 10] nor the possible effect of dopaminer-
gic therapy on CSF PENK and PDYN values in PD patients.

By addressing all these issues, we aimed here to evaluate 
CSF PENK- and PDYN-derived peptides as reliable candi-
date biomarkers in HD and PD. We also compared peptide 
levels in both diseases with those of controls and patients 
with amyotrophic lateral sclerosis (ALS) and Alzhei-
mer’s disease (AD), which are neurodegenerative diseases 

characterized by lack (i.e. in the early stage) or low degree 
(i.e. in the middle-late stage) of striatal dysfunction/atrophy 
[11–13], to address the specificity of CSF PENK and PDYN-
derived peptides as striatal atrophy/dysfunction markers. 
Moreover, we tested the possible associations between bio-
marker levels and disease severity scales in HD and PD and 
the influence of dopaminergic therapy on biomarkers levels 
in PD.

Methods

Patient selection

In the present study, we included 225 CSF samples col-
lected from Ulm University Hospital (Germany) (n = 185) 
and from Section of Neurology, Perugia University Hospital 
(Italy) (n = 40): 47 patients with manifest HD, 61 with PD, 

Table 1  Demographic and clinical characteristics of the study cohort

Values are given in median and interquartile ranges. AD Alzheimer’s disease, HD Huntington’s disease, MMSE Mini–Mental State Examination, 
MoCA Montreal Cognitive Assessment, PD Parkinson’s disease, sALS sporadic amyotrophic lateral sclerosis, UHDRS Unified Huntington's Dis-
ease Rating Scale, UPDRS unified Parkinson's disease rating scale

Controls HD PD AD sALS

N 92 47 61 11 14
Gender (males/females) 48/44 28/19 44/17 5/6 11/3
Age 52 (27–60) 52 (42–57) 68 (61–72) 66 (54–68) 64 (60–70)
Disease duration (years) – n = 36 n = 51 n = 11 n = 12

4.2 (2.0–6.1) 3 (2–5) 2.5 (2–3) 1.8 (1.0–2.4)
UPDRS-part III – – n = 60 – –

26 (20–31)
Hoehn and Yahr scale – – n = 60 – –

2 (2–2.5)
MMSE – – n = 61 – –

28 (26–29)
MoCA – – n = 39 – –

23 (20–26)
CAG long – n = 47 – – –

43 (42–46)
CAG short – n = 47 – – –

18 (17–20.5)
Disease Burden Score – n = 45 – – –

401 (357–481)
UHDRS Total Motor Score – n = 43 – – –

23(14.5–33.5)
UHDRS Total Chorea Score – n = 43 – – –

7 (5–9)
UHDRS Cognitive Score – n = 39 – – –

99 (72–183)
UHDRS Total Functional Capacity – n = 47 (Stage 1: n = 31; 2: 

n = 7; 3: n = 6; 4: n = 3)
– – –

12 (8.5–12)
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11 with AD, 14 with sporadic (s)ALS and 92 cognitively 
healthy non-neurodegenerative controls (Table 1).

Clinical diagnoses of HD, PD, sALS and AD were made 
according to current diagnostic criteria [14–17]. Disease 
duration was assessed for all disease groups. For PD patients, 
we collected results from Unified Parkinson's Disease Rating 
Scale (UPDRS) [18], Hoehn and Yahr scale [18], Mini-Men-
tal State Examination (MMSE) [19] and Montreal Cogni-
tive Assessment (MoCA) [20] (Table 1). In HD patients, we 
assessed the following subscales of the Unified Huntington's 
Disease Rating Scale (UHDRS): Total Motor Score, Total 
Chorea Score (also called Chorea Sum Score), Cognitive 
Score and Total Functional Capacity (TFC) [21, 22]. Fur-
thermore, in the same group, the Disease Burden Score was 
calculated according to the formula (CAGn-35.5) × age [23], 
whereas the TFC stage was obtained according to the TFC 
[24] (Table 1). The control group included 92 subjects lack-
ing any clinical or neuroradiologic evidence of central nerv-
ous system disease.

The PD cohort encompasses cognitively healthy PD 
patients and PD patients with mild cognitive impairment 
(PD-MCI), according to Litvan et al. [25] To investigate 
the influence of dopaminergic therapy on biomarker levels, 
CSF samples from 21 and 19 PD-MCI patients from Peru-
gia were analyzed separately after stratification into treated 
and untreated subgroups (Table 2). For these patients, levo-
dopa daily dose (LDD) and levodopa equivalent daily dose 
(LEDD) were recorded [26].

The study was approved by the local Ethics Committees 
of Ulm University (proposal number 20/10 and 259/09) and 
University of Perugia (CER Umbria 3944/21). All partici-
pants or their relatives gave written informed consent to 
participate in the study. The study has been performed in 
accordance with the ethical standards laid down in the 1964 
Declaration of Helsinki and its later amendments.

Measurement of CSF PENK and PDYN

CSF samples were obtained by lumbar puncture (LP) 
following a standard procedure, centrifuged and stored 
at − 80 °C. CSF PENK- and PDYN-derived peptides were 

analyzed in all cases using in-house established LC−MS/
MS methods as described [8, 27]. Two hundred microliters 
of CSF sample were mixed with 12 µL internal standard 
solution containing heavy labelled peptides and 20 µL 1 M 
triethylammonium bicarbonate. Reduction and alkylation 
was conducted with 20 µL 1 M tris(2-carboxyethyl)phos-
phine and 2 µL 200 mM chloroacetamide for 10 min at 
95 °C and 400 rpm. Samples were digested with 10 µL 
trypsin/Lys-C solution (0.1 µg/µL) for 18 h at 37 °C and 
400 rpm. The reaction was stopped by adding trifluoro-
acetic acid (TFA) to a final concentration of 1%. Sam-
ples were fractionated using STAGE tips with increasing 
ammonium acetate concentrations in 20% acetonitrile 
(ACN)/0.5% formic acid (fraction 1–5: 125 mM, 160 mM, 
220 mM, 300 mM and 450 mM). Eluates of fractions one, 
two and five were dried by vacuum centrifugation and dis-
solved in 27.5 µL 0.5% TFA/6% ACN for MS analysis.

We assessed CSF PENK and PDYN expression at the 
protein level based on the measurement of two PENK- 
and two PDYN-derived peptides, respectively [8, 27]. 
The four measured peptides have been named according 
to the respective letters of the first three and last three 
amino acids of the peptide sequence: PENK [DAE…
LLK], PENK [FAE…YSK], PDYN [SVG…LAR] and 
PDYN [FLP…STR] [8, 27]. Further detailed LC–MS/MS 
methods are described elsewhere [8, 27] and in the Sup-
plementary Table 1.

Statistical analysis

The statistical analysis was performed using Graph-
Pad Prism 7.0 (GraphPad Software, La Jolla, CA). CSF 
PDYN and PENK levels were compared between the dis-
ease groups by Kruskal–Wallis test and Dunn’s post hoc 
multiple comparison test. Two-way ANOVA and Bonfer-
roni’s multiple comparison test was conducted to analyze 
the influence of levodopa treatment on biomarker levels in 
the PD/PD-MCI group. To assess significant associa-
tions between variables, the Spearman rank correlation 

Table 2  Levodopa 
administration in the PD and 
PD-MCI cohort from Perugia

Values are given in median and interquartile ranges. LDD Levodopa daily dose, LEDD levodopa equivalent 
daily dose, PD Parkinson’s disease, PD-MCI Parkinson’s disease with mild cognitive impairment

PD PD-MCI

Treated Untreated Treated Untreated

N 11 10 10 9
Gender (males/females) 6/5 8/2 9/1 6/3
Age 66 (59–69) 60 (51—63) 65 (62—69) 72 (64—72)
LDD (mg) 400 (275–510) – 400 (300–500) –
LEDD (mg) 400 (270–725) – 500 (388—713) –
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coefficient was performed. For all analyses, p < 0.05 was 
considered statistically significant.

Results

Groups were matched for gender (p = 0.0589) (Table 1). The 
control and HD group were significantly younger compared 
to the other disease groups (p < 0.0001).

CSF PENK [DAE…LLK] peptide and mean PENK val-
ues were significantly decreased in HD in comparison to the 
controls, PD, AD and sALS. PENK [FAE…YSK] peptide 
levels were significantly decreased in the HD group com-
pared to PD patients. Both PDYN peptides, [SVG…LAR] 
and [FLP…STR], and PDYN mean values were decreased 
in HD patients compared to controls and all other disease 
groups (Fig. 1).

Weak-to-moderate correlations with age were deter-
mined with PENK [FAE…YSK] (r = 0.5191, p < 0.0001), 

PENK [DAE…LLK] (r = 0.2875, p = 0.0069), PENK mean 
(r = 0.3155, p = 0.0029), PDYN [SVG…LAR] (r = 0.2732, 
p = 0.0088) and PDYN mean (r = 0.2088, p = 0.0495) in the 
control group. Furthermore, CSF PENK [FAE…YSK] lev-
els correlated with age in the PD (r = 0.3048, p = 0.0179) 
and sALS groups (r = 0.5692, p = 0.0366). No significant 
difference in biomarker levels between male and female par-
ticipants were found in any group. Likewise, no association 
between biomarkers and disease duration was identified in 
any disease group (Supplementary Table 2).

In the PD group biomarkers levels were not associated 
with clinical scores. In the HD group, CSF PENK [DAE…
LLK] correlated with the UHDRS Total Chorea Score 
(r = − 0.315, p = 0.0396). Moreover, both PDYN peptides, 
[SVG…LAR] (r = 0.471, p = 0.003) and [FLP…STR] 
(r = 0.3495, p = 0.029), and mean PDYN values (r = 0.400, 
p = 0.014) correlated with the UHDRS Cognitive Score in 
the HD group. CSF PDYN and PENK levels were not associ-
ated with TFC and TFC stage. No relationship was observed 

Fig. 1  CSF levels of PENK and PDYN in HD, PD, AD, sALS and 
controls. Levels were determined by the measurement of two PENK-
derived peptides (A [DAE…LLK], B [FAE…YSK], C mean values) 
and two PDYN-derived peptides (D [SVG…LAR], E [FLP…STR], F 
mean values) by liquid chromatography−tandem mass spectrometry 
(LC–MS/MS) method in multiple reaction monitoring mode (MRM). 

Median and interquartile range are shown for the ratio of light pep-
tides to spiked heavy labelled peptides (L/H). Number of samples 
are shown in brackets. Kruskal–Wallis test and Dunn’s post hoc test 
(*p < 0.05, **p < 0.01, ****p < 0.0001). CON controls, HD Hunting-
ton’s disease, PD Parkinson’s disease, AD Alzheimer’s disease, sALS 
sporadic amyotrophic lateral sclerosis
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between biomarkers and the number of CAG repeats in the 
HD group.

The influence of levodopa or levodopa equivalent treat-
ment on CSF PENK and PDYN levels was analyzed in a 
subgroup of PD and PD-MCI patients. CSF PENK levels 
were not significantly different in treated patients compared 
to untreated patients. In contrast, significantly higher PDYN-
derived peptide and mean levels were observed in treated 
PD patients (Fig. 2). This effect was not seen in PD-MCI 
patients. No correlation with LDD or LEDD was observed 
for any peptide or group.

Discussion

In the present study, we investigated CSF PENK- and 
PDYN- derived peptides as candidate biomarkers in PD 
and HD.

First, we added strength to our previous results [8] by 
showing reduced CSF levels of PDYN-derived peptides in 

an independent and larger cohort of HD patients in com-
parison to controls and other disease groups. Moreover, we 
found a similar profile for CSF PENK-derived peptides, in 
accordance with other studies [9, 10], thus supporting the 
notion that both CSF PENK and PDYN might reflect the 
striatal neurodegeneration along with the loss of MSNs 
occurring in HD [9, 10]. Consistently, a decrease in PDYN 
mRNA expression as well as in PDYN- and PENK-derived 
peptides has been reported in HD brains suggesting a com-
bined effect of transcriptional dysregulation and loss of 
MSNs expressing PENK and PDYN genes [8, 9, 28–30]. 
Accordingly, CSF PENK and PDYN were within the normal 
range in ALS and AD, two neurodegenerative diseases with 
lack or low degree of striatal dysfunction/atrophy [11–13].

Interestingly, we found correlations between biomarker 
levels and both motor and cognitive parameters in HD 
patients, thus suggesting a potential role of both analytes as 
markers of disease severity in HD patients. Similarly, Nie-
mela et al. [10] reported a decrease in CSF PENK levels 
along with increased disease severity, together with reduced 

Fig. 2  Influence of dopaminergic therapy on CSF PENK and PDYN 
levels. Levels were determined by the measurement of two PENK-
derived peptides (A [DAE…LLK], B [FAE…YSK], C mean values) 
and two PDYN-derived peptides (D [SVG…LAR], E [FLP…STR], 
F mean values). Median and interquartile range are shown for the 

ratio of light peptides to spiked heavy labelled peptides (L/H). Two-
way ANOVA and Bonferroni’s multiple comparisons test (*p < 0.05, 
**p < 0.01). PD Parkinson’s disease, PD-MCI Parkinson’s dis-
ease with mild cognitive impairment
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biomarker concentrations in symptomatic compared to pre-
symptomatic patients, and a trend toward lower levels in the 
latter group compared to controls. Given the urgent need 
for surrogate endpoints in ongoing clinical trials for HD, 
PDYN- and PENK-derived peptides may be used together 
with neurofilament light chain protein (NfL) as biomarkers 
of disease severity that could be potentially influenced by 
future disease-modifying therapies [31, 32]. In this regard, 
larger studies including longitudinal samples of HD symp-
tomatic and pre-symptomatic subjects are needed to fully 
elucidate the dynamics of CSF PENK and PDYN levels 
during disease course and to evaluate their potential pre-
dictive role in the pre-symptomatic phase. Here, results in 
a small cohort documented an inverse correlation between 
CSF PENK levels and the 5-year risk of onset among pre-
symptomatic HD cases [10]. We also acknowledge that the 
lack of association between biomarker levels and disease 
duration in HD patients might possibly depend on the rela-
tive homogeneity of our cohort (i.e. most HD patients in 
TFC stage 1).

On another issue, we did not find any biomarker changes 
in a large group of PD and PD-MCI subjects, compared to 
other diagnostic groups. Given that dopaminergic signaling 
modulates opioids synthesis by inducing PDYN and inhibit-
ing PENK production, respectively [33], alterations in CSF 
biomarker levels were expected to be found in PD patients. 
However, animal model data showed that a subtotal striatal 
dopamine depletion should be a pre-requisite to produce a 
significant alteration in brain PDYN and PENK levels [34]. 
Thus, a possible explanation of our findings may rely on 
the inclusion of a relatively high proportion of PD patients 
in the early-middle disease stage (median disease duration 
3 years).

Interestingly, the use of dopaminergic therapy influences 
considerably the production of endogenous opioids in PD 
animal models with an upregulation of PDYN and a down-
regulation of PENK, respectively [33, 35]. Accordingly, 
by comparing treated and untreated PD patients, we found 
higher CSF PDYN levels in the former compared to the lat-
ter group. However, this difference was not maintained in the 
PD-MCI group probably due to the advanced disease stage 
and the lower response to dopaminergic therapy. Similarly, 
CSF PENK levels were not altered in both PD and PD-MCI 
subjects after stratification according to the treatment state, 
suggesting possibly a less powerful effect of the therapy on 
CSF PENK levels.

The major strength of our study relies on the analysis of 
two new potential biomarkers in the largest cohort to date 
of HD patients. Regarding potential limitations, we would 
mention the cross-sectional nature of the study, which did 
not help in tracking the longitudinal evolution of biomarker 
values according to disease stage. Moreover, further clini-
cal and therapeutical data (e.g. treatment duration and side 

effects, motor fluctuations) were not investigated in our 
cohort and deserve to be explored in future studies. The find-
ing of positive associations between PENK peptide levels 
and age in controls, PD and sALS patients is challenging 
and deserves further explorations in bigger cohorts. Nev-
ertheless, in all the above-mentioned groups both PENK-
derived peptides were within the normal range and in PD, 
there was no correlation between biomarkers levels and 
disease severity scales, suggesting that age-related associa-
tions in PD and sALS may be driven by other pathophysi-
ological phenomena compared to those of HD (i.e. striatal 
neurodegeneration). Furthermore, despite the very promis-
ing results, the main limit for the implementation of CSF 
PENK and PDYN analyses in the clinical diagnostic setting 
is the lower distribution of LC−MS/MS compared to classic 
ELISA techniques.

In conclusion, we provided further evidence on the per-
formance of CSF PENK- and PDYN-derived peptides as 
promising candidate biomarkers reflecting ongoing stri-
atal neurodegeneration and disease severity in HD. In PD 
patients, CSF PDYN showed a limitative role as a possible 
pharmacodynamic marker during dopaminergic therapy.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00415- 022- 11187-8.
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