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Abstract
Background  Autonomic failure (AF) complicates Parkinson’s disease (PD) in one-third of cases, resulting in complex blood 
pressure (BP) abnormalities. While autonomic testing represents the diagnostic gold standard for AF, accessibility to this 
examination remains limited to a few tertiary referral centers.
Objective  The present study sought to investigate the accuracy of a machine learning algorithm applied to 24-h ambulatory 
BP monitoring (ABPM) as a tool to facilitate the diagnosis of AF in patients with PD.
Methods  Consecutive PD patients naïve to vasoactive medications underwent 24 h-ABPM and autonomic testing. The 
diagnostic accuracy of a Linear Discriminant Analysis (LDA) model exploiting ABPM parameters was compared to auto-
nomic testing (as per a modified version of the Composite Autonomic Symptom Score not including the sudomotor score) 
in the diagnosis of AF.
Results  The study population consisted of n = 80 PD patients (33% female) with a mean age of 64 ± 10 years old and disease 
duration of 6.2 ± 4 years. The prevalence of AF at the autonomic testing was 36%. The LDA model showed 91.3% accuracy 
(98.0% specificity, 79.3% sensitivity) in predicting AF, significantly higher than any of the ABPM variables considered 
individually (hypotensive episodes = 82%; reverse dipping = 79%; awakening hypotension = 74%).
Conclusion  LDA model based on 24-h ABPM parameters can effectively predict AF, allowing greater accessibility to an 
accurate and easy to administer test for AF. Potential applications range from systematic AF screening to monitoring and 
treating blood pressure dysregulation caused by PD and other neurodegenerative disorders.

Keywords  Supervised learning · Linear discriminant analysis · Autonomic failure prediction

Introduction

Autonomic failure (AF) complicates Parkinson’s disease 
(PD) in up to one-third of cases. Cardiovascular AF disrupts 
neural networks controlling blood pressure (BP) and heart 
rate (HR), resulting in complex abnormalities in BP control, 
such as orthostatic hypotension (OH), supine hypertension 
(SH), abnormal circadian rhythm, and increased BP variabil-
ity (BPV) [1]. These abnormalities are usually asymptomatic 
and difficult to recognize by clinical assessment alone [2, 
3]. Still, they may result in organ damage [4] and functional 
disability [5], leading to greater morbidity and quality of 
life impairment [6], as well as worse clinical prognosis [7].

Unfortunately, accessibility to cardiovascular autonomic 
reflex testing (CART), the gold standard for diagnosing AF, 
is limited due to the complexity of the examination, techni-
cal skillset, and expensive equipment required to carry out 
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this complex diagnostic test [8]. As a result, only patients 
complaining of “classic” OH symptoms, such as postural 
light-headedness or fainting, are usually referred to CART, 
and the execution of the test may require long travels to 
highly specialized tertiary referral centers.

Recent studies showed that selected abnormalities in the 
24-h BP profiles, such as a reversed circadian rhythm [9] 
and increased BPV [10], are associated with AF. The central 
hypothesis of the present study is that ABPM effectively pre-
dicts adrenergic AF in patients with PD. To test this hypoth-
esis, a prospective non-interventional study was designed to 
evaluate the diagnostic accuracy of a machine-learning algo-
rithm of ABPM recordings compared to standard adrenergic 
autonomic testing in a cohort of consecutive PD patients.

Methods

Consecutive patients referred to the Autonomic Unit of the 
Department of Medical Science, University of Torino (Italy) 
between September 2016 and June 2019 were offered to par-
ticipate in a single-centre, cross-sectional study investigat-
ing the diagnostic potential of a machine-learning algorithm 
applied to ABPM as a tool to diagnose AF in PD.

Inclusion criteria

Diagnosis of PD as per the EFNS/MDS-ES recommenda-
tions [11] for at least 2 years; stable dosage of dopaminergic 
drugs for at least 4 weeks.

Exclusion criteria

Other neurological diseases associated with primary AF 
(multi-systemic atrophy, pure autonomic failure); diabetes 
mellitus or diseases potentially associated with secondary 
AF [12]; non-sinus rhythm or pacemaker-guided cardiac 
activity; severe cognitive impairment, defined as Montreal 
Cognitive Assessment (MoCA) score < 21 [13], or any phys-
ical impairment preventing the execution and interpretation 
of CART; a medical history of severe impaired renal func-
tion, heart diseases, or obstructive sleep apnoea syndrome; 
and ongoing vasoactive therapy (anti-hypotensive and/or 
anti-hypertensive) for orthostatic hypotension and/or supine 
hypertension.

Study protocol

After the acquisition of written informed consent, those 
meeting all the inclusion and none of the exclusion criteria 
underwent CART followed by 24 h-ABPM within 10 days.

CART: technical execution

Autonomic testing has been performed as per a standard 
procedure and cardiovagal and adrenergic indexes calcu-
lated according to a modified version of the Composite 
Autonomic Symptom Score (CASS), without the sudomotor 
score [14]. Briefly, BP and the HR interval were continu-
ously recorded using a beat-to-beat non-invasive monitor 
(Finometer, Finapres) during the performance of the follow-
ing standardized tests:

1.	 Deep breathing: patients were asked to breathe deeply 
and evenly at 6 breaths/min for 1 min.

2.	 Valsalva manoeuvre: patients were asked to blow into a 
mouthpiece attached to an aneroid pressure gauge at a 
pressure of 40 mmHg, for 15 s.

3.	 Head-up tilt test: patients were asked to lye supine on 
the tilt table for 10 min, then the table was tilted up to a 
60° upright position for 5 consecutive minutes. For this 
test, in addition to the beat-to-beat recording, the BP 
was measured with an automatic sphygmomanometer 
(Omron, HEM-9219 T-E, Japan©) at baseline, 1 min, 
3 min, and 5 min

BP and HR variations were analysed with dedicated soft-
ware (DAN Test Microlab, Padua, Italy) and scored using 
age-related normal ranges [15].

CART: data interpretation

OH was defined as a sustained reduction of systolic blood 
pressure ≥ 20 mmHg or diastolic blood pressure ≥ 10 mmHg 
within three minutes from standing [16].

SH was defined as systolic blood pressure ≥ 140 mmHg 
and/or diastolic blood pressure ≥ 90 mmHg recorded after at 
least 5 min of supine rest [3].

AF was diagnosed when the sum of the cardiovagal and 
adrenergic score was ≥ 2.

ABPM: technical execution

24-h ABPM were performed using a Spacelabs portable 
device (Spacelabs 90207—Spacelabs Inc., Redmond, WA, 
USA©) with appropriately sized arm-cuff placed on the 
non-dominant side, as per current guidelines [17]. BP was 
measured every 15 min during both daytime and nighttime; 
patients were asked to record on a diary relevant behavioural 
and occupational activities, sleep and wake time, and meals.

ABPM: data interpretation

ABPM was performed according to definitions and refer-
ence values for ABPM data interpretation proposed by the 
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European Society of Hypertension [17]. Specifically, the 
following parameters were derived:

•	 BP load, defined as the percentage of blood pressure 
values exceeding reference values during daytime 
(≥ 135/85 mmHg) and nighttime (≥ 120/70 mmHg).

•	 Reverse dipping, defined as a systolic day-night dif-
ference ≤ 0 mmHg (i.e., average nocturnal systolic BP 
higher than average diurnal systolic BP).

•	 Weighted blood pressure variability (w-BPV), defined 
as the sum of the standard deviation of diurnal and 
nocturnal systolic BP, normalized for daytime and 
night-time duration. W-BPV was considered increased 
when > 11 [18].

•	 Postprandial hypotension (PPH), defined as a reduction 
in systolic blood pressure ≥ 20 mmHg within 120 min 
after a meal, using the mean of the last three BP meas-
urements before the meal as reference [19].

•	 Hypotensive episodes, defined as any record of sys-
tolic BP values lower than average 24-h systolic BP by 
at least 15 mmHg between awakening and lunch time 
(Hypo-epΔ15/24h) [20].

•	 Awakening hypotension, defined as the presence of at 
least one Hypo-ep Δ15/24h within 90 min from awaken-
ing (Hypo-awΔ15/24h) [20].

Statistical analysis

Analyses were performed with SPSS (Statistical Pack-
age for the Social Sciences—version 22—© 2014 IBM). 
Normal distribution of continuous variables was tested 
using the Shapiro–Wilk test. Continuous variables were 
expressed as mean ± standard deviation. Qualitative vari-
ables were expressed as absolute values of frequency and 
percentage values. Differences between two independent 
groups were evaluated using Student’s t-test for continu-
ous variables with normal distribution and Mann–Whitney 
test for continuous variables with non-normal distribution; 
multiple comparisons (between more than 2 groups) were 
evaluated with One-way ANOVA analysis and Bonfer-
roni’s correction. Categorical variables were compared 
using chi-square test or Fisher’s exact test according to 
the sampling number of analysed groups.

Univariate logistic regression analysis was used to eval-
uate the correlation between selected categorical ABPM 
abnormalities and AF; subsequently, multivariate logistic 
regression was performed to correct for age, sex, LEDD 
and disease duration. P values less than 0.05 were consid-
ered statistically significant.

Diagnostic accuracy of single ABPM parameters

For categorical variables, 2 × 2 contingency tables were built 
setting ABPM parameters as a diagnostic test and the pres-
ence of AF as the real outcome. Sensitivity, specificity, posi-
tive predictive value (PPV), and negative predictive value 
(NPV) were then calculated.

For continuous variables, a receiver operating charac-
teristic (ROC) analysis was used to estimate the predictive 
accuracy (state variable: presence of autonomic failure; test 
variable: ABPM continuous parameters). Sensitivity, speci-
ficity, PPV, and NPV were calculated after the selection of 
the optimum ROC cut point, based on the balance between 
sensitivity and specificity (highest Youden index).

Global ABPM diagnostic accuracy: linear discriminant 
analysis

Supervised machine learning algorithms were trained using 
Python 3.5 (library, scikit-learn). Linear discriminant anal-
ysis (LDA) [21, 22] was applied to develop a prediction 
model for AF in PD based on ABPM data. LDA employs 
linear combinations of variables to maximize the separation 
between groups by increasing precision estimates by vari-
ance reduction. The algorithm computes a set of coefficients 
for a linear combination of each variable to predict the diag-
nosis of AF. The estimation is derived from the following 
equation: AF diagnosis = LDAcoeff1 × variable1 + LDAcoeff2 
× variable2 + … + LDAcoeffn × variablen > cut-off. The pres-
ence/absence of AF was set as an outcome; the following 
variables were used to train the model: 24-h, daytime and 
nighttime blood pressure values (systolic, mean, and dias-
tolic), 24-h, daytime and nighttime blood pressure stand-
ard deviations (SD), daytime and nighttime blood pressure 
loads (systolic and diastolic), w-BPV, PPH, reverse dipping, 
Hypo-awΔ15/24h, number of Hypo-epΔ15/24h.

Results

The study population consisted of 80 PD patients, 54 
males (67.5%) and 26 females (32.5%), with a mean age of 
64 ± 10 years, and PD duration of 6.2 ± 4 years. All patients 
were treated with dopaminergic drugs with a levodopa 
equivalent daily dose (LEDD) of 668 ± 351 mg [23].

According to the CART assessment, 29 patients (36%) 
were diagnosed with AF (AF+). This group was older but 
had similar disease duration and LEDD compared to the 
group without AF (AF−). Night-time average BP and BP 
loads were higher in patients AF+. Also, this group showed 
a higher incidence of reverse dipping, increased SD of sys-
tolic daytime BP, and hypotensive episodes compared to 
AF− (Table 1).
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The LDA model was able to discriminate patients AF+ 
with 91.3% accuracy, 98.0% specificity, and 79.3% sensitivity, 
which was significantly higher than any of the ABPM vari-
ables considered individually (Table 2 and Fig. 1). The algo-
rithm misdiagnosed only 6 patients with AF; among them, 1 
with prevalent cardiovagal, 2 with prevalent adrenergic, and 
3 with mixed AF.

Further analyses were performed to determine the asso-
ciation of AF+ with individual variables while taking into 
consideration confounders, such as age, sex, disease duration 
and LEDD. Logistic regression analysis showed a strong asso-
ciation of AF+ with Hypo-awΔ15/24h, ≥ 3 Hypo-epΔ15/24h, and 
reverse dipping pattern (Table 3), while the association with 
an increased standard deviation of daytime systolic BP was not 
confirmed at the multivariate analysis. Nocturnal BP was also 
associated with AF+, with the mean BP value showing the 
strongest association (OR 1.09, P < 0.01) (Table 3B).

Discussion

In this study, the diagnostic performance of a supervised 
learning algorithm employing ABPM recordings to diag-
nose AF in patients with PD was assessed. The model was 

able to discriminate AF with 91.3% accuracy, much higher 
than any of the other ABPM variables considered indepen-
dently. In particular, while individual ABPM parameters, 
such as ≥ 3 hypotensive episodes, awakening hypotension, 
reverse dipping, or increased nocturnal BP could identify 
AF with relatively good specificity, they were all limited 
by low sensitivity (< 60%), hampering their potential as a 
screening tool.

Clinical manifestations of AF encompass both short- and 
long-term dysregulations in BP regulatory mechanisms. 
The former include OH and SH, the latter include noctur-
nal hypertension, abnormal circadian rhythm, and increased 
BPV [1]. SH and reverse dipping, in particular, have been 
associated with hypertensive end-organ damage and worse 
clinical prognosis in patients with PD [4, 24, 25]. Still, the 
extent to which a correction of these hemodynamic abnor-
malities might result in clinical benefit remains to be clari-
fied. The introduction of a machine-learning-based algo-
rithm of 24-h ABPM bears the promise to help understand 
the complex interaction between hemodynamic parameters 
and functional outcomes. A deeper understanding of BP dys-
regulation in AF will allow detecting profiles of BP abnor-
malities with a higher risk of adverse outcomes and inform 
the selection of treatment priorities (e.g., balancing risk and 

Table 1   ABPM parameters: 
comparison between patients 
with and without autonomic 
failure

AF autonomic failure, LEDD levodopa equivalent daily dose, SBP systolic blood pressure, MBP mean 
blood pressure, DBP diastolic blood pressure, w-BPV weighted blood pressure variability, SD-daytime 
SBP standard deviation of diurnal systolic blood pressure, PPH post-prandial hypotension, Hypo-awΔ15/24h 
awakening hypotension, Hypo-epΔ15/24h hypotensive episodes

Ambulatory blood pressure monitoring

AF− (n. 51) AF+ (n. 29) P value

Age (years) (mean ± SD) 61 ± 10 67 ± 10 < 0.01
Disease duration (years) (mean ± SD) 5.5 ± 3 7 ± 4.5 0.08
LEDD (mg) (mean ± SD) 657 ± 326 694 ± 403 0.72
Female sex [n (%)] 17 (33) 9 (31) 0.08
Daytime SBP (mmHg) (mean ± SD) 122 ± 10 118 ± 8 0.04
Daytime MBP (mmHg) (mean ± SD) 91 ± 9 88 ± 7 0.24
Daytime DBP (mmHg) (mean ± SD) 75 ± 9 73 ± 7 0.13
Night-time SBP (mmHg) (mean ± SD) 109 ± 11 122 ± 17 < 0.01
Night-time MBP (mmHg) (mean ± SD) 79 ± 8 89 ± 14 < 0.01
Night-time DBP (mmHg) (mean ± SD) 64 ± 8 71 ± 13 < 0.01
Daytime SBP loads (%) (mean ± SD) 19 ± 20 15 ± 11 0.19
Daytime DBP loads (%) (mean ± SD) 17 ± 22 18 ± 15 0.83
Night-time SBP loads (%) (mean ± SD) 19 ± 24 46 ± 36 < 0.01
Night-time DBP loads (%) (mean ± SD) 23 ± 25 45 ± 37 < 0.01
Reverse dipping pattern [n (%)] 5 (10) 17 (58) < 0.01
w-BPV > 11 mmHg [n (%)] 25 (49) 20 (68) 0.08
SD-daytime SBP > 16 mmHg [n (%)] 4 (8) 10 (34) 0.02
PPH [n (%)] 23 (46) 17 (58) 0.27
Hypo-aw Δ15/24h [n (%)] 4 (8) 13 (44) < 0.01
Hypo-ep Δ15/24h (n.) (mean ± SD) 0.4 ± 0.6 3.4 ± 3.3 < 0.01
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benefits of better control of SH at the expense of higher 
burden of OH versus allowing higher supine and nocturnal 
BP to mitigate OH) [26, 27].

The present analyses confirm the previous finding that 
hypotensive episodes and reverse dipping are accurate mark-
ers of AF in PD [9, 20], while increased BPV seems to be 
less effective in predicting AF, despite the multiple hypoten-
sive episodes (expected to increase BPV) observed in this 
patient population. While this result partly conflicts with a 
previous study [10] suggesting that exaggerated SD of diur-
nal systolic BP could be used to detect primary or secondary 
AF, the authors did not confirm the association between AF 
and increased SD-SBP when the PD status and dopaminer-
gic treatment were included in the multivariate analysis. This 
suggests that AF in PD (and possibly other forms of primary 
AF) may be characterized by a peculiar BP profile, different 
from the one observed in secondary AF.

The strength of this study is the innovative approach 
involving machine learning for the detection of AF, that 
demonstrated high accuracy and specificity, and relatively 
high sensitivity.

The assessment of patients in their real-life environment 
allows exploring the everyday BP profiles, which may be 

more informative on the risk of organ damage development 
than the standardized but artificial values obtained through 
CART. Several limitations, however, should also be consid-
ered in the interpretation of the results.

First, the number of patients with AF was relatively low 
due to the stringent exclusion criteria, aiming at limiting 
confounders related to additional pharmacological treatment 
or concurrent clinical conditions; to reduce this bias, patients 
were carefully selected without vasoactive medications or 
known cardiovascular comorbidities, or severe cognitive 
impairment. Second, dopaminergic drugs have not been 
withheld during CART and ABPM, to assess BP fluctuations 
in a real-life environment. Still, the impact of dopaminergic 
drugs may have influenced the BP recordings. To that extent, 
the finding that LEDD values were not significantly different 
among groups and most associations remained significant 
after adequate correction in multivariate analysis seems reas-
suring. Third, the possibility exists that ABPM could better 
capture adrenergic impairment, thus limiting the diagnosis 
of AF with a prominent cardiovagal impairment, although 
the analysis of the 6 misidentified patients does not seem 
to confirm this hypothesis. Fourth, the variability in each 
individual patient’s day schedule might have influenced the 

Table 2   Prediction of autonomic failure through machine learning and single ABPM parameters

Autonomic failure (AF+) was used as the outcome. The predictive power of each ABPM variable was calculated through a 2 × 2 contingency 
table for dichotomous variables (Hypo-awΔ15/24h, ≥ 3 Hypo-epΔ15/24h, postprandial hypotension, reverse dipping pattern, high weighted blood 
pressure variability) and through the ROC curve for continuous variables (diurnal and nocturnal blood pressure values). The accuracy of the 
continuous variables refers to the cut-point of the ROC curve with the best sensitivity–specificity compromise (123 mmHg for SBP, 95 mmHg 
for MBP, 75 mmHg for DBP)
LDA: linear discriminant analysis; ABPM: ambulatory blood pressure monitoring; Hypo-awΔ15/24h: awakening hypotension; Hypo-epΔ15/24h: 
hypotensive episodes; SD d-SBP: standard deviation of diurnal systolic blood pressure; w-BPV: weighted blood pressure variability; PPH: post-
prandial hypotension; AUC: area under the curve; PPV: positive predictive value; NPV: negative predictive value; SBP: systolic blood pressure; 
MBP: mean blood pressure; DBP: diastolic blood pressure
a The ROC-curve output with diurnal BP value was obtained by inverting the outcome (AF−) to have an AUC greater than 0.5; accuracy metrics 
have not been reported being not significant

Accuracy AUC​ Specificity Sensitivity PPV NPV

Machine learning (all ABPM variables)
LDA 91% (83–96) / 98% (90–100) 79% (60–92) 96% (77–99) 89% (80–94)
ABPM predictive variables (categorical)
≥ 3 Hypo-epΔ15/24h 82% (71–90) / 100% (93–100) 52% (33–71) 100% 77% (70–83)
Reverse dipping 79% (68–87) / 90% (79–97) 59% (39–76) 77% (58–89) 79% (71–86)
Hypo-awΔ15/24h 74% (63–84) / 92% (80–98) 45% (26–64) 76% (54–90) 74% (67–80)
SD d-SBP (> 16 mmHg) 71% (60–81) / 92% (81–98) 35% (18–54) 71% (46–88) 71% (65–77)
w-BPV (> 11 mmHg) 57% (46–68) / 51% (37–65) 69% (49–84) 44% (36–54) 74% (61–84)
PPH 56% (44–67) / 54% (39–68) 59% (39–76) 43% (33–53) 69% (58–79)
ABPM predictive variables (continuous)
aDiurnal SBP / 0.62 (0.49–0.75) / / / /
aDiurnal MBP / 0.55 (0.42–0.69) / / / /
aDiurnal DBP / 0.58 (0.46–0.71) / / / /
Nocturnal SBP (cut-off 123 mmHg) 74% (67–80) 0.72 (0.60–0.84) 90% (79–97) 45% (26–64) 72% (51–87) 74% (67–80)
Nocturnal MBP (cut-off 95 mmHg) 75% (64–84) 0.73 (0.61–0.85) 96% (87–99) 38% (21–58) 85% (57–96) 73% (67–78)
Nocturnal DBP (cut-off 75 mmHg) 74% (63–83) 0.67 (0.54–0.80) 92% (81–98) 41% (24–61) 75% (52–89) 73% (67–79)



3838	 Journal of Neurology (2022) 269:3833–3840

1 3

ABPM recordings, as those with greater motor disability 
are less likely to engage in strenuous physical activities or 
prolonged standing.

This should be considered as a pilot study, but a wide 
range of future applications for machine learning in the field 
of ABPM can be easily envisioned. The machine learning 
approach needs to be tested and validated on larger sam-
ples, evaluating the possibility to discriminate patients with 
prevalent cardiovagal vs. adrenergic vs. mixed autonomic 
impairment, with associated clinical implications. It seems 
reasonable to assume that patients with prevalent cardiovagal 
impairment should display a peculiar BP profile, since adren-
ergic vasoconstriction is usually preserved while HR varia-
tions are minimal or absent. Similarly, one would expect that 
patients with prevalent adrenergic impairment, with minimal 
vasoconstrictive function but preserved compensatory shifts 

in HR, could be differentiated by those with mixed AF. The 
extent to which machine learning applied to ambulatory 
recordings of blood pressure and heart rate can assist in detect-
ing distinctive patterns of blood pressure dysregulation with 
potentially relevant clinical implications remains to be clari-
fied. In the meantime, these data suggest that this technology 
can be successfully applied to ABPM recordings to diagnose 
AF when CART is not easily available or difficult to obtain, 
favoring more appropriate referrals to a second-level CART 
evaluation, with the main advantage of lowering healthcare 
costs, improving the appropriateness of referrals, and provid-
ing an additional, real-life, measure of circadian blood pressure 
fluctuations. Additional possible applications include monitor-
ing the efficacy of treatments aiming at correcting OH without 
resulting in excessive SH.

Fig. 1   Accuracy of autonomic failure prediction. AF autonomic fail-
ure, PPH post-prandial hypotension, w-BPV weighted blood pressure 
variability, SD standard deviation, SBP systolic blood pressure, DBP 

diastolic blood pressure, Hypo-awΔ15/24h awakening hypotension, 
MBP mean blood pressure, Hypo-epΔ15/24h hypotensive episodes, LDA 
linear discriminant analysis
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Table 3   Univariate and multivariate logistic regression analysis

Autonomic failure (AF+) was used as dependent variable (outcome). In univariate analysis, the independent variables were Hypo-awΔ15/24h 
(awakening hypotension), ≥ 3 Hypo-epΔ15/24h (hypotensive episodes), reverse dipping, w-BPV (weighted blood pressure variability), DS-daytime 
SBP (standard deviation of daytime systolic blood pressure), diurnal and nocturnal SBP (systolic blood pressure), diurnal and nocturnal MBP 
(mean blood pressure), diurnal and nocturnal DBP (diastolic blood pressure). In multivariate analysis age, sex, disease duration and LEDD 
(levodopa equivalent daily dose) were used as potential confounding variables

A Outcome

ABPM predictive
Variables (categorical)

Autonomic failure

Univariate analysis (IC 95%) Multivariate 
analysis (IC 
95%)

Hypo-awΔ15/24h OR 9.1 (2.6–32) 8.7 (2–37.4)
P value  < 0.01 0.01

≥ 3 Hypo-epΔ15/24h OR 40.2 (5.8–78) 60.7 (12.1–108)
P value  < 0.01  < 0.01

PPH OR 1.6 (0.7–4.2) 1.4 (0.4–4.5)
P value 0.28 0.57

Reverse dipping OR 13 (4–42) 16.6 (3.2–87)
P value  < 0.01  < 0.01

w-BPV (> 11 mmHg) OR 2.3 (0.9–6) 1.4 (0.5–4.3)
P value 0.09 0.57

DS daytime SBP (> 16 mmHg) OR 6.1 (1.7–22.1) 3.8 (0.9–16)
P value  < 0.01 0.06

B Outcome

ABPM predictive
Variables (continuous)

Autonomic failure

Univariate analysis (IC 95%) Multivariate 
analysis (IC 
95%)

Diurnal SBP OR 0.95 (0.9–1.01) 0.95 (0.89–1.01)
P value 0.06 0.06

Diurnal MBP OR 0.96 (0.9–1.01) 0.96 (0.89–1.03)
P value 0.14 0.24

Diurnal DBP OR 0.97 (0.91–1.02) 0.97 (0.91–1.04)
P value 0.24 0.41

Nocturnal SBP OR 1.07 (1.03–1.11) 1.06 (1.01–1.12)
P value < 0.01 0.01

Nocturnal MBP OR 1.09 (1.04–1.15) 1.08 (1.02–1.15)
P value < 0.01 0.01

Nocturnal DBP OR 1.08 (1.03–1.14) 1.07 (1.01–1.13)
P value < 0.01 0.03
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sinki. The local institutional review board (Comitato Etico Interazien-
dale Città della Salute e della Scienza di Torino) approved the study.

Informed consent  All participants provided written informed consent.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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