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Abstract
Multiple studies indicate that United States veterans have an increased risk of developing amyotrophic lateral sclerosis 
(ALS) compared to civilians. However, the responsible etiological factors are unknown. In the general population, specific 
occupational (e.g. truck drivers, airline pilots) and environmental exposures (e.g. metals, pesticides) are associated with 
an increased ALS risk. As such, the increased prevalence of ALS in veterans strongly suggests that there are exposures 
experienced by military personnel that are disproportionate to civilians. During service, veterans may encounter numerous 
neurotoxic exposures (e.g. burn pits, engine exhaust, firing ranges). So far, however, there is a paucity of studies investigating 
environmental factors contributing to ALS in veterans and even fewer assessing their exposure using biomarkers. Herein, we 
discuss ALS pathogenesis in relation to a series of persistent neurotoxicants (often emitted as mixtures) including: chemi-
cal elements, nanoparticles and lipophilic toxicants such as dioxins, polycyclic aromatic hydrocarbons and polychlorinated 
biphenyls. We propose these toxicants should be directly measured in veteran central nervous system tissue, where they 
may have accumulated for decades. Specific toxicants (or mixtures thereof) may accelerate ALS development following a 
multistep hypothesis or act synergistically with other service-linked exposures (e.g. head trauma/concussions). Such pos-
sibilities could explain the lower age of onset observed in veterans compared to civilians. Identifying high-risk exposures 
within vulnerable populations is key to understanding ALS etiopathogenesis and is urgently needed to act upon modifiable 
risk factors for military personnel who deserve enhanced protection during their years of service, not only for their short-
term, but also long-term health.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a predominantly 
sporadic, paralytic, and fatal condition caused by motor 
neuron degeneration [1]. Despite the identification of dis-
ease-causing mutations for ~ 10% of cases [2–4], the patho-
genic mechanism(s) of ALS remain elusive, hampering the 
development of effective preventive or therapeutic strategies. 
It is thought there are likely as many types of toxic expo-
sures leading to sporadic ALS as there are genetic variants 
causing familial or inherited ALS (> 25 causative genes) 
[4]. Interestingly, not all carriers of ALS-causing mutations 
develop ALS, even in old age. For instance, most mutations 
in TDP-43 exhibit a reduced penetrance [5]. There is also 
a large disparity at what age familial ALS presents. These 
observations suggest that, even in familial ALS, there are 
environmental influences. While sporadic ALS occasionally 
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results from oligogenic causes [6, 7], it is generally believed 
that most sporadic cases result from a combination of envi-
ronmental factors and genetic susceptibilities. Currently, 
identifying rare genetic susceptibility factors that synergis-
tically interact with a given environmental exposure requires 
a large case–control analysis, and often through the efforts of 
a global consortium.

The importance of environmental exposures in ALS eti-
ology is supported by reports of high discordance of this 
disease in monozygotic twins [8, 9], conjugal ALS [10] 
and an increased risk of ALS for specific occupations [11], 
activities [12] and exposures (e.g. metals [13, 14], pesticides 
[15]). Relevant to veterans affected with ALS, disease risk 
increases, sometimes two-fold, with deployment [16] or total 
years of deployment [17]. Beard et al. also found ALS was 
positively associated with exposure to herbicides, pesticides, 
certain metals and burning agents [17]. Another study called 
genes and environmental exposures in veterans (GENEVA) 
used a retrospective exposure assessment to evaluate  which 
industrial and occupational exposures, next to genetics, 
could drive the higher risk of ALS among military veterans 
[18]. They found that raters' confidence-modified exposure 
scores revealed potential higher exposure to hydrocarbon 
solvents, chlorinated solvents, and pesticides. Such evidence 
suggests that military personnel might be exposed to a vari-
ety of neurotoxicants and carcinogens whose adverse effects 
only emerge after sustained long-term exposure.

A recent study reported that the prevalence of El Escorial-
defined ‘definite’ ALS cases is significantly higher among 
Air Force personnel, as well as among tactical operation 
officers and health care workers compared to other service 
branches and occupations [19]. These branch-specific differ-
ences are not reported by all studies [17, 20, 21]. Although 
a topic of debate, the suggested variation in rates among 
military branches may indicate that there are disproportion-
ate exposures and/or factors experienced by certain military 
personnel. Despite such reports, there is no clear connection 
between a given environmental exposure and ALS veterans 
to date. One possible reason for this gap in understanding is 
that only a few studies (notably Fang et al., 2010 [22]) have 
evaluated biomarkers of physiological exposure to specific 
neurotoxicants, such as lead (Pb), in this population.

In this review, we assert that to reliably characterize the 
physiological burden of exposure in veterans, it is impor-
tant to evaluate the potentially causal chemicals in disease-
relevant tissues, such as the central nervous system (CNS). 
Importantly, the causative environmental exposure(s) likely 
occurred years prior to disease onset (e.g. 10 + years). Thus, 
due to changes of residence, retirement, etc., a given ALS 
patient is likely no longer actively exposed to the causal 
toxicants at the time of diagnosis. While epidemiological 
exposure assessments are therefore challenging, the direct 
measurement of persistent neurotoxicants from subject tissue 

remains feasible and offers many advantages. For instance, 
toxic metals, such as Pb, accumulate in bones where they 
have a half-life of up to 30 years [23]. As a result of aging 
and decreased activity, metals like Pb can be mobilized from 
bones, thus internally extending potential exposures that 
may have initially occurred years ago. Similarly, the CNS 
is also known to accumulate such metals with a longer half-
life than most soft organs [24] as well as lipophilic toxicants 
with stable chemical structures due to the high lipid content 
of CNS tissue [25]. Although this approach may not capture 
all toxicants that contribute to ALS (e.g. those that are not 
persistent), persistent and non-persistent toxicants are often 
co-emitted, and thus tracking the persistent ones presents 
a feasible mechanism for the identification of fundamen-
tal sources of exposure that will provide an overall more 
informed understanding of ALS environmental etiology as 
a whole.

Together, there are several questions that could greatly 
increase our understanding of the particular vulnerability of 
military veterans to ALS:

1. What toxic environmental exposures/toxicants are asso-
ciated with ALS?

2. What concentrations and/or (sub)cellular accumulations 
of such toxicants are relevant to disease?

3. Are there synergistic patterns between associated toxi-
cants and predisposing/lifestyle factors (e.g. prior head 
trauma, spinal cord injury, smoking, occupation etc.)?

Similarities in disease development 
between ALS and cancer

In 2014, a groundbreaking epidemiological study by Al-
Chalabi et al. described the development of ALS as a multi-
step process, similar to cancer [26]. The study was based on 
the premise that both ALS and cancer share characteristics 
such as the “onset being more common in later life, progres-
sion usually being rapid, the disease affecting a particular 
cell type, and showing complex inheritance” [26]. Using 
ALS registries from Ireland, the Netherlands, Italy, Scot-
land and England, Al-Chalabi and colleagues demonstrated 
a linear relationship between log incidence and log age in 
all five registries that was consistent with a six-step process 
[26], possibly derived from a combination of environmental 
exposures, genetic and other risk factors. Chiò et al. further 
demonstrated that patients with genetic mutations had fewer 
steps in their development of ALS, thereby supporting the 
idea of ALS as a multistep process [27]. Identifying expo-
sures that serve as key steps or “hits” in ALS development 
will likley greatly increase our collective understanding of 
ALS etiology as well as the development of preventative and 
therapeutic strategies.
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In this respect, military service members appear to repre-
sent a distinct subpopulation to which these principles could 
be applied. For instance, ALS incidence was found to be 
significantly higher during an approximate 10-year window 
following deployment for first Gulf War relative to those 
not deployed to the Gulf [28, 29]. Possibly following key 
exposures and/or interplay between toxicants and other risk 
factors, this defined window between service and disease 
onset provides a potential timeframe for the manifestation 
of ALS. Moreover, one study reports 85% of incident cases 
in Gulf War veterans within this window were < 45 years 
of age [30]. This decreased age of onset (typical ALS onset 
is ≥ 60 years in the general population) may also suggest that 
the exposures experienced by military personnel were more 
frequent and/or intense than that of persons developing ALS 
in the general population. We posit that service-linked expo-
sures may represent one step (or several) in the proposed 
multistep process of ALS development [26].

Military service and ALS

There are numerous reports suggesting an increased risk of 
ALS associated with military service [16, 31, 32]. A repre-
sentative report by the United States National Academy of 
Medicine (US NAM, previously the Institute of Medicine) 
shows that, regardless of what war, ALS rates were gener-
ally increased and often doubled compared to rates in non-
military individuals [16]. Although evidence based on such 
studies has often been deemed limited but suggestive (e.g. 
due to small samples sizes, given the rarity of disease), ALS 
is currently defined as a service-connected disease and the 
Department of Veterans Affairs (VA) has provided additional 
financial assistance to Gulf War veterans suffering from ALS 
[33]. As of 2010, more than 2 million service members have 
been deployed in support of Operation Enduring Freedom 
and Operation Iraqi Freedom [34]. ALS prevalence among 
US veterans deployed (2002–2015) was 19.7/100,000 [19]. 
Thus, understanding risk factors in the military setting could 
provide valuable insight and future mitigation strategies for 
current and future military service members.

The Gulf War serves as a notable case study when exam-
ining the connection between military service and ALS. 
In addition to a doubled incidence of disease compared to 
general population [28, 29], Haley observed that 8 years 
postwar, 85% of the incident cases in Gulf War veterans 
were < 45 years of age [30]. The observed incidence in 
young veterans increased from 1 to 5 cases per year and 
was not explained by “a change in the interval from onset to 
diagnosis or by a change in the US population death rate of 
ALS in those aged < 45 years” [30]. To this end, NAM have 
considered relationships between Gulf War illnesses in gen-
eral (including ALS) and broad exposures to environmental 

toxicants including insect repellents, such as N,N-diethyl-
m-toluamide (DEET), oil well combustion products such as 
organic hydrocarbons (VOCs), diesel exhaust, and various 
polycyclic aromatic hydrocarbons (PAHs), or other sub-
stances likely to be encountered during service such as acid 
aerosols, hydrazines, mustard agents, sarin, pyridostigmine 
bromide, and depleted uranium [35]. However, NAM found 
insufficient evidence to demonstrate that subclinical expo-
sures to these agents was associated with specific patterns 
of illness [36]. Previous studies probing this connection 
have been criticized in part for (1) a lack of evidence of 
a biologically credible environmental exposure that could 
result in such an increase in neurodegenerative illness (no 
reliable biomarker of CNS exposure) and (2) the statisti-
cal methodologies studies used [37–41]. In regards to the 
latter, however, subsequent investigations have confirmed 
the increased risk of ALS among deployed personnel using 
capture/recapture methodologies [42].

Although the etiology of ALS in veterans remains 
unclear, it is clear military service represents a unique cir-
cumstance that aggregates a special group of collective fac-
tors. For instance, military service members are exposed 
to multiple environmental hazards during deployment (e.g. 
pollutants from unregulated industry, particulate matter from 
desert environments, exhaust from military vehicles and air-
craft, emissions from open-air burn pits and toxicants on 
military bases); among the myriad of toxicants present in 
these service-connected exposures, several were linked to 
diseases (e.g. lead, pesticides, dioxins, and even aerosolized 
cyanobacteria pertaining to Gulf Wars [43]). Soldiers also 
receive prophylactic treatment of cholinergic inhibitors, 
which have been linked with neurodegenerative disease and 
potentially ALS [17, 44], to protect them against nerve gas 
and insect pests.  Beard et al. additionally identified numer-
ous exposures associated with ALS and those with odds 
ratios > 3 included: treatment with nasopharyngeal radium, 
mixing or application of herbicides or burning agents as 
well as exposure to ground-level fumigation, nearby mis-
sile explosions, chemical agent-resistant compound paint or 
depleted uranium for munitions/armor [17]. Thus, while an 
effort has been made to link exposures to veteran service 
[32], no toxic exposures was demonstrated for its causal role 
in ALS.

In addition to environmental exposures, predisposing 
behavioral activities have also been considered in the context 
of military service and ALS. It has been postulated that the 
extreme physical exertion experienced by military person-
nel might also heighten ALS risk as well as smoking and 
alcohol consumption. However, variation in postwar ALS 
rates between military branches are not consistent with this 
idea. Altogether, previous attempts to establish a connec-
tion between military-linked environmental exposures and 
ALS based on historic records and questionnaires has proven 
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difficult. Thus, evaluating the physiological dose of poten-
tial neurotoxicants in target tissues using quantitative and 
advanced molecular techniques would allow for stronger 
and improved correlations to be made between persistent 
toxicants and ALS. Although certain environmental toxi-
cants have short half-lives and would not be measurable 
in postmortem CNS tissue, selecting toxicants that are (1) 
likely to contribute to disease based on evidence from the 
literature (see below) and (2) would be measurable as much 
as a decade or more after exposure will likely yield robust 
information. Potential toxicants include chemical elements, 
nanoparticles (NPs) and persistent, lipophilic toxicants such 
as dioxins, polycyclic aromatic hydrocarbons (PAHs) and 
polychlorinated biphenyls (PCBs). These environmental tox-
icants and their sources are described in more detail below.

ALS‑relevant and military‑linked 
environmental exposure sources

Diesel exhaust

Certain occupational studies have found increased ALS risk 
among persons in occupations with high exposure to diesel 
exhaust [45], such as truck drivers [46, 47] and construction 
workers [48], machine operators [49] and bus drivers [49]. 
Thus, diesel exhaust represents a proposed common denomi-
nator for ALS. Diesel engines of comparable power produce 
between 2 and 10 or up to 40-fold more particulate emissions 
than gasoline engines without or with a catalytic converter, 
respectively [50]. Moreover, inhaled diesel exhaust particles 
are ‘biopersistent’ and may carry additional chemical com-
pounds on their surface [51]. Thus, the importance of diesel 
engine emissions to human health is not only a reflection of 
the toxic chemicals produced, but also the ability of particu-
late matter to ‘trap’ additional chemicals, thereby potentially 
extending the duration of exposure [51]. As a result, this 
may allow for the prolonged contact of passenger chemicals 
with the respiratory epithelium and increase their chance of 
uptake and subsequent initiation of oxidative stress, systemic 
inflammation and de novo mutations from resultant genomic 
damage [51, 52]. Diesel exhaust also contain PAHs such as 
benzo(a)pyrene and as well as additional toxicants and car-
cinogens (acetaldehyde, acrolein, benzene, 1,3-butadiene, 
ethyl benzene, formaldehyde, n-hexane, naphthalene, sty-
rene, toluene, and xylene) identified by the US Environmen-
tal Protection Agency (EPA) [53]. Accordingly, one must 
consider diesel exhaust-derived toxicants as potential risk 
factors for neurodegeneration and, more specifically, ALS.

Living in close proximity to heavy traffic and air pollution 
is associated with a higher incidence of dementia [54] and 
risk of neurodegeneration. For example, fine particulate air 
pollution (particulate matter < 2.5 microns;  PM2.5) has been 

linked to Alzheimer’s disease (AD) and Parkinson’s disease 
(PD) [55]. Specific to ALS, one recent study found sugges-
tive evidence of increased ALS risk due to long term, high-
concentration exposures to particulate matter < 10 microns 
 (PM10) [56]. However, the statistical imprecision of the risk 
estimates due to the small sample size limited their capacity 
to definitively conclude an increase in risk [56]. In another 
study, Nunez et al. suggest that increased  PM2.5 concentra-
tions in New York state may contribute to the clinical aggra-
vation of PD and ALS, especially for subjects > 70 years of 
age [57].

Jet exhaust

Detrimental health effects have been observed for those 
working or residing in close proximity to jet emissions, 
including certain cancers [58, 59]. As evidenced in vivo, 
exposure of mice to particles collected at two separate air-
ports via intratracheal installation induced pulmonary acute 
phase response, inflammation and genotoxicity [60]. In con-
nection with ALS, the literature suggests that civilian airline 
flight attendants, pilots and navigators likewise have higher 
rates of this disease [59, 61]. Given that ALS prevalence 
has been found higher for Air Force service members rela-
tive to other military branches by certain studies [19, 29], 
we speculate that exposure to jet exhaust may serve as a 
contributing factor.

Products from jet emissions include ultrafine combus-
tion particles, lubrication oils (including organophosphate 
esters), PAHs, volatile organic compounds and chemical ele-
ments including: Pb, Copper (Cu), Chromium (Cr), Nickel 
(Ni), Iron (Fe), Zinc (Zn), and Aluminum (Al) among others 
[58]. Although we are aware of their production, the toxicity 
of aircraft emissions has not been extensively researched. 
Emitted particles are generally ultrafine (< 100 nm). Like 
particles derived from other combustion sources, they may 
deposit in respiratory airways when inhaled and potentially 
cause irreversible damage to lung tissue, as observed for NPs 
generally [62, 63]. Researchers have investigated the toxicity 
of NPs from the exhaust of a CFM56-7B turbofan, the most 
common aircraft turbine engine. Using an aerosol deposi-
tion chamber, Jonsdottir et al. observed varying amounts cell 
death and oxidative stress in cultured bronchial epithelial 
cells depending on the combination of turbine thrust level 
and fuel type [64]. This is of importance as different thrust 
settings and fuels (including jet propellant (JP)-8 jet fuel) 
reportedly emit varying particle amounts [65]. Similar to the 
commercial jet A-1 fuel, JP-8 is a kerosene-based fuel that 
is conventionally used in Air Force aircraft, military vehi-
cles and generators, thus, is common chemical exposure for 
Air Force-associated personnel (e.g. flight and ground crew) 
[65, 66]. Although no direct connection has been made, it 
is of note that Pugh et al. identified a significant increase in 
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chronic obstructive pulmonary disease and asthma in veter-
ans from the Iraq and Afghanistan Wars [67], which could 
possibly be associated with military-linked, environmental 
exposures. Exposure to jet fuel itself has been linked to hear-
ing loss in both animal models [68] and humans [69]. Akin 
to urban pollution (described above), such auditory defects 
may also be potentially connected to NP-associated, brain-
stem pathologies [70].

Together, current evidence suggests that exposure to toxi-
cants derived from diesel and jet engine exhaust can cause 
detrimental health effects. However, there are differences 
between the two sources. One study found the size distribu-
tion of aircraft exhaust particles, including lead dibromide, 
is smaller than that produced by automobiles burning the 
same leaded fuel (13 vs. 35 nm mean diameter for all par-
ticle types, respectively) [71]. In a separate study, although 
10–1000 nm particles were associated with both roadways 
and aircraft, a principle component analysis conducted by 
the authors revealed features that differentiated the two 
sources: larger particle size and higher black carbon con-
centrations were a feature of roadways, while smaller par-
ticles and lower amounts of black carbon were associated 
with aircraft [72]. Such differences may be relevant to our 
understanding of emission-linked exposures when consider-
ing their contribution to disease development, although it is 
possible the overall physiochemical properties of each are 
ultimately similar [60]. Overall, the neurotoxic mechanisms 
and potential for such environmental pollutants to drive the 
increased ALS risk observed in military service members, 
airline workers and truck drivers needs further study.

Brake and tire wear

In addition to the exhaust produced by combustion and 
other pollution sources associated with airports and air force 
bases, aircraft breaking and tire wear can also lead to the 
release of potential toxicants through the abrasion and sub-
sequent production of smoke and ultrafine dust from these 
mechanical systems [65, 73]. For instance, experimental 
data collected at a major European airport have also reported 
high levels metals including barium (Ba), Zn, molybdenum 
(Mo), Cu and antimony (Sb) from runway smoke [74] and 
separate study also observed the production of trace ele-
ments generated by aircraft landing [75]. Although data are 
limited, one study estimates that the rubber lost from tires 
on varying aircraft can vary from tens of grams to ∼0.8 kg 
per landing [76].

Burn pits

Burn pits are open areas for burning solid waste that were 
widely used in combat zones before 2009. A report by 
the Institute of Medicine described burn pits in Iraq and 

Afghanistan as burning waste that “consisted generally of 
5–6% plastics, 6–7% wood, 3–4% miscellaneous noncom-
bustibles, 1–2% metals, and 81–84% combustible materials” 
[77]. JP-8 was typically used as the accelerant and, although 
there are no official inventories, the refuse reportedly burned 
(i.e. plastics, metal cans, rubber, paints, solvents, petroleum, 
munitions and wood waste) produced hazardous emissions 
containing harmful particles and toxicants [77]. Unsurpris-
ingly, exposure to burn pit emissions has been a cause for 
concern in relation to respiratory illness, cancer and neuro-
logical effects [77–79].

Pollutants investigated and detected during the evaluation 
of the Joint Base Balad burn pit included: dioxins, particu-
late matter (including metals), PAHs, volatile organic com-
pounds [77]. Concentrations of polychlorinated dibenzo-p-
dioxins and dibenzo-p-furans were overall low, but generally 
increased relative to urban environments. Additionally, a 
large contribution of the detected particulate matter, PAHs 
and volatile organic compounds were concluded to have 
likely originated from traffic and jet emissions as well as 
regional sources (e.g. normal human activity, dust storms, 
etc.). Thus, in combination with the presence of burn pits, 
such a nexus of exposures could potentially cause additive 
or synergetic health effects for those exposed. A public law 
mandated by Congress in 2013 required the VA to establish 
a registry for veterans with potential burn pit exposure in 
Iraq or Afghanistan through which participants can com-
plete a questionnaire detailing their deployment/occupa-
tional, health and exposure history [80]. Together, these 
data could be used to epidemiologically investigate the link 
between burn pit exposure, in potential combination with 
other service-linked exposures, and ALS.

Neurotoxic effects of toxicants

PAHs

PAHs are by-products of combustion [81] and enter the 
human body from a variety of sources including: gasoline 
and diesel-fueled engines (e.g. jet fuel) [82], coal, solid 
waste, and oil burners [81], grilled and smoked meats [83], 
use of indoor fireplaces and stoves [84], and smoke from 
cigarettes [83, 85]. PAH residues are found frequently in 
suspended fine or ultrafine particulate matter in the air and 
inhalation is a major route of exposure [86]. They are lipo-
philic, are stored in fat tissues including those of the breast 
[87], and have been shown to cause mammary cancer in 
rodents [88]. In humans, autopsied samples revealed that 
the highest accumulation of PAHs occurred in abdominal 
fat and the brain [89]. At the toxicological level, some PAH 
compounds are able to bind the aryl hydrocarbon receptor 
(AHR), which regulates xenobiotic-metabolizing enzymes 
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including some of the cytochrome P450s, ultimately result-
ing in increased DNA mutations [90, 91]. PAHs also have 
been found to be directly genotoxic [92]. In the rodent brain, 
a gene expression analysis showed that exposure to PAHs in 
the form of diesel exhaust emissions activates several genes 
associated with antioxidant defenses and inflammation [93]. 
In addition, benzo[a]pyrene (B[a]P), an individual PAH 
compound, has been identified for its neurotoxic potential 
[94]. An in vitro study elegantly demonstrated that B[a]P is 
not directly toxic to neurons; it kills neurons via a non-cell 
autonomous mechanism by activating microglia [95], the 
resident immune cells of the brain that have been  shown to 
play a key role in ALS [96]. Locomotor impairment after 
chronic exposure of B[a]P is significantly associated with 
development of neurodegenerative phenotypes typically 
affecting the dopaminergic system in zebrafish [97]. His-
topathological observations in brain tissues showed a sig-
nificant increase in pyknotic neuronal counts in the dien-
cephalon and telencephalic region of zebrafish brain after 
B[a]P exposure and tyrosine hydroxylase, a marker of dopa-
minergic neurons, was reduced significantly in the exposure 
group. In addition to their neurotoxic effects, PAHs can be 
used to indicate exposure to incompletely combusted pollut-
ants, such as soot. Soot particles can enter the brain and PAH 
compounds trapped inside the soot particles can be used to 
indicate the exposure from combustion [98].

Persistent organic pollutants (POPs): PCBs 
and dioxins

PCBs and dioxins are known as persistent organic pollut-
ants (POPs) and have all been found at military bases and 
in conjunction with service-linked activities as previously 
described. In general, POPs are resistant to environmental 
degradation and can bioaccumulate, resulting in adverse 
impacts on human health such as an increased risk of ALS 
[99] and reduced ALS survival in association with increased 
plasma concentrations [100]. PCBs and dioxins are lipo-
philic and accumulate in fatty tissues [101], including the 
brain. Interestingly, accumulation of PCBs in the brain was 
clearly shown not to have any regionalization [102]. How-
ever, in adolescent and neonatal male rats, exposure to PCBs 
was shown to induce brain region-dependent exacerbation 
(e.g., in the hypothalamus) or silencing (e.g., the prefrontal 
cortex) of genes implicated in neuroimmune function such 
as those coding for factors of the nuclear factor kappa b (NF-
κB) complex [103, 104]. This suggests that despite homoge-
neous brain accumulation, PCBs can have brain area-specific 
neurotoxic effects probably based on regional gene–environ-
ment interaction. These two studies also indicate that neuro-
immune dysregulation may be a prominent pathway of PCB 
neurotoxicity specifically in males. A similar sexual dimor-
phism is observed in ALS which preferentially affects men 

with a male:female ratio that lessens (from ~ 2.5 to 1.4) with 
age [105]. PCB exposure has been associated with reduced 
cognition in older adults [106] and the specific PCB, PCB-
151, has an increased odds ratio in relation to ALS [107]. It 
is of note that POPs, such as PCBs [108], are associated with 
multiple neurodegenerative diseases, such as PD [109–118]. 
Although diseases like ALS, PD and AD do not share the 
same neuropathology, it is possible that an overlapping, 
genetic susceptibility occurs through pleiotropy and lends to 
the existence of common environmental triggers [119–121].

Dioxins are another class of POPs and are a component of 
certain pesticides, such as Agent Orange, to which ALS has 
been positively associated [17]. Moreover, elevated levels 
of the dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 
has been detected in breast milk from mothers living near 
the Vietnam Bien Hoa Air Base [122]. Exposure to TCDD 
from Agent Orange is believed to be an immunotoxin and 
the probable cause of several types of cancer in Vietnam 
veterans based on its clear carcinogenicity in experimen-
tal animal models [123]. One key mechanism proposed 
for TCDD carcinogenicity is epigenetic remodeling [124]. 
Supporting this view, exposure to dioxins or dioxin-like 
compounds has been associated with CNS developmental 
abnormalities in zebrafish and epigenetic modifications are 
well known to be particularly important during neuronal 
development [125]. Dioxins may also alter the expression 
of genes related to neuroimmune function [126], neurotrans-
mission [127, 128], neurodevelopment [129, 130] and cyto-
toxicity [131, 132]. Overall, the molecular cascade by which 
the neurodegeneration-linked, chemical toxicants described 
thus far (dioxins, PCBs, and PAHs) contribute to disease is 
unclear, although one possibility is neuroimmune changes 
implicating in particular microglial cells potentially via the 
activation of the AHR. In vitro studies report agonists of 
the AHR, which interestingly was shown to induce a robust 
DNA demethylation of the Cyp1a1 promoter upon dioxin 
exposure [133], may induce up to a threefold increase in the 
ALS-linked TDP-43 protein in BE-M17 (human neuronal 
cell line), motor neuron differentiated iPSCs and the murine 
brain [134]. Although further research remains, such obser-
vations suggest the possibility that TDP-43 could be a poten-
tial molecular link between exposure to dioxins and ALS.

Neurotoxic metals and elements

Specific metals have been linked to neurotoxicity and ALS 
[135–138]. In fact, exposure to certain metals was one of 
the earliest environmental risk factors proposed for ALS, 
although the jury is still out regarding their pathogenic role 
[139]. For instance, depending on the biospecimens used, 
there are discrepancies in the findings reported and periph-
eral measurements rarely reflect the CNS metal load [140, 
141]. As described above, exposure to toxic metals is likely 
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a major concern in veterans and a number of metals includ-
ing Pb, mercury (Hg), selenium (Se), Cu, manganese (Mn), 
Fe and arsenic (As) certainly deserve further investigation 
in ALS patient, CNS tissue. These metals were selected for 
their relevance to ALS in the literature and our own epide-
miological studies [12, 142–144] and are described in more 
detail below:

• Lead (Pb) was the first metal found to be elevated in 
cerebrospinal fluid (CSF), blood, and tibia from ALS 
patients [22, 145, 146]. Systematic reviews and meta-
analyses cite Pb as an exposure with ‘convincing evi-
dence’ of a causal link to ALS [147, 148]. Animal 
studies demonstrate the transport of  Pb2+ ions across 
the blood–brain barrier [149] and the accumulation of 
insoluble TDP-43 in the cortex of exposed mice [150]. 
Based on the analysis of blood samples from occupa-
tionally exposed humans, there is evidence to suggest 
Pb-induced oxidative damage [151]. Relevant to mili-
tary exposures, shooting at firing ranges results in the 
discharge of Pb dust, and elevated blood Pb levels that 
are associated with a variety of adverse health outcomes 
including essential tremor, cardiovascular morbidities 
and mortality, and decreased renal function [152]. In 
Denmark, occupational Pb exposure 10 years prior to 
diagnosis was associated with increased ALS risk (odds 
ratio 1.33, 95% confidence interval 1.03–1.72) [153]. Our 
own prior work linked activities involving Pb (e.g. cast-
ing lead bullets, making stained glass with lead joints and 
casting or using lead fishing sinkers) to ALS risk [144]. 
Moreover, Pb exposures 20 + years prior to diagnosis 
had larger effect sizes compared to those occurring more 
recently [144]. A further Australian study also linked pet-
rol Pb emissions to ALS death rates both temporally and 
spatially [154].

• Mercury (Hg) is potentially a risk factor for ALS [142, 
143]. This metal was elevated in the brain of seven ALS 
patients compared to controls [155] and is associated 
with increased risk in several studies [139, 147, 156]. 
Case reports of Hg poisoning have shown convinc-
ing ALS-like, clinical symptoms and support a causal 
relationship [157–159]. Our own regional and nation-
wide US studies demonstrated higher toenail Hg levels 
in ALS patients compared to controls [142, 143]. In 
mutant SOD1 ALS mice, Hg accumulates in spinal neu-
rons [160] and rats exposed to methylmercury (2 mg/
kg/day) exhibited ALS-like neurological effects [161]. 
In vitro proteomics studies reveal that methylmercury 
exposure causes electron transport chain dysfunction, 
oxidative stress and ubiquitin proteasome system impair-
ment [135], pathological mechanisms all linked to ALS. 
Methylmercury neurotoxicity may also involve glutamate 
dyshomeostasis and excitotoxicity [162], an ALS-linked 

mechanisms that could be of particular relevance to the 
multi-stage hypothesis of ALS [26].

• Selenium (Se) was also linked to ALS [163–166]. 
Embedded shrapnel from explosive devices and retained 
bullet fragments also can increase serum levels of toxic 
metals including Se [167]. Higher risk of ALS was found 
in naturally seleniferous US regions [168, 169]. Veteri-
nary and experimental animal evidence suggests that 
motor neurons are particularly vulnerable to Se [139, 
164]. Despite Se being elevated in the spinal cord of ALS 
patients [163, 170], studies measuring Se levels in ALS-
patient CSF and blood found both negative and positive 
correlations with ALS status [13, 166, 171]. Some of 
the discrepancies in these studies may be due to inter-
actions among elements. For example, although not yet 
conclusively shown in humans, Se may counteract the 
absorption of methylmercury [172, 173].

• Copper (Cu) has often been a focus of ALS research due 
to its role as a cofactor of SOD1 [174–176]. Moreover, 
the pesticide, copper sulfate can dissolve in blood after 
exposure and be carried throughout the body as well as 
transported across the blood brain barrier (BBB) as a 
free Cu ion [177]. Increased Cu levels were measured 
in the spinal cord of mutant TDP-43 ALS mice [175] 
and in the blood of veterans with ALS [13]. However, in 
various peripheral biospecimens, trends in Cu levels were 
inconsistent [141].

• Excessive manganese (Mn) exposure is known to cause 
manganism, a neurological disorder resembling PD 
[178]. Moreover, Mn can cause ALS-like symptoms 
(such as muscle weakness) and ALS-like lesions of the 
corticospinal tract were reported in Mn-exposed work-
ers [179]. In agreement, increased ALS rates have been 
reported in Mn miners and smelters worldwide [180, 
181]. Elevated Mn levels were detected in the spinal cord 
of ALS patients and animal models [175, 182], whereas 
in patient body fluids, both negative and positive findings 
were reported [13, 174, 183, 184]. Roos et al. observed 
CSF Mn to be significantly increased compared to CSF 
of controls [184]. Notably, CSF Mn concentrations were 
higher than those in the plasma concentrations, suggest-
ing transport of this element into the CNS.

• Iron (Fe) accumulation in the CNS has been clearly dem-
onstrated in ALS patients, animal models and in vitro 
cell models [185–187]. In contrast, most studies using 
peripheral biospecimens did not find sizable differences 
in Fe levels in blood, hair, nail, CSF, and urine of ALS 
patients and controls [140]. Yet, Fe likely has a role in 
ALS as chelation of this metal is beneficial in a SOD1 
ALS mouse model [188].

• Lastly, arsenic (As) exposure was shown to cause ALS-
like motor neuropathy [189–191] and was suggested as a 
risk factor for ALS in association with folate deficiency 
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[192]. A recent study reported lower As serum concen-
tration in ALS patients, but As positively correlated with 
disease duration [136]. Prolonged As exposure in vitro 
triggers several features of ALS-linked TDP-43 pathol-
ogy (e.g., mislocalization, aggregation) [193].

In addition to the ALS-linked elements described above, 
the following also possess evidence of an association with 
ALS: Using CSF (n = 17 cases, n = 10 controls), Roos et al. 
showed positive associations of ALS with Al, and cadmium 
(Cd), cobalt (Co), Zn, vanadium (V), and uranium (U) [137]. 
However, the Al finding was contradicted by a 1995 study 
of CSF that did not show elevation in ALS patients [185] 
as well as an additional study of temporal lobe tissue across 
neurological conditions did not find Al levels elevated in 
n = 16 ALS patients compared to age-matched controls 
[194]. Hozumi et al. found increased risk of ALS associ-
ated with Zn in the CSF (n = 52 cases, n = 15 controls). Zn 
was also elevated in CSF in a separate Greek cohort [195] 
as well as in the Roos 2013 CSF study [137], although this 
work was contradicted by Kapaki, who found no association 
with ALS and these elements in CSF (n = 28 cases, n = 36 
controls) [196]. A further case study reported development 
of ALS in a battery worker exposed to high levels of Cd 
[197], although, elsewhere, Cd levels were lower in the CSF 
of ALS patients compared to controls [198]. Hozumi et al. 
found increased risk of ALS associated with elevated CSF 
magnesium (Mg) [183]. Using a cohort from the Danish 
National Patient Registry from 1982 to 2013 matched to 
controls, Dickerson et al. evaluated cumulative metal expo-
sures estimated using job exposure matrices applied to occu-
pational history. No statistically significant associations to 
ALS were discovered looking at Cr and Ni [199]. Lastly, 
based on studies of neurodegenerative illness in animals, Mo 
deficiency has been postulated to be a potential predisposing 
factor in ALS [200].

Several studies have directly assessed brain tissue for 
trace element levels. A review article of brain autopsy tissue 
sample measurements cites the detection of a large variety 
of the elements (see Table 3 of Grochowski et al. [201]), and 
provides quantitative reference levels for Cu, Zn, Mg, Fe, 
calcium (Ca), rubidium (Rb), Se, potassium (K), Mn, Al, 
silicon (Si), As, Ni, Pb, Cd, and Cr in various brain regions 
[201]. In studies of ALS, Cd and Zn were both significantly 
elevated in grey and white matter when Cd, Co, Cu, Fe, 
Mn, Rb, V, and Zn were measured in the brain tissue of 
n = 8 Guam ALS patients versus n = 5 controls [202]. By 
focusing on veterans, a population with increased ALS risk, 
and conducting a comprehensive assessment of elements in 
CNS tissue, one could potentially identify toxic elements 
that may not have been previously linked to ALS or exam-
ined in the general population. For example, uranium (U), Sb 
or tungsten (W; associated with munitions), rare earth and 

platinum group elements have not typically been measured 
in brain tissue.

The mechanisms of toxicity by which metals contribute to 
neurodegeneration in ALS remain to be clarified. However, 
in other neurodegenerative diseases like AD, multiple stud-
ies have validated that exposure to metals disrupts critical, 
immune-related pathways leading to chronic neuroinflamma-
tion and neuronal loss [203]. Metals have often been studied 
separately in terms of immunotoxicity and neurotoxicity, but 
one elegant study demonstrates that Pb, for instance, induces 
the production of autoantibodies against neural proteins, 
including myelin basic protein (MBP) and glial fibrillary 
acidic protein (GFAP) [204]. Therefore, Pb could contribute 
to the aggravation of neurodegenerative disease by exacer-
bating the immunogenicity of nervous system proteins. The 
consequences of metal dyshomeostasis in ALS has recently 
gained momentum and helped generate novel hypotheses, 
such as those linking mitochondrial dysfunction, intracel-
lular calcium dyshomeostasis, pathological TDP-43 forma-
tion, pro-inflammatory microglia activation, and ultimately 
programmed neuronal cell death [205].

Nanoparticles (NPs)

NPs are particles ≤ 100 nm in all dimensions and exist in a 
variety of shapes, sizes and compositions (organic, inorganic 
and carbon based). The nanometer scale of these particles 
allows for their direct interaction with cells and/or passage 
through biological barriers. Molecules (including proteins) 
can coat the NP surface, forming a NP corona [206, 207] and 
effectively become particle passengers [208]. Leveraging 
this property, NPs have been used as a therapeutic delivery 
mechanism for a variety of chemotherapeutic compounds 
[209]. However, NP pharmacological characteristics are 
often quickly altered in vivo as NPs become coated with 
biological milieu following delivery. The interaction of NPs 
with cells is influenced by the proteins and other molecules 
attached to their surface, as demonstrated by one ex vivo 
study reporting that the binding specificity of targeted NPs 
can be lost in the presence of plasma proteins [210]. The 
complexity and diversity of protein interactions with NPs to 
form the corona has not been completely elucidated [207]. 
While NP size and ability to transport molecules contrib-
utes to their therapeutic promise, these same characteristics 
may also interfere with vital cellular processes, resulting in 
cellular toxicity as well as human health and environmen-
tal concerns [63, 209, 211, 212]. For instance, silver (Ag) 
NPs have been predominately used for the development of 
medicines, drug delivery systems and medical device coat-
ings as a result of their antibacterial properties [213, 214], 
yet multiple studies have demonstrated the toxicity of Ag 
NPs in vitro and in vivo [209]. Thus, the soft duality of NP 
features may also pose a detriment to a number of organs 
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and highlights the need for a clearer understanding of these 
particles in biomedicine, manufacturing [215, 216] as well 
as general regulations for use [217].

As an environmental toxicant, NPs likely had a large 
impact in the days of Charcot when he first described ALS 
in the late 1860’s (e.g. as product of combustion). Today, 
additional sources of NPs posing a potential health hazard 
are found in the form of powders, suspensions, or sprays, 
which are universally used in textiles, paints, cosmetics, 
water disinfectants, food packing and ubiquitous in polluted 
environments with combustion emissions [218, 219]. Given 
these sources for exposure, the respiratory and gastrointes-
tinal tracts, mucosa and even skin represent entry routes for 
environmental NPs [220–223]. While large aerosolized par-
ticles tend to remain in the respiratory tract, NPs may cross 
the respiratory epithelium to enter blood vessels [224]. Once 
in the bloodstream, select NPs can directly cross the BBB 
and/or damage BBB integrity and increase its permeabil-
ity [225–228]. Additionally, numerous studies demonstrate 
that NPs can also bypass the BBB entirely via the olfactory 
system (nasal olfactory epithelial → olfactory bulb → brain) 
[222, 229–232]. Furthermore, the substantia nigra and brain-
stem have been suggested as targets for NPs via access the 
gastrointestinal tract and neuroenteric system [221, 222, 
224]. Although our understanding of NP entry routes and 
subsequent toxicity is evolving, toxic NPs typically appear 
to be inorganic in nature and water insoluble; toxicity also 
appears linked to dose and frequency [233–235].

Once NPs reach the brain, they can access neurons, 
oligodendrocytes and glia they may alter the structure or 

activity of the nervous system and induce glial activation 
[236]. The primary neurotoxic mechanism of NPs is the 
generation of free radicals and induction of oxidative stress, 
which can damage biological macromolecules, inducing de 
novo mutations of DNA. In addition, NPs may directly or 
indirectly trigger apoptosis, autophagy, immune-responses, 
neuroinflammation and subsequent BBB damage [209, 
237–247]. For instance, Xue et al. demonstrated  SiO2-, 
 TiO2-, and magnetite  (Fe3O4)-NPs treatment caused micro-
glial activation and cytokine secretion, resulting in PC12 
toxicity and altered dopamine production [248]. Similarly, 
10 and 30 nm  Fe3O4-NPs were found to reduce dopamine 
rat brains as well [249]. Multiple factors may influence NP 
neurotoxicity including: size, shape, surface coatings, dis-
solution rates of metals, and interactions with specific cells 
and proteins [250]. Of particular, importance is size. In one 
study, Ag NPs (20 nm) exhibited increased cytotoxicity 
and pro-inflammatory response in cultured cells compared 
with larger particles (i.e. 80 nm) [251]. Similarly, a sepa-
rate in vitro study indicated increased toxicity and oxidative 
stress from 20 vs 40 nm Ag NPs [252]. Ultimately, the exact 
neural damage and resultant neuropathology may depend on 
genetic susceptibility, individual NP characteristics and the 
differential access to target tissues achieved via their respec-
tive entry routes [253, 254] (Table 1).

Given the need to better understand the neurotoxic poten-
tial of NPs, one important question is: what is the threshold 
of NP exposure for neurodegeneration or neurodegenerative 
pathology? In study of Mexico City subjects, an autopsy 
study showed hyperphosphorylated tau in the brainstem of 

Table 1  Examples of neurotoxic effects and mechanisms caused by environmental NPs

Nanoparticle Mechanism and relevance to neurodegeneration

Iron oxides: magnetite 
 (Fe3O4) iron oxide 
 (Fe2O3),

Axonal transport and bypass the BBB via the nasal olfactory epithelium [222, 255, 256]
Daily exposure affects synaptic transmission and nerve conduction, causing neural inflammation, apoptosis, induced 

neural antioxidant responses, and immune cell infiltration [257]
Disrupted Fe homeostasis [258, 259], release of free Fe ions to catalyze the production of reactive oxygen species 

(ROS) through the Fenton reaction [249, 260] as well as the promotion of amyloid-β toxicity, as shown in vitro 
[261]

Silicon dioxide  (SiO2) Increased oxidative stress and altered microglial function; deleterious effects on the striatum and dopaminergic neu-
rons [262]

Intranasal administration in a mouse model lead to cognitive dysfunction and impairment, synaptic changes as well as 
pathologies similar to neurodegeneration [263]

Induction of neuron depolarization in a cell culture model; no detected change in gene expression [264]
PD-like behavioral changes in  SiO2 NP-exposed Zebrafish model [265]
Dose-dependent cytotoxicity and AD-like pathology in vitro [266]

Titanium oxide (TiO2) Absorption and translocation into the brain by any portal of entry. Can further cross the placental barrier and accumu-
late in the fetal brain, causing impairments in the fetal brain development [267]

Damage to BBB and induction of inflammatory response [268, 269]
Exposure precipitates the development of neuropathological findings of early PD, AD and ALS, some of which 

appear to be manifested symptomatically [221, 253, 270, 271]
Nickel (Ni) Ni NPs increased (Aβ)40 and Aβ42 levels in murine brains [272]
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an 11-month-old baby, who was found to have to 20 μg/
m3 cumulative  PM2.5 (calculated for age at death + preg-
nancy time), a fraction of the 2522 μg/m3 calculated for a 
39 year old subject with AD neurofibrillary tangle advanced 
stages V-VI [270]. Calderón-Garcidueñas et al. additionally 
observed extensive structural organelle abnormalities in 
the substantia nigra involving mitochondria, endoplasmic 
reticulum and neuromelanin that were co-associated with the 
abundant presence of exogenous, Fe-, Al- and Ti-rich NPs in 
a population of young residents [221]. They also identified 
hyperphosphorylated tau, α-synuclein and TDP-43 in the 
brainstem of 182 Mexico City 27.29 ± 11.8y old Metropoli-
tan Mexico City residents [221]. The co-existence of mark-
ers for two common neurodegenerative diseases (sporadic 
AD and PD), as well as the less common ALS/frontotem-
poral degeneration (FTD), suggests a common etiological 
denominator. Thus, NPs may act as catalysts for reactive 
oxygen species formation, altered cell signaling, protein 
misfolding, aggregation and fibril formation [221], hence, 
the co-clustering of such diseases (ALS, PD, dementia) in 
select geographical pockets [273]. Similarly, Fe-rich and 
 TiO2-NPs may (even at low concentrations) may acceler-
ate α-synuclein fibrillization [274], thereby representing a 
possible a pathomechanism that could potentially contribute 
to development of neurodegenerative-disease-linked pathol-
ogy. Together, Calderón-Garcidueñas et al. have suggested 
that the properties of NPs, which result in cellular damage, 
potentially represent an additional pathomechanisms con-
tributing to the development of neurodegeneration [221].

It is clear there is extensive and unregulated exposure 
to nanoparticles released in the environment and that emis-
sion sources are highly variable across military and civil-
ian populations (Table 2). With the noteworthy progress of 
nanotechnology during the last decade, NP products will 
continue to be used increasingly in our everyday commer-
cial products, industrial processes and medical applications. 
Thus, in addition to considering the courses of nanoparticle 
 themselves, other variables such as high traffic locations, 
residential areas, indoor environments, personal exposures, 
smoker, non-smoker, wind, season, etc. must also be taken 
into account to fully understand their potential risk.

Conclusions

The pathogenic mechanisms of ALS remain elusive and 
has hampered the development of prevention strategies 
and effective therapeutics for this fatal disease. Although 
efforts have been made in the veteran population to under-
stand the observed elevated ALS rates, no definitive factors 
have been implicated. Thus, measuring persistent toxicants 
of interest in ALS-patient CNS tissue and, particularly in 
evaluating potential pathogenic exposures in veteran cohorts, 

is warranted. Such a research approach could provide the 
basis for environmental exposure associations that are not 
unique to ALS, but potentially other neurodegenerative 
diseases with shared pleiotropy and to which veterans are 
also at higher risk [119–121, 298, 299]. To address this 
major challenge in ALS research, the field needs to further 
develop brain banks. In the traditional line of the Armed 
Forces Examiner System and Institute of Pathology [300], 
the Veterans Affairs Biorepository established a Brain Bank 
(VABBB) which provides a collection of carefully character-
ized, prepared and preserved CNS samples [301]. Moreover, 
linking these specimens to comprehensive demographic, 
lifestyle, residential, occupational, and clinical data are criti-
cal for the identification of novel associations between ALS 
and environmental toxicants. The Veterans Affairs Coop-
erative Studies Program Epidemiology Center in Durham, 
North Carolina (CSPEC-Durham) has assembled such a 
repository including extensive research data, genomic data, 
and study specimens (e.g., DNA, blood) for different content 
areas including ALS [302].

In summary, it will be crucial to evaluate service-linked 
toxicants such as PCBs, PAHs, dioxins, metals and NPs in 
veteran CNS tissue, none of which have been adequately 
evaluated in relation to neurodegenerative disease risk. 
These toxicant exposures in veterans appear to be persistent 
and cumulative, thereby, potentially allowing one to assess 
the link between ALS and past exposures. Based on the lit-
erature reviewed here, we hypothesize that the concentra-
tions and/or distribution of proposed neurotoxicants will 
be increased and/or in the CNS tissue of ALS compared to 
controls. Advanced statistical techniques could be applied 
to clarify the ALS multistep hypothesis, evaluate toxicant 
synergy as well as anatomical and/or (sub)cellular locations. 
Finally, as brain banks often also collect genetic variant data, 
an evaluation of gene and environmental interactions could 
also be undertaken [121], thus enabling individualized risk 
assessments and exposure prevention strategies for suscep-
tible individuals.

During their years of service, military personnel voluntar-
ily expose themselves to short-term, life-threatening risks. 
Moreover, they may also often and unknowingly expose 
themselves to environmental factors as part of their duties, 
which can have dramatic consequences for their long-term 
health and lifespan. It is our responsibility as environmen-
tal health scientists to devise the best research strategies to 
clearly identify such factors, link them to disease and alert 
competent governmental agencies. The risk(s) associated 
with adverse exposures are certainly modifiable by pre-
vention and mitigation strategies (e.g. personal protective 
equipment, exhaust emission control and reduction systems), 
which could be enabled by military authorities at lower costs 
than those associated with highly debilitating chronic dis-
eases such as ALS (e.g., average total disease duration cost 
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per patient for care and service in the U.S. is $1,433,992, 
excluding societal cost and family support cost [303]). We 
are hopeful that further research will address the urgent need 
to act upon modifiable risk factors for military personnel 
who deserve enhanced protection during their years of ser-
vice for both their short- and long-term health.
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