Skip to main content

Advertisement

Log in

Retina thickness in atypical parkinsonism: a systematic review and meta-analysis

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background and purpose

To investigate the retina thickness assessed using optical coherence tomography in atypical parkinsonism in comparison with health controls (HC) and patients with Parkinson’s disease (PD).

Methods

PubMed and EMBASE were searched for potentially eligible studies that reported retina thickness in atypical parkinsonism

[including progressive supranuclear palsy (PSP), multiple system atrophy (MSA) and corticobasal degeneration] in comparison with that of HC and PD patients from their dates of inception to Jan 24, 2021. Mean difference (μm) of the thickness of peripapillary retinal nerve fiber layer (pRNFL) and central macular thickness (CMT) were pooled with random effects model.

Results

We included ten studies eligible for inclusion criteria. Average pRNFL thickness and average CMT were thinner in PSP [pooled mean difference (μm) of − 4.71, 95% CI (− 7.15, − 2.27); − 15.12, 95% CI (− 16.93, − 13.30)] and in MSA [− 5.37, 95% CI (− 6.59, − 4.15); − 5.93, 95% CI (− 11.00, − 0.87)] compared with HC, and were thinner in PSP [− 5.81, 95% CI (− 8.92, − 2.69); − 10.63, 95% CI (− 20.29, − 0.98)] and in MSA [− 0.35 μm, 95% CI (− 5.72, 5.01); − 7.42 μm [95% CI (− 12.46, − 2.38)] compared with PD. The pRNFL thickness was thinning in superior, inferior and nasal quadrants, and CMT was thinning in outer sectors in MSA compared with HC.

Conclusions

The retina thickness was significantly thinner in PSP and MSA than those in HC and PD. The specific patterns of retina thinning in MSA could be clinical importance for differentiation among atypical parkinsonism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data relative to the study are available from the corresponding author upon reasonable request.

References

  1. Koziorowski D, Figura M, Milanowski ŁM et al (2021) Mechanisms of neurodegeneration in various forms of parkinsonism-similarities and differences. Cells 10:656

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Fanciulli A, Wenning GK (2015) Multiple-system atrophy. N Engl J Med 372:249–263

    PubMed  Google Scholar 

  3. Beyer K, Ariza A (2007) Protein aggregation mechanisms in synucleinopathies: commonalities and differences. J Neuropathol Exp Neurol 66:965–974

    CAS  PubMed  Google Scholar 

  4. Low PA, Reich SG, Jankovic J et al (2015) Natural history of multiple system atrophy in the USA: a prospective cohort study. Lancet Neurol 14:710–719

    PubMed  PubMed Central  Google Scholar 

  5. Wenning GK, Geser F, Krismer F et al (2013) The natural history of multiple system atrophy: a prospective European cohort study. Lancet Neurol 12:264–274

    PubMed  PubMed Central  Google Scholar 

  6. Respondek G, Levin J, Höglinger GU (2018) Progressive supranuclear palsy and multiple system atrophy: clinicopathological concepts and therapeutic challenges. Curr Opin Neurol 31:448–454

    PubMed  Google Scholar 

  7. Mendoza-Santiesteban CE, Palma JA, Ortuño-Lizarán I, Cuenca N, Kaufmann H (2017) Pathologic confirmation of retinal ganglion cell loss in multiple system atrophy. Neurology 88:2233–2235

    PubMed  PubMed Central  Google Scholar 

  8. Dickson DW, Ahmed Z, Algom AA, Tsuboi Y, Josephs KA (2010) Neuropathology of variants of progressive supranuclear palsy. Curr Opin Neurol 23:394–400

    PubMed  Google Scholar 

  9. Boxer AL, Yu JT, Golbe LI, Litvan I, Lang AE, Höglinger GU (2017) Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol 16:552–563

    PubMed  PubMed Central  Google Scholar 

  10. Stemplewitz B, Kromer R, Vettorazzi E, Hidding U, Frings A, Buhmann C (2017) Retinal degeneration in progressive supranuclear palsy measured by optical coherence tomography and scanning laser polarimetry. Sci Rep 7:5357

    PubMed  PubMed Central  Google Scholar 

  11. Dickson DW, Bergeron C, Chin SS et al (2002) Office of Rare diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol 61:935–946

    CAS  PubMed  Google Scholar 

  12. Valentino RR, Koga S, Walton RL et al (2020) MAPT subhaplotypes in corticobasal degeneration: assessing associations with disease risk, severity of tau pathology, and clinical features. Acta Neuropathol Commun 8:218

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bak TH, Caine D, Hearn VC, Hodges JR (2006) Visuospatial functions in atypical Parkinsonian syndromes. J Neurol Neurosurg Psychiatry 77:454–456

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang L, Kuroiwa Y, Kamitani T et al (2000) Visual event-related potentials in progressive supranuclear palsy, corticobasal degeneration, striatonigral degeneration, and Parkinson’s disease. J Neurol 247:356–363

    CAS  PubMed  Google Scholar 

  15. Miller N, Drachman DA (2006) The optic nerve: a window into diseases of the brain? Neurology 67:1742–1743

    PubMed  Google Scholar 

  16. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Albrecht P, Müller AK, Südmeyer M et al (2012) Optical coherence tomography in parkinsonian syndromes. PLoS ONE 7:e34891

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Alkabie S, Lange A, Manogaran P, Stoessl AJ, Costello F, Barton JJS (2020) Optical coherence tomography of patients with Parkinson’s disease and progressive supranuclear palsy. Clin Neurol Neurosurg 189:105635

    PubMed  Google Scholar 

  19. Gulmez Sevim D, Unlu M, Gultekin M, Karaca C, Mirza M, Mirza GE (2018) Evaluation of retinal changes in progressive supranuclear palsy and Parkinson Disease. J Neuroophthalmol 38:151–155

    PubMed  Google Scholar 

  20. Pula JH, Towle VL, Staszak VM, Cao D, Bernard JT, Gomez CM (2011) Retinal nerve fibre layer and macular thinning in spinocerebellar ataxia and cerebellar multisystem atrophy. Neuroophthalmology 35:108–114

    PubMed  PubMed Central  Google Scholar 

  21. Fischer MD, Synofzik M, Heidlauf R et al (2011) Retinal nerve fiber layer loss in multiple system atrophy. Mov Disord 26:914–916

    PubMed  Google Scholar 

  22. Fischer MD, Synofzik M, Kernstock C et al (2013) Decreased retinal sensitivity and loss of retinal nerve fibers in multiple system atrophy. Graefes Arch Clin Exp Ophthalmol 251:235–241

    PubMed  Google Scholar 

  23. Ahn J, Lee JY, Kim TW (2016) Retinal thinning correlates with clinical severity in multiple system atrophy. J Neurol 263:2039–2047

    PubMed  Google Scholar 

  24. Shamseer L, Moher D, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 350:g7647

    PubMed  Google Scholar 

  25. Higgins JPT, Green S (2011) Cochrane Handbook for systematic reviews of interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, www.cochrane-handbook.org.

  26. Huang L, Wang C, Wang W, Wang Y, Zhang R (2020) The specific pattern of retinal nerve fiber layer thinning in Parkinson’s disease: a systematic review and meta-analysis. J Neurol. https://doi.org/10.1007/s00415-020-10094-0

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huang L, Zhang D, Ji J, Wang Y, Zhang R (2020) Central retina changes in Parkinson’s disease: a systematic review and meta-analysis. J Neurol. https://doi.org/10.1007/s00415-020-10304-9

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605

    PubMed  Google Scholar 

  29. Cruz-Herranz A, Balk LJ, Oberwahrenbrock T et al (2016) The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology 86:2303–2309

    PubMed  PubMed Central  Google Scholar 

  30. Schneider M, Müller HP, Lauda F et al (2014) Retinal single-layer analysis in Parkinsonian syndromes: an optical coherence tomography study. J Neural Transm (Vienna) 121:41–47

    Google Scholar 

  31. Mendoza-Santiesteban CE, Palma JA, Martinez J, Norcliffe-Kaufmann L, Hedges TR 3rd, Kaufmann H (2015) Progressive retinal structure abnormalities in multiple system atrophy. Mov Disord 30:1944–1953

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gilman S, Wenning GK, Low PA et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71:670–676

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Delalande I, Hache JC, Forzy G, Bughin M, Benhadjali J, Destée A (1998) Do visual-evoked potentials and spatiotemporal contrast sensitivity help to distinguish idiopathic Parkinson’s disease and multiple system atrophy? Mov Disord 13:446–4452

    CAS  PubMed  Google Scholar 

  34. Sartucci F, Orlandi G, Bonuccelli U et al (2006) Chromatic pattern-reversal electroretinograms (ChPERGs) are spared in multiple system atrophy compared with Parkinson’s disease. Neurol Sci 26:395–401

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kolb H (2012) Simple anatomy of the retina, In: Kolb H, Fernandez E, Nelson R, (Eds), Webvision: The Organization of the Retina and Visual System. Salt Lake City, UT: University of Utah Health Sciences Center; 1995–2005 [updated 2012 Jan 31]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21413391

  36. Ahmed Z, Asi YT, Sailer A et al (2012) The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol Appl Neurobiol 38:4–24

    CAS  PubMed  Google Scholar 

  37. Satue M, Rodrigo MJ, Obis J et al (2017) Evaluation of progressive visual dysfunction and retinal degeneration in patients With Parkinson’s Disease. Invest Ophthalmol Vis Sci 58:1151–1157

    PubMed  Google Scholar 

  38. Ho WL, Leung Y, Tsang AW, So KF, Chiu K, Chang RC (2012) Review: tauopathy in the retina and optic nerve: does it shadow pathological changes in the brain? Mol Vis 18:2700–2710

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kovacs GG, Lukic MJ, Irwin DJ et al (2020) Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol 140:99–119

    PubMed  PubMed Central  Google Scholar 

  40. Sung KR, Wollstein G, Bilonick RA et al (2009) Effects of age on optical coherence tomography measurements of healthy retinal nerve fiber layer, macula, and optic nerve head. Ophthalmology 116:1119–1124

    PubMed  Google Scholar 

  41. Jabbari E, Holland N, Chelban V et al (2020) Diagnosis across the spectrum of progressive supranuclear palsy and corticobasal syndrome. JAMA Neurol 77:377–387

    PubMed  Google Scholar 

  42. Schrag A, Ben-Shlomo Y, Quinn N (2002) How valid is the clinical diagnosis of Parkinson’s disease in the community? J Neurol Neurosurg Psychiatry 73:529–534

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wermuth L, Lassen CF, Himmerslev L, Olsen J, Ritz B (2012) Validation of hospital register-based diagnosis of Parkinson’s disease. Dan Med J 59:A4391

    PubMed  PubMed Central  Google Scholar 

  44. Murueta-Goyena A, Del Pino R, Galdós M et al (2021) Retinal thickness predicts the risk of cognitive decline in Parkinson Disease. Ann Neurol 89:165–176

    CAS  PubMed  Google Scholar 

  45. Miki Y, Tsushima E, Foti SC et al (2021) Identification of multiple system atrophy mimicking Parkinson’s disease or progressive supranuclear palsy. Brain 144:1138–1151

    PubMed  PubMed Central  Google Scholar 

  46. Miki Y, Foti SC, Asi YT et al (2019) Improving diagnostic accuracy of multiple system atrophy: a clinicopathological study. Brain 142:2813–2827

    PubMed  Google Scholar 

  47. Joutsa J, Gardberg M, Röyttä M, Kaasinen V (2014) Diagnostic accuracy of parkinsonism syndromes by general neurologists. Parkinsonism Relat Disord 20:840–844

    PubMed  Google Scholar 

Download references

Funding

No.

Author information

Authors and Affiliations

Authors

Contributions

RJZ and YJW contributed to the study conception and design. RJZ and YJW did the systematic literature search, selected studies for inclusion, extracted data, and statistical analyses, made figures. XLM, NW, RJZ and YJW interpreted data. YJW, RJZ, XLM wrote the first draft of the manuscript. All authors revised the manuscript for important intellectual content, approved the final draft.

Corresponding author

Correspondence to Ruijun Zhang.

Ethics declarations

Conflicts of interest

The authors report no conflicts of interest or no disclosures relevant to the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 748 KB)

Supplementary file2 (DOCX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Wang, Y., Wang, N. et al. Retina thickness in atypical parkinsonism: a systematic review and meta-analysis. J Neurol 269, 1272–1281 (2022). https://doi.org/10.1007/s00415-021-10703-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10703-6

Keywords

Navigation