Skip to main content
Log in

Age is negatively associated with upper limb recovery after conventional but not robotic rehabilitation in patients with stroke: a secondary analysis of a randomized-controlled trial

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

There is consistent evidence that robotic rehabilitation is at least as effective as conventional physiotherapy for upper extremity (UE) recovery after stroke, suggesting to focus research on which subgroups of patients may better respond to either intervention. In this study, we evaluated which baseline variables are associated with the response after the two approaches.

Methods

This is a secondary analysis of a randomized-controlled trial comparing robotic and conventional treatment for the UE. After the assigned intervention, changes of the Fugl-Meyer Assessment UE score by ≥ 5 points classified patients as responders to treatment. Variables associated with the response were identified in a univariate analysis. Then, variables independently associated with recovery were investigated, in the whole group, and the two groups separately.

Results

A sample of 190 patients was evaluated after the treatment; 121 were responders. Age, baseline impairment, and neglect were significantly associated with worse response to the treatment. Age was the only independently associated variable (OR 0.967, p = 0.023). Considering separately the two interventions, age remained negatively associated with recovery (OR 0.948, p = 0.013) in the conventional group, while none of the variables previously identified were significantly associated with the response to treatment in the robotic group.

Conclusions

We found that, in our sample, age is significantly associated with the outcome after conventional but not robotic UE rehabilitation. Possible explanations may include an enhanced positive attitude of the older patients towards technological training and reduced age-associated fatigue provided by robotic-assisted exercise. The possibly higher challenge proposed by robotic training, unbiased by the negative stereotypes concerning very old patients’ expectations and chances to recover, may also explain our findings.

Trial registration number

NCT02879279.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors are available to send data to those who reasonably request it.

References

  1. Murray CJL, Vos T, Lozano R et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2197–2223. https://doi.org/10.1016/S0140-6736(12)61689-4

    Article  PubMed  Google Scholar 

  2. Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS (1995) Recovery of walking function in stroke patients: the copenhagen stroke study. Arch Phys Med Rehabil 76:27–32. https://doi.org/10.1016/S0003-9993(95)80038-7

    Article  PubMed  Google Scholar 

  3. Nakayama H, Jørgensen HS, Raaschou HO, Olsen TS (1994) Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil 75:394–398

    Article  CAS  Google Scholar 

  4. Feigin VL, Forouzanfar MH, Krishnamurthi R et al (2014) Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 383:245–255. https://doi.org/10.1016/S0140-6736(13)61953-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kwakkel G, Kollen BJ, van der Grond J, Prevo AJH (2003) Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke 34:2181–2186

    Article  Google Scholar 

  6. Langhorne P, Coupar F, Pollock A (2009) Motor recovery after stroke: a systematic review. Lancet Neurol 8:741–754. https://doi.org/10.1016/S1474-4422(09)70150-4

    Article  PubMed  Google Scholar 

  7. Pollock A, Farmer SE, Brady MC et al (2014) Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD010820.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Krebs HI, Palazzolo JJ, Dipietro L et al (2003) Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton Robots 15:7–20. https://doi.org/10.1023/A:1024494031121

    Article  Google Scholar 

  9. Kwakkel G (2009) Towards integrative neurorehabilitation science. Physiother Res Int 14:137–146

    Article  Google Scholar 

  10. Prange GB, Jannink MJA, Groothuis-Oudshoorn CGM et al (2006) Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 43:171–183

    Article  Google Scholar 

  11. Colombo R, Pisano F, Micera S et al (2005) Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng 13:311–324. https://doi.org/10.1109/TNSRE.2005.848352

    Article  PubMed  Google Scholar 

  12. Mehrholz J, Pohl M, Platz T et al (2018) Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev 9:CD006876. https://doi.org/10.1002/14651858.CD006876.pub5

    Article  PubMed  Google Scholar 

  13. Rodgers H, Bosomworth H, Krebs HI et al (2019) Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet 394:51–62. https://doi.org/10.1016/S0140-6736(19)31055-4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aprile I, Germanotta M, Cruciani A et al (2020) Upper limb robotic rehabilitation after stroke. J Neurol Phys Ther 44:3–14. https://doi.org/10.1097/NPT.0000000000000295

    Article  PubMed  Google Scholar 

  15. Jakob I, Kollreider A, Germanotta M et al (2018) Robotic and sensor technology for upper limb rehabilitation. PM&R 10:S189–S197. https://doi.org/10.1016/j.pmrj.2018.07.011

    Article  Google Scholar 

  16. Lum PS, Burgar CG, Shor PC et al (2002) Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 83:952–959. https://doi.org/10.1053/apmr.2001.33101

    Article  PubMed  Google Scholar 

  17. Stinear CM, Smith MC, Byblow WD (2019) Prediction tools for stroke rehabilitation. Stroke 50:3314–3322

    Article  Google Scholar 

  18. Nijland RHM, Van Wegen EEH, Harmeling-Van Der Wel BC, Kwakkel G (2010) Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the EPOS cohort study. Stroke 41:745–750. https://doi.org/10.1161/STROKEAHA.109.572065

    Article  PubMed  Google Scholar 

  19. Stinear CM, Byblow WD, Ackerley SJ et al (2017) PREP2: a biomarker-based algorithm for predicting upper limb function after stroke. Ann Clin Transl Neurol 4:811–820. https://doi.org/10.1002/acn3.488

    Article  PubMed  PubMed Central  Google Scholar 

  20. Byblow WD, Stinear CM, Barber PA et al (2015) Proportional recovery after stroke depends on corticomotor integrity. Ann Neurol 78:848–859. https://doi.org/10.1002/ana.24472

    Article  PubMed  Google Scholar 

  21. Feng W, Wang J, Chhatbar PY et al (2015) Corticospinal tract lesion load: an imaging biomarker for stroke motor outcomes. Ann Neurol 78:860–870. https://doi.org/10.1002/ana.24510

    Article  PubMed  PubMed Central  Google Scholar 

  22. Winters C, van Wegen EEH, Daffertshofer A, Kwakkel G (2015) Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabil Neural Repair 29:614–622. https://doi.org/10.1177/1545968314562115

    Article  PubMed  Google Scholar 

  23. Buch ER, Rizk S, Nicolo P et al (2016) Predicting motor improvement after stroke with clinical assessment and diffusion tensor imaging. Neurology 86:1924–1925. https://doi.org/10.1212/WNL.0000000000002675

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stinear CM, Byblow WD, Ackerley SJ et al (2017) Proportional motor recovery after stroke. Stroke 48:795–798. https://doi.org/10.1161/STROKEAHA.116.016020

    Article  PubMed  Google Scholar 

  25. Hawe RL, Scott SH, Dukelow SP (2019) Taking proportional out of stroke recovery. Stroke 50:204–211. https://doi.org/10.1161/strokeaha.118.023006

    Article  Google Scholar 

  26. Hope TMH, Friston K, Price CJ et al (2019) Recovery after stroke: not so proportional after all? Brain 142:15–22. https://doi.org/10.1093/brain/awy302

    Article  PubMed  Google Scholar 

  27. Fugl-Meyer AR, Jääskö L, Leyman I et al (1975) The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 7:13–31

    CAS  PubMed  Google Scholar 

  28. Woytowicz EJ, Rietschel JC, Goodman RN et al (2017) Determining levels of upper extremity movement impairment by applying a cluster analysis to the Fugl-Meyer assessment of the upper extremity in chronic stroke. Arch Phys Med Rehabil 98:456–462. https://doi.org/10.1016/j.apmr.2016.06.023

    Article  PubMed  Google Scholar 

  29. Zarahn E, Alon L, Ryan SL et al (2011) Prediction of motor recovery using initial impairment and fMRI 48 h poststroke. Cereb Cortex 21:2712–2721. https://doi.org/10.1093/cercor/bhr047

    Article  PubMed  PubMed Central  Google Scholar 

  30. Puig J, Blasco G, Daunis-I-Estadella J et al (2013) Decreased corticospinal tract fractional anisotropy predicts long-term motor outcome after stroke. Stroke 44:2016–2018. https://doi.org/10.1161/STROKEAHA.111.000382

    Article  PubMed  Google Scholar 

  31. Page SJ, Fulk GD, Boyne P (2012) Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys Ther 92:791–798. https://doi.org/10.2522/ptj.20110009

    Article  PubMed  Google Scholar 

  32. Lee YY, Hsieh YW, Wu CY et al (2015) Proximal Fugl-Meyer assessment scores predict clinically important upper limb improvement after 3 stroke rehabilitative interventions. Arch Phys Med Rehabil 96:2137–2144. https://doi.org/10.1016/j.apmr.2015.07.019

    Article  PubMed  Google Scholar 

  33. Lang TA, Lang T, Secic M (2006) How to report statistics in medicine: annotated guidelines for authors, editors, and reviewers. ACP Press, Sydney

    Google Scholar 

  34. Mehrholz J (2019) Is electromechanical and robot-assisted arm training effective for improving arm function in people who have had a stroke? A Cochrane review summary with commentary. Am J Phys Med Rehabil. https://doi.org/10.1097/00002060-900000000-98325

    Article  PubMed  Google Scholar 

  35. Habegger S, Wiest R, Weder BJ et al (2018) Relating acute lesion loads to chronic outcome in ischemic stroke-an exploratory comparison of mismatch patterns and predictive modeling. Front Neurol. https://doi.org/10.3389/fneur.2018.00737

    Article  PubMed  PubMed Central  Google Scholar 

  36. Coupar F, Pollock A, Rowe P et al (2012) Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin Rehabil 26:291–313

    Article  Google Scholar 

  37. Kwah LK, Harvey LA, Diong J, Herbert RD (2013) Models containing age and NIHSS predict recovery of ambulation and upper limb function six months after stroke: an observational study. J Physiother 59:189–197. https://doi.org/10.1016/S1836-9553(13)70183-8

    Article  PubMed  Google Scholar 

  38. Hsieh YW, Lin KC, Wu CY et al (2014) Predicting clinically significant changes in motor and functional outcomes after robot-assisted stroke rehabilitation. Arch Phys Med Rehabil 95:316–321. https://doi.org/10.1016/j.apmr.2013.09.018

    Article  PubMed  Google Scholar 

  39. Franceschini M, Goffredo M, Pournajaf S et al (2018) Predictors of activities of daily living outcomes after upper limb robot-assisted therapy in subacute stroke patients. PLoS ONE 13:e0193235. https://doi.org/10.1371/journal.pone.0193235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leem MJ, Kim GS, Kim KH et al (2019) Predictors of functional and motor outcomes following upper limb robot-assisted therapy after stroke. Int J Rehabil Res 42:223–228. https://doi.org/10.1097/MRR.0000000000000349

    Article  PubMed  Google Scholar 

  41. Persson HC, Opheim A, Lundgren-Nilsson Å et al (2016) Upper extremity recovery after ischaemic and haemorrhagic stroke: part of the SALGOT study. Eur Stroke J 1:310–319. https://doi.org/10.1177/2396987316672809

    Article  PubMed  PubMed Central  Google Scholar 

  42. Morone G, Masiero S, Coiro P et al (2018) Clinical features of patients who might benefit more from walking robotic training. Restor Neurol Neurosci 36:293–299. https://doi.org/10.3233/RNN-170799

    Article  PubMed  Google Scholar 

  43. Joyce K, Loe M (2010) A sociological approach to ageing, technology and health. Sociol Heal Illn 32:171–180. https://doi.org/10.1111/j.1467-9566.2009.01219.x

    Article  Google Scholar 

  44. Shibata T, Wada K (2011) Robot therapy: a new approach for mental healthcare of the elderly—a mini-review. Gerontology 57:378–386

    Article  Google Scholar 

  45. Mannheim I, Schwartz E, Xi W et al (2019) Inclusion of older adults in the research and design of digital technology. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16193718

    Article  PubMed  PubMed Central  Google Scholar 

  46. Betts LR, Hill R, Gardner SE (2019) “There’s not enough knowledge out there”: examining older adults’ perceptions of digital technology use and digital inclusion classes. J Appl Gerontol 38:1147–1166. https://doi.org/10.1177/0733464817737621

    Article  PubMed  Google Scholar 

  47. Joyce K, Mamo L (2006) Graying the Cyborg: new directions in feminist analyses of aging, science, and technology. Age matters: re-aligning feminist thinking. Routledge, New York, pp 99–121

    Google Scholar 

  48. Kvitek SDB, Shaver BJ, Blood H, Shepard KF (1986) Age bias: physical therapists and older patients. J Gerontol 41:706–709. https://doi.org/10.1093/geronj/41.6.706

    Article  Google Scholar 

  49. Blackwood J, Sweet C (2017) The influence of ageism, experience, and relationships with older adults on physical therapy students’ perception of geriatrics. Gerontol Geriatr Educ 38:219–231. https://doi.org/10.1080/02701960.2015.1079709

    Article  PubMed  Google Scholar 

  50. Dobrowolska B, Jędrzejkiewicz B, Pilewska-Kozak A et al (2019) Age discrimination in healthcare institutions perceived by seniors and students. Nurs Ethics 26:443–459. https://doi.org/10.1177/0969733017718392

    Article  PubMed  Google Scholar 

  51. Bingham D (2019) Older workforces: re-imagining later life learning. Routledge, New York

    Book  Google Scholar 

  52. Longobucco Y, Benedetti C, Tagliaferri S et al (2019) Proactive interception and care of frailty and multimorbidity in older persons: the experience of the European innovation partnership on active and healthy ageing and the response of parma local health trust and lab through European projects. Acta Biomed 90:364–374. https://doi.org/10.23750/abm.v90i2.8419

    Article  PubMed  Google Scholar 

  53. Kristensen HK, Tistad M, Von Koch L, Ytterberg C (2016) The importance of patient involvement in stroke rehabilitation. PLoS ONE. https://doi.org/10.1371/journal.pone.0157149

    Article  PubMed  PubMed Central  Google Scholar 

  54. Banz R, Bolliger M, Colombo G et al (2008) Computerized visual feedback: an adjunct to robotic-assisted gait training. Phys Ther 88:1135–1145. https://doi.org/10.2522/ptj.20070203

    Article  PubMed  Google Scholar 

  55. Babaiasl M, Mahdioun SH, Jaryani P, Yazdani M (2016) A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil Rehabil Assist Technol 11:263–280. https://doi.org/10.3109/17483107.2014.1002539

    Article  PubMed  Google Scholar 

  56. Ramirez-Fernandez C, Moran AL, Garcia-Canseco E (2015) Haptic feedback in motor hand virtual therapy increases precision and generates less mental workload. In: Proceedings of the 2015 9th international conference on pervasive computing technologies for healthcare, Pervasive health 2015, pp 280–286

  57. Masiero S, Poli P, Rosati G et al (2014) The value of robotic systems in stroke rehabilitation. Expert Rev Med Devices 11:187–198

    Article  CAS  Google Scholar 

  58. Lefeber N, Swinnen E, Kerckhofs E (2017) The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: a systematic review. Disabil Rehabil Assist Technol 12:657–671

    Article  Google Scholar 

  59. Cecchi F, Pancani S, Antonioli D et al (2018) Predictors of recovering ambulation after hip fracture inpatient rehabilitation. BMC Geriatr. https://doi.org/10.1186/s12877-018-0884-2

    Article  PubMed  PubMed Central  Google Scholar 

  60. Padua L, Imbimbo I, Aprile I et al (2020) Cognitive reserve as a useful variable to address robotic or conventional upper limb rehabilitation treatment after stroke: a multicentre study of the Fondazione Don Carlo Gnocchi. Eur J Neurol 27:392–398. https://doi.org/10.1111/ene.14090

    Article  CAS  PubMed  Google Scholar 

  61. Wong AWK, Chen C, Baum MC et al (2019) Cognitive, emotional, and physical functioning as predictors of paid employment in people with stroke, traumatic brain injury, and spinal cord injury. Am J Occup Ther. https://doi.org/10.5014/ajot.2019.031203

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Fondazione Don Gnocchi Robotic Rehabilitation Group members: Roma (RM): Irene Aprile, Marco Germanotta, Arianna Cruciani, Simona Loreti, Stefania Lattanzi, Laura Cortellini, Dionysia Papadopoulou, Giuliana Liberti, Francesca Panzera, Piera Mitrione, Dario Ruzzi, Giuliana Rinaldi, Camilla Galli, Sabina Insalaco, Luca Padua, Fabio De Santis, Pietro Spinelli, Serena Marsan, Ilaria Bastoni, Annarita Pellegrino, Tommasangelo Petitti, Costanza Pazzaglia, Chiara Di Blasi. Milano (MI): Angelo Montesano, Anna Castagna, Cristina Grosso, Paola Ammenti, Davide Cattaneo, Luca Azzinnaro, Daniela Barbieri, Silvia Cassani, Chiara Corrini, Matteo Meotti, Riccardo Parelli, Albino Spedicato, Marta Zocchi, Marcella Loffi, Domitilla Manenti, Laura Negri, Furio Gramatica, Valerio Gower. Rovato (BS): Silvia Galeri, Fulvia Noro, Luca Medici, Romina Garattini, Federica Bariselli, Marin Luli, Vera Rota. La Spezia (SP): Manuela Diverio, Elena Giannini, Assunta Gabrielli, Barbara Deidda, Benedetta Gnetti, Paola Beatini, Giulia Giansanti, Angela Lograsso, Stefania Callegari. Firenze (FI): Francesco Converti, Assunta Pizzi, Catuscia Falsini, Antonella Romanelli, Gabriella De Luca, Federica Vannetti, Elisabetta Simoncini, Monica Martini, Elisa Peccini. Massa e Fivizzano (MS): Francesca Cecchi, Lucia Avila, Maria Assunta Gabrielli, Manuele Barilli, Emanuela Romano, Elisabetta Bertocchi, Giorgia Giannarelli, Elisabetta Lerda, Miriam Vasoli, Paolo Rossi, Valter Marsili, Brunella Tognoli, Andrea Bertolini. Sant’Angelo dei Lombardi (AV): Giovanni Vastola, Gabriele Speranza, Massimo Colella, Rita Mosca, Gaetanina Competiello, Antonietta Chiusano, Antonella Della Vecchia, Pasqualina Soriano, Michela Pagliarulo. Acerenza (PZ), Tricarico (MT): Vito Remollino, Emanuele Langone, Marcello Magliulo, Giuseppe Araneo, Lucia Galantucci, Nicola Lioi, Federico Marrazzo, Stefano Larocca, Roberta Calia, Sara Benevento, Olga Toscano, and Michele Lategana.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Germanotta.

Ethics declarations

Conflicts of interest

The authors certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

Ethics approval

Experiments were conducted with approval from the Ethics Committee of IRCCS Don Gnocchi (FDG_6.4.2016 Prot. N.8/2016CE_FDG/FC/SA).

Consent to participate

All subjects gave informed written consent in accordance with the Declaration of Helsinki.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cecchi, F., Germanotta, M., Macchi, C. et al. Age is negatively associated with upper limb recovery after conventional but not robotic rehabilitation in patients with stroke: a secondary analysis of a randomized-controlled trial. J Neurol 268, 474–483 (2021). https://doi.org/10.1007/s00415-020-10143-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-10143-8

Keywords

Navigation