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Abstract
Background Objective and volumetric quantification is a necessary step in the assessment and comparison of endolymphatic 
hydrops (ELH) results. Here, we introduce a novel tool for automatic volumetric segmentation of the endolymphatic space 
(ELS) for ELH detection in delayed intravenous gadolinium-enhanced magnetic resonance imaging of inner ear (iMRI) data.
Methods The core component is a novel algorithm based on Volumetric Local Thresholding (VOLT). The study included 
three different data sets: a real-world data set (D1) to develop the novel ELH detection algorithm and two validating data sets, 
one artificial (D2) and one entirely unseen prospective real-world data set (D3). D1 included 210 inner ears of 105 patients 
(50 male; mean age 50.4 ± 17.1 years), and D3 included 20 inner ears of 10 patients (5 male; mean age 46.8 ± 14.4 years) 
with episodic vertigo attacks of different etiology. D1 and D3 did not differ significantly concerning age, gender, the grade 
of ELH, or data quality. As an artificial data set, D2 provided a known ground truth and consisted of an 8-bit cuboid volume 
using the same voxel-size and grid as real-world data with different sized cylindrical and cuboid-shaped cutouts (signal) 
whose grayscale values matched the real-world data set D1 (mean 68.7 ± 7.8; range 48.9–92.8). The evaluation included 
segmentation accuracy using the Sørensen-Dice overlap coefficient and segmentation precision by comparing the volume 
of the ELS.
Results VOLT resulted in a high level of performance and accuracy in comparison with the respective gold standard. In the 
case of the artificial data set, VOLT outperformed the gold standard in higher noise levels. Data processing steps are fully 
automated and run without further user input in less than 60 s. ELS volume measured by automatic segmentation correlated 
significantly with the clinical grading of the ELS (p < 0.01).
Conclusion VOLT enables an open-source reproducible, reliable, and automatic volumetric quantification of the inner ears’ 
fluid space using MR volumetric assessment of endolymphatic hydrops. This tool constitutes an important step towards 
comparable and systematic big data analyses of the ELS in patients with the frequent syndrome of episodic vertigo attacks. 
A generic version of our three-dimensional thresholding algorithm has been made available to the scientific community via 
GitHub as an ImageJ-plugin.
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Abbreviations
3D  Three-dimensional
Bl  Blurriness
BPPV  Benign paroxysmal positional vertigo
BVP  Bilateral vestibulopathy
CISS  Constructive interference in steady-state
DS  Dice score
DSGZ  Interdisciplinary German Center for Vertigo 

and Balance Disorders
EF  Endolymphatic fluid
ELH  Endolymphatic hydrops
ELS  Endolymphatic space
FLAIR  Fluid-attenuated inversion recovery
GRAPPA  Generalized auto-calibrating partially parallel 

acquisition
iMRI  Delayed intravenous gadolinium-enhanced 

magnetic resonance imaging of the inner ear
iv  Intravenous
L  Left
R  Right
MD  Menière’s disease
MRI  Magnetic resonance imaging
NEF  Non–endolymphatic fluid
ROC  Receiver operating characteristics
Sc  Scatter
SD  Standard deviation
SVV  Subjective visual vertical
TLS  Total fluid space
U  Unclear
VE  Volume of the endolymphatic space
VT  Volume of the total fluid space
vHIT  Videooculography during the head-impulse 

test
VM  Vestibular migraine
VN  Vestibular neuritis
VP  Vestibular paroxysmia

Introduction

Delayed intravenous gadolinium-enhanced magnetic reso-
nance imaging of the inner ear (iMRI) enables direct, in-
vivo, non-invasive verification of endolymphatic hydrops 
(ELH) simultaneously in both inner ears [1]. This reasonably 
recent methodical development introduced a broader, more 
structured investigation to the clinical syndromes associated 
with ELH, which up to then was thought to be pathogno-
monic to Menière’s disease (MD) [2]. Today, the relation-
ship between ELH and MD symptoms (for review cp [3]), 
as well as the specificity of ELH for MD, has come under 
scrutiny. The underlying reason is that different ELH pat-
terns can be found not only in MD [4, 5], but also so far in 
3.3–28% of healthy ears [6, 7], various inner ear [8–10] and 

central [11–14] pathologies, as well as in anatomic or vas-
cular abnormalities affecting endolymph resorption [15–17].

Because of this, objective and volumetric quantification 
is considered a necessary step to assess and compare ELH 
results. So far, the clinical gold standard assessment of the 
endolymphatic space (ELS) is based on a semi-quantita-
tive and subjective grading reliant on a few MR slices in a 
transversal plane. Current ELS MR volumetric assessment 
approaches propose either manual or semi-automatic seg-
mentation [18]. Already a considerable improvement, these 
approaches lack normalization and require lengthy user 
interaction that is not suitable for use in more extensive 
group studies or clinical routine.

Here, we introduce a novel tool for automatic volumetric 
segmentation of the ELS for ELH detection in iMRI data. 
The core component is a novel three-dimensional algorithm 
based on Volumetric Local Thresholding (VOLT). The tool 
was validated on artificial and prospective real-world data 
sets.

Materials and methods

Data sets

The study included three different data sets: data set 1 (D1, 
development data set) was used to develop the novel ELH 
detection algorithm based on Volumetric Local Threshold-
ing (VOLT). Data set 2 (D2, artificial validation data set) and 
data set 3 (D3, prospective validation data set) were used to 
validate VOLT on entirely unseen data.

D1 and D3 included real-world data sets from consecutive 
patients from the interdisciplinary German Center for Ver-
tigo and Balance Disorders (DSGZ) of the Munich Univer-
sity Hospital (LMU) between 2015 and 2019. Institutional 
Review Board approval was obtained before the initiation 
of the study (no 64115). Included patients had presented 
with episodic vertigo attacks [19] and undergone iMRI as 
part of their indicated clinical diagnostic workup to evalu-
ate their ELS. Their data sets were included after they had 
given oral and written consent following the Declaration of 
Helsinki. The inclusion criteria were age above 18 years. 
Exclusion criteria were any MR-related contraindications 
[20], poor image quality, or missing MR sequences. D1 
included 210 inner ears of 105 consecutive patients (50 
male; aged 19–84 years, mean age 50.4 ± 17.1 years), and 
D3 included 20 inner ears of 10 consecutive patients (5 
male, aged 31–69 years, mean age: 46.8 ± 14.4 years). D1 
and D3 did not differ significantly concerning age, gender, 
the grade of endolymphatic hydrops (ELH), or data quality 
(intensity, mean grayscale value). A detailed description of 
D1and D3 is given in Table 1.
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As an artificial data set, D2 provided a known ground 
truth to test and compare VOLT’s performance to an adapted 
version of Otsu’s method [21], which is a recognized fore-
ground/background segmentation algorithm based on global 
thresholding at an optimal histogram-derived cutoff. D2 con-
sisted of an 8-bit cuboid volume using the same voxel-size 
and grid as real-world data with different sized cylindrical 
and cuboid-shaped cutouts (signal) whose grayscale values 
matched the real-world data set D1 (mean 68.7 ± 7.8; range 
48.9–92.8). To this structural basis signal, two types of noise 
were added, which imitate the real-world variability of MRI 
signals [22]. The noise was added stepwise in the form of 
increasing blurriness noise (Gaussian blur kernel, SD range 
1–6 voxel in x/y/z-direction; SD = standard deviations) or 
increasing scatter noise (Gaussian, SD range of intensity 
variation: 0–50 SD). D2 and its varying levels of noise can 
be viewed in Fig. 1a.

D1 and D3–Clinical diagnosis and measurement 
of the auditory, semicircular canal, and otolith 
functions

Patients were clinically diagnosed according to the interna-
tional guidelines, most of the classification committee of the 
international Bárány Society (www.jvr-web.org/ICVD.html 
or www.baran ysoci ety.nl) for the diagnosis of vestibular 
migraine [23], Menière’s disease [24], vestibular paroxys-
mia [25], bilateral vestibulopathy [26], acute unilateral ves-
tibulopathy/vestibular neuritis [27] and benign paroxysmal 

positional vertigo [28]. The diagnoses of the patients within 
D1 and D3 can be viewed in Table 1.

Diagnostic workup included a careful neurological and 
neuro-otological examination including neuro-orthoptic 
assessment (e.g., Frenzel goggles; fundus photography 
and adjustments of the subjective visual vertical (SVV) for 
graviceptive vestibular function, for methods, see [29]), 
video-oculography during the head-impulse test (vHIT) 
for dynamic vestibular function (for methods, see [30, 31]), 
audiometry, and MR imaging of the whole brain including 
the cerebellopontine angle and brainstem.

D1 and D3–Sequence protocol and grading 
of the delayed gadolinium‑enhanced ivMRI 
of the inner ear

Four hours after intravenous injection of a standard dose 
(0.1 ml/kg body weight, i.e., 0.1 mmol/kg body weight) of 
Gadobutrol (Gadovist®, Bayer, Leverkusen, Germany), 
MR imaging data were acquired in a whole-body 3 T MR 
scanner (Magnetom Skyra, Siemens Healthcare, Erlangen, 
Germany) with a 20-channel head coil. Head movements 
were minimalized in all three axes using a head position-
ing system for MRI (Crania Adult 01, Pearl Technology 
AG, Schlieren, Switzerland). A 3D-FLAIR sequence was 
used to differentiate endolymph from perilymph and bone, 
and a CISS sequence to delineate the total inner ear fluid 
space from the surrounding bone. A T2-weighted, three-
dimensional, fluid-attenuated inversion recovery sequence 

Table 1  Description of the real-
world data sets

D1 and D3 included data sets from consecutive patients from the interdisciplinary German Center for Ver-
tigo and Balance Disorders (DSGZ), Munich, Germany. Included patients had presented with episodic ver-
tigo attacks and undergone delayed intravenous gadolinium-enhanced magnetic resonance imaging of the 
inner ear (iMRI) as part of their indicated clinical diagnostic workup. Patients were clinically diagnosed 
according to the several international guidelines, most of the classification committee of the international 
Bárány Society (https ://www.jvr-web.org/ICVD.html or https ://www.baran ysoci ety.nl) and included the 
diagnosis of VM [23], MD [24], VP [25], BPPV [26], BVP [1] and acute unilateral vestibulopathy/vestibu-
lar neuritis [2]. Grading of the ELH in the vestibulum and cochlea was based on criteria described previ-
ously [3], which constitutes a fusion of two classification systems [4, 5]. D1 and D3 did not differ signifi-
cantly concerning age, gender, the grade of ELH, or data quality
 ± standard deviation, BPPV benign paroxysmal positional vertigo, BVP bilateral vestibulopathy, ELH 
endolymphatic hydrops, ELS endolymphatic space, iMRI delayed intravenous gadolinium-enhanced mag-
netic resonance imaging of the inner ear, MD Menière’s disease, N number of participants, VM vestibular 
migraine, VP vestibular paroxysmia

N (gender) Age Diagnosis ELH ELH grade Data Quality

D1 105
(50 male)

50.4 ± 17.1
range 19–84

32% VM (n = 33)
28% MD (n= 29)
18% NV (n = 19)
17% VP (n = 18)
3% BVP (n = 4)
2% BPPV (n = 2)

97 out of 210 ears
46.2%

0.7 ± 0.8
Range 0–3

1.1 ± 0.3
Range 0.3–2.3

D3 10
(5 male)

46.8 ± 14.4
range 31–69

10% VM (n = 1)
70% MD (n = 7)
10% NV (n = 1)
10% BPPV (n = 1)

7 out of 20 ears
35%

0.7 ± 0.9
Range 0–2.5

1.1 ± 0.3
Range 0.3–1.6

http://www.jvr-web.org/ICVD.html
http://www.baranysociety.nl
https://www.jvr-web.org/ICVD.html
https://www.baranysociety.nl
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(3D-FLAIR) with the following parameters: TR 6000 ms, 
TE 134 ms, TI 2240 ms, FOV 160 × 160 mm2, 36 slices, 
base resolution 320, averages 1, acceleration factor of 2 

using a parallel imaging technique with a generalized auto-
calibrating partially parallel acquisition (GRAPPA) algo-
rithm, slice thickness 0.5 mm, acquisition time 15:08 min 
was carried out. A high-resolution, strongly T2-weighted, 
3D constructive interference steady state (CISS) sequence 
of the temporal bones was performed to evaluate the anat-
omy of the whole-fluid-filled labyrinthine spaces with the 
following parameters: TR 1000 ms, TE 133 ms, FA 100°, 
FOV 192 × 192 mm2, 56 slices, base resolution 384, aver-
ages 4, acceleration factor of 2 using GRAPPA algorithm, 
slice thickness of 0.5 mm and acquisition time 8:36 min. The 
presence of ELH was observed on the 3D-FLAIR images as 
enlarged negative-signal spaces inside the labyrinth, accord-
ing to a previously reported method [32, 33]. The decision to 
apply a single-dose contrast agent was made because of the 
ongoing discussion about gadolinium deposition within the 
dentate nucleus and globus pallidus after repeated adminis-
tration of gadolinium-based contrast agents [34–37]. It was 
not considered ethical to apply higher doses of contrast agent 
if not necessary. Accordingly, only patients with a diagnostic 
benefit were included in the study.

Evaluation of the iMRI and grading of the ELS was per-
formed independently by two experienced head and neck 
radiologists and a neurologist who was blinded to the clini-
cal patient data. If discrepancies arose, a consensus was 
reached by discussion. The characterization of the ELS in 
the vestibulum and cochlea was based on criteria previously 
described [12], which constitutes a fusion of two classifica-
tion systems [38, 39]. D1 and D3 did not differ significantly 
concerning the grade of ELH. An overview of ELH grade 
and data quality for data sets D1 and D3 can be viewed in 
Table 1.

D1–Development of the automatic segmentation 
tool for ELH detection based on Volumetric Local 
Thresholding (VOLT)

VOLT was developed on the real-world data set D1 using 
exclusively universal access software, namely 3D Slicer 
version 4.11 toolbox [40] including the TOMAAT plugin 
[15], as well as ImageJ Fiji [41] including the “Fuzzy and 
artificial neural networks image processing toolbox” [42] 
and the “MorphoLibJ Toolbox” [43](see an overview of the 
overall pipeline including VOLT-based ELS segmentation 
in Fig. 2a, b).

Data pre‑processing included the following steps

VOLT operates on a pre-segmented region-of-interest (ROI) 
of the inner ear, which requires a series of data pre-process-
ing steps. First, FLAIR and CISS sequences were interpo-
lated to a voxel size of 0.25 mm × 0.25 mm × 0.25 mm using 
a bicubic interpolation algorithm in ImageJ. Then, left and 

Fig. 1  D2 artificial data set–visualization and results. As an arti-
ficial data set, D2 provided a known ground truth to test and com-
pare VOLT cutoff versions to Otsu’s method. a A transversal slice-
wise visualization of D2 in the middle. D2 can be viewed in the very 
middle and included an 8-bit cuboid volume with different sizes of 
cylindrical and cuboid-shaped cutouts (signal). To this signal differ-
ent types of real-world MRI imitating noise were added stepwise in 
the form of increasing blurriness (Gaussian blur kernel, SD range 
1–6 voxel in x/y/z-direction; SD = standard deviations, visualized to 
the left) and increasing scatter (SD range of intensity variation: 0–50 
SD, visualized to the right). b Based on empirical observations in the 
development data set (D1), VOLT was compared to Otsu’s method 
(O = grey) at three cutoff variations (c6 = forest green, c8 = red, 
c10 = yellow). Both VOLT cutoff versions and Otsu’s method fared 
better with blurriness noise (x-axis of the left graph) in compari-
son with scatter noise (x-axis of the right graph). More specifically, 
VOLT cutoff versions showed a high level of agreement in terms of 
Dice overlap (y-axis within the graphs) with Otsu’s scores in data sets 
with low noise levels (please compare blurriness 2, framed in mint 
green and scatter 20, framed in pink). The higher the noise level, the 
more VOLT cutoff versions outperformed Otsu’s method (please note 
blurriness 5, framed in purple and scatter 50, framed in blue). The 
corresponding output (c) can easily be compared with the ground-
truth by following said color frames. D2 data set 2, c6 cutoff 6, c8 
cutoff 8, c10 cutoff 10, O Otsu’s method
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Fig. 2  VOLT flowchart and output examples. The flowchart shows a 
step-by-step overview of the VOLT processing pipeline of a left inner 
ear. The different steps correspond to the boxes in a counterclockwise 
fashion (a, b, c). a Describes data pre-processing, b data processing, 
and c shows output examples. Within each box, processing steps fol-
lowing orange arrows indicate the order of the main program steps, 
and green arrows indicate supporting steps. Data pre-processing (a) 
consists of cropping the inner ear from CISS and FLAIR MR images 
(only step requiring user input), co-registration, and using a cloud-
based deep convolutional neural network (CNN) to create a mask 
of the inner ear. During data processing, (b) the mask is dilated to 
include a small seam around the inner ear region-of-interest (ROI). 
Then, a fusion volume is created, contrast-enhanced, and the fusion 

volume is 3D reconstructed. VOLT is performed, volumes are 
reconstructed into a transversal plane and re-sampled into one vol-
ume. After 3D blurring, single-voxel noise is removed, and a three-
dimensional outline based on the mask is added to the final result. 
(c) depicts two output examples of the right inner ear. The upper row 
shows the corresponding cropped FLAIR-MR image; the middle row 
shows a 2D depiction of the VOLT output, and the lower row shows 
the 3D visualization of VOLT-output. The inner ear to the left dis-
plays no endolymphatic hydrops (ELH). The inner ear to the right 
displays an ELH grade 2. CISS constructive interference in steady-
state, MR magnetic resonance, FLAIR fluid-attenuated inversion 
recovery, VOLT volumetric local thresholding
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right inner ears were cropped using a rectangular selection, 
converted to nrrd-files, and imported into 3D-Slicer. To 
obtain an ROI of the overall inner ear region, a voxel-wise 
segmentation of this cropped region needed to be obtained. 
To this end, we applied a recently proposed deep convolu-
tional neural network (CNN), deployed via the TOMAAT 
module in 3D–Slicer [44]. This step first normalizes the 
orientation of the cropped volume by affine image registra-
tion (BRAINSFit toolkit [45]) and then applies a pre-trained 
volumetric CNN with V-net architecture [46]. The V-net 
output yields a segmentation into two labels, either inner 
ear or background. The “inner-ear” segmentation, hereafter 
referred to as “mask”, was converted into an 8-bit binary 
volume and volumetrically dilated using 3D morphological 
filtering. As dilation adds a thin shell of anatomy surround-
ing the inner ear, this step allows the amount of false-nega-
tive classifications by the VOLT segmentation algorithm to 
be reduced. An overview of the pre-processing required for 
VOLT-based ELS segmentation can be viewed in Fig. 2a.

Data processing included the following steps

Two locally adaptive thresholding algorithms (“Bernsen” 
[47] and “Mean”) were used in the three planes, and in four 
varying radii, respectively, to differentiate between endo-
lymphatic fluid (EF) and non–endolymphatic fluid (NEF). 
These intermediate segmentations were then reconstructed 
in a transversal plane and aggregated into one final segmen-
tation volume. Close attention was paid to avoid the inclu-
sion of false positives into the ELS, by considering only 
voxels within a volumetrically strict outer shell of the inner 
ear (see pre-processing). As a next step, single-voxel-noise 
was reduced using a 3D Gaussian blurring algorithm. The 
first mask was used to create a single pixel-sized borderline 
(= 0.25 mm) in all three planes to ultimately avoid false-
positive classifications in the corner regions of these three 
planes. The resulting 3D volume can then be regarded as a 
probabilistic map of the inner ear, which included the clas-
sification into its two different compartments (endolym-
phatic and perilymphatic space). The final classification then 
strongly depends on the chosen cutoff. Each cutoff matches a 
percentage of positive classifications. For example, cutoff 6 
(c6) corresponds to 79.2%, cutoff 8 (c8) to 70.8% and cutoff 
10 (c10) to 62.5% classifications into endolymphatic space. 
Based on empirical observations in the development data 
set (D1), VOLT was validated at three cutoff variations (c6, 
c8, c10; Fig. 2b).

Automatization and pipeline creation

A script written in the IJ1M-macro-language was used 
to automate pre-processing and processing in FIJI. User 
input was required solely for supervision purposes during 

cropping, registration, and segmentation. The remaining 
features (pre-processing, volumetric reconstruction, contrast 
enhancement, fusion, thresholding, and post-processing) 
work automatically.

D1, D2 and D3–Methods for validation

VOLT with three different cutoffs (c6, c8, c10) was validated 
on the artificial data set D2 and the prospective real-world 
data set D3. Segmentation accuracy was evaluated using 
the Sørensen-Dice overlap coefficient, which is defined as 
2 * |X ∩ Y|/|X| +|Y| for segmentations X and Y [48], as a 
measure of region overlap between gold standard segmenta-
tion and the automatically obtained segmentations from the 
VOLT pipeline.

Segmentation precision was estimated by comparing 
the volume of the ELS  (VE) between segmentation meth-
ods. Structurally, the human inner ear can be pictured as 
an external, bony hose system (called the bony labyrinth, 
containing perilymph) and an inner hose system (called the 
membranous labyrinth, containing endolymph). The total 
lymph fluid space includes the inner hose system’s ELS and 
the surrounding perilymphatic space.

Receiver operating characteristics (ROC) analysis was 
used to show the (in)dependence of the performance of the 
methods from the grade of the ELH or the distribution of 
the fluids within the total fluid space (TFL) and the SNR of 
the iMRI data set.

D1, D2 and D3 statistics and map display

The data were analyzed with SPSS 20.0 (SPSS, Chicago, IL, 
USA). Differences between data sets overall were assessed 
using a paired t-test, which was Bonferroni-corrected for 
multiple testing and viewed at p < 0.01 and p < 0.05. Lin-
ear agreement between parameter pairs was calculated for 
each method separately using the two-sided Spearman’s cor-
relation coefficient and reported at a significance level of 
p < 0.01 and p < 0.05. For Receiver operating characteristics 
(ROC) analysis, the original Fortran program JLABROC4 
(by Charles Metz and colleagues, Department of Radiology, 
University of Chicago; Java translation by John Eng, Russel 
H Morgan Department of Radiology and Radiological Sci-
ence, Johns Hopkins University, Baltimore, Maryland, USA, 
Version 2.0, March 2017) was used.

Results

VOLT implementation on D1

After implementation on data set D1, the novel tool for auto-
matic segmentation of the endolymphatic space (ELS) with 
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a novel algorithm based on Volumetric Local Thresholding 
(VOLT) ran smoothly and showed no operational or sta-
bility issues. VOLT does not require especially powerful 
hardware or closed-source software. The only prerequisite 
is the installation of universal access software, namely 3D 
Slicer toolbox [40] including the TOMAAT plugin [15], as 
well as ImageJ Fiji [41] including the “Fuzzy and artificial 
neural networks image processing toolbox” [42] and the 
“MorphoLibJ Toolbox” [43].

The only step requiring user input was the cropping step. 
While this step required a rough selection of the inner ear 
and could easily be automatized, it allowed a quick and easy 
visual assessment of the source images and was therefore 
considered a suitable quality control mechanism. Cropping 
was performed in order to reduce computation time as well 
as allow for easier registration of the inner ears; the registra-
tion step was necessary to ensure correct positioning of the 
CISS-based hull relative to the FLAIR. For both registration 
and CNN segmentation, the necessary user input was limited 
to entering parameters and starting the process. After the 
CNN segmentation the user had to save the segmentations 
as a new file manually. As an orientation, pre-processing 
steps of one single-subject data set can be performed in less 
than ten minutes by an experienced user on a standard con-
sumer laptop (Windows10 (64Bit),  Intel® Core i5-4200U 
@1,6 GHz, 8 GB RAM).

Data processing steps are fully automated and run with-
out further user input in less than 60 s. Volumetric local 
thresholds can be adapted to signal-to-noise ratio (SNR) of 
different data sets. Output files include 3D volumetric quan-
tification of TLS and ELS in  mm3 and a 3D visualization of 
the inner ear. Examples of single-subject VOLT-based inner 
ear segmentations show different grades of ELH (Fig. 2c).

VOLT performance on artificial data set D2

D2 was created to have a ground truth data set featuring 
challenges found in inner ear imaging, namely low contrast 
and high noise. Similar to actual iMRI, the regions of inter-
est were three-dimensional volumes of different sizes. This 
proofed to be difficult for 2D-algorithms, whereas three-
dimensional methods could analyze the data set better.

As an artificial data set, D2 provided a known ground 
truth to test and compare VOLT’s performance to an adapted 
version of Otsu’s method (O) [21], which is a recognized 
foreground/background segmentation algorithm based on 
global thresholding at an optimal histogram-derived cutoff. 
Based on empirical observations in the development data 
set (D1), VOLT was compared to O at three cutoff varia-
tions (c6, c8, c10). On average, over all noise conditions, 
the Dice score (DS) of VOLT cutoff versions (c6: 90%, c8: 
92%; c10: 92%) outperformed Otsu’s method (82%). Both 
VOLT cutoff versions and Otsu’s method fared better with 

blurriness noise (DS:O: 91%; c6: 92%, c8: 93%; c10: 94%) 
in comparison with scatter noise (DS O: 82%; c6: 87%, c8: 
91%; c10: 90%). More specifically, VOLT cutoff versions 
showed a high level of agreement in terms of Dice overlap 
with Otsu’s scores in data sets with low noise levels (Bl 
1–4; Sc 10). The higher the noise level, however, the more 
VOLT cutoff versions outperformed Otsu’s method (Bl 5–6; 
Sc 20–60), with c8 showing an overall best performance 
independent of noise levels. All results are presented in 
Table 2 and Fig. 1b, c.

VOLT performance on prospective real‑world data 
set D3

D3 included previously entirely unseen real-world data 
sets from 10 consecutive patients (= 20 inner ears) and was 
used to validate VOLT on entirely unseen data. Ear-specific 
segmentation accuracy was evaluated using the Sørensen-
Dice overlap coefficient (DS), and segmentation precision 
were estimated by comparing the volume of the ELS  (VE). 
Performance (DS) of VOLT with the three different cutoffs 
c6: 97.0% ± 0.7, c8: 96.6% ± 0.8, c10: 95.9% 97% ± 0.9) 
highly overlapped with the manual segmentation. On aver-
age, c8 gave a close representation of the actual volume 
seen in the manual segmentation, while c6 tended to under-
estimate and c10 to overestimate the endolymphatic space 
volume methodically. Note that the grade of ELH corre-
lated significantly with the endolymphatic volume of both 
the manual segmentation method (two-sided, r(18) = 0.475, 
p = 0.034) and with VOLT cutoff variations c6 (two-sided, 
r(18) = 0.553, p = 0.011)–c8 (two-sided, r(18) = 0.566, 
p = 0.009)–c10 (two-sided, r(18) = 0.569, p = 0.009). 
Receiver operating characteristics (ROC) analysis showed 
the grade of the ELH to be a good classifier for the computed 
volume of the ELS (fitted ROC area: 0.9). Table 2 shows an 
overview of the performance and accuracy results of each 
segmentation method. Figure 3 gives an ear-specific over-
view of each validation parameter.

Discussion

An open-source tool for automatic volumetric segmenta-
tion of the endolymphatic space (ELS) for endolymphatic 
hydrops (ELH) detection in intravenous, delayed, gadolin-
ium-enhanced magnetic resonance imaging of the inner ear 
(iMRI) data was developed on a real-world data set includ-
ing 210 inner ears. The core component is a novel algorithm 
based on Volumetric Local Thresholding (VOLT). Tool vali-
dation in two data sets, one artificial data set that provided 
a known ground truth and one real-world that included 20 
previously unseen inner ears, resulted in a high level of per-
formance and accuracy in comparison with the respective 
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gold standard (Otsu’s method and manual segmentation). 
In the case of the artificial data set, VOLT outperformed the 
gold standard in higher noise levels. VOLT endolymph vol-
ume significantly correlated with the clinical grading of the 
ELS. VOLT operates on a pre-segmented region-of-interest 
(ROI) of the inner ear, which requires a series of data pre-
processing steps (duration < 10 min). Data processing steps 
are fully automated and run without further user input in 
less than 60 s.

VOLT–performance and usability

Objective and volumetric quantification is a necessary step 
to assess and compare ELH results between studies and 
hospitals. So far, the clinical gold standard assessment 
of the ELS is based on a semi-quantitative and subjec-
tive grading reliant on a few MR slices in the transversal 
plane. In addition, different ELH classifications are being 
used in parallel [38, 39, 49, 50]. While manual volumetric 

segmentation is the gold standard for volumetric quan-
tification, it is highly subjective and dependent on the 
rater’s experience and knowledge, not to mention time-
consuming. VOLT allows objective, easily reproducible, 
and reliable stand-alone volumetric ELH quantification 
and grading, which closely matches manual segmentation, 
highly correlates with clinical ELH grading, and performs 
particularly well in data with a low signal-to-noise ratio.

The main advantage of VOLT is its local thresholding 
algorithm, which enables more flexible and stable results 
in comparison to global thresholding algorithms (such as 
Otsu’s method). Inhomogeneous image intensities and 
local brightness variations are adequately compensated 
for [48, 51]. The robustness and flexibility of VOLT to 
image artifacts can be further increased using different 
radius sizes. Importantly, results in Fig. 1 demonstrate that 
VOLT does not yield perfect segmentation in the absence 
of noise (not probable in real-world data), but instead 

Table 2  Overview of results

As an artificial data set, D2 provided a known ground truth to test and compare VOLT cutoff versions to Otsu’s method (O). A shows an over-
view of the Dice scores (DS) of each segmentation method (Otsu’s, cutoff 6, cutoff 8, cutoff 10) concerning the real-world MRI imitating noise 
that was added stepwise in the form of increasing blurriness noise (Bl, Gaussian blur kernel, SD range 1–6 voxel in x/y/z-direction; SD = stand-
ard deviations) or increasing scatter noise (Sc, SD range of intensity variation: 0–50 SD). For visualization of the added noise and results, see 
Fig. 1a. D3 included real-world data sets from consecutive patients from the interdisciplinary German Center for Vertigo and Balance Disorders, 
Munich, Germany. Part B shows an overview of the results’ mean of each segmentation method (manual segmentation that was considered as 
the gold standard and VOLT with three different cutoffs 6, 8, 10). Segmentation accuracy was evaluated using the Sørensen-Dice overlap coeffi-
cient, and segmentation precision were estimated by comparing the volume of the ELS  (VE). The ratio  VE/M was supplied to show the deviation 
of each cutoff from the gold standard, which was the manual segmentation. The  VE ranges include all different grades of endolymphatic hydrops
 ± standard deviation, Bl blurriness, DS Dice score, Sc scatter, VE volume of the endolymphatic space, VT volume of the total fluid space

A
Data set Noise Scale Otsu’s Cutoff 6 Cutoff 8 Cutoff 10

D2 BI 1 99.4% 95.0% 98.0% 98.7%
2 97.6% 93.7% 95.5% 96.7%
3 93.8% 92.0% 93.4% 94.6%
4 90.3% 90.3% 91.2% 92.7%
6 85.8% 90.0% 90.8% 91.5%

Sc 10 98.5% 88.4% 93.6% 97.9%
20 88.7% 87.9% 93.0% 96.9%
30 81.2% 87.7% 92.2% 93.5%
40 76.7% 87.4% 90.5% 87.6%
50 74.3% 86.5% 88.0% 82.3%
60 73.2% 85.6% 86.3% 80.5%

B
Data set Validation M Cutoff 6 Cutoff 8 Cutoff 10

D3 DS Gold standard 97.0% ± 0.7
range 95.6–97.9

96.6% ± 0.8
range 95.0–97.7

95.9% ± 0.9
range 93.8–97.2

VE 16.7 mm3 ± 5.5
range 8.8–30.7

11.5  mm3 ± 5.7
range 5.0–25.5

17.1  mm3 ± 7.4
range 8.4–33.6

23.3  mm3 ± 8.7
range: 13.0–41.0

VE/M 1 0.7 ± 0.2
range 0.4–0.9

1 ± 0.2
range 0.7–1.5

1.4 ± 0.3
range 1.0–2.1

VT 276.2 mm3 ± 37.6 (range 223.6–347.6)
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performs more favorably and more stably in the presence 
of increased noise (very probable in real-world data).

Current ELS MR volumetric assessment approaches 
remain few and involve a manual or semi-automatic segmen-
tation [6, 18, 50, 52]. Already a considerable improvement, 
these approaches require lengthy user interaction that is not 
suitable for use in more extensive group studies or clini-
cal routine. Also, the software used tends to be attached to 
expensive software, and the uncompiled source is not avail-
able for public review.

VOLT runs smoothly and does not require especially 
powerful hardware or closed-source software. As an orien-
tation, pre-processing steps of one data set can be performed 
in less than ten minutes by an experienced user on a standard 
consumer laptop. Data processing steps are fully automated 
and run without further user input in less than 60 s. Volu-
metric local thresholds can be adapted to the signal-to-noise 
ratio (SNR) of different data sets. Output files include 3D 
volumetric quantification of TLS and ELS in  mm3 and a 3D 
visualization of the inner ear. The endolymphatic volumes 
conformed to those previously reported [53, 54].

VOLT flexibility–deep learning is beneficial 
but not a requirement

Inner ear segmentation is a prerequisite step for VOLT-
based ELH segmentation and is currently performed via 
a novel CNN-based deep learning approach [43], which 
is deployed as a module in 3D-Slicer [40]. This CNN was 
trained in-house at our department, on a separate iMRI data 
set obtained on the same MRI scanner and with the same 
imaging sequence parameters as our study. As such, this 
method was a natural choice for inner ear ROI segmentation 
in our data set, especially because segmentations were not 
only highly accurate but also obtainable in comparably fast 
execution time (< 5 s). A downside is that this network likely 
has difficulties in generalizing to data from other scanners or 
imaging sequence settings, e.g., from other clinics. There-
fore, we do not assume a TOMAAT/V-Net segmentation as a 
fixed component of the current ELH segmentation pipeline. 
The inner ear ROI can also be obtained by other segmenta-
tion approaches, most prominently using atlas-based reg-
istration. Recently, two in-vivo MRI atlases and templates 
were proposed, one offering a probabilistic segmentation 
of the inner ear’s bony labyrinth [46], the other offering a 
high-resolution multivariate template for T1-, T2- and CISS-
weighted MRI imaging [41]. Both atlases can yield accurate 
segmentation of the inner ear ROI while being much more 
generalizable to MRI data from previously unseen scan-
ners or acquisition sites, in particular, if multivariate MRI 
appearances are available as in [41]. The downside of atlas-
based segmentation is the high computational complexity of 
deformable atlas registration algorithms that align the atlas 

Fig. 3  D3 prospective validation data set results. D3 was used to vali-
date VOLT on entirely unseen real-world data (20 inner ears). VOLT 
with the three variations cutoff 6 (c6 = dark green), cutoff 8 (c8 = red), 
and cutoff 10 (c10 = yellow) were compared to manual (M) segmenta-
tion (= grey, that was considered the gold standard). Ear-specific seg-
mentation accuracy was evaluated using the Sørensen-Dice overlap 
coefficient (DS, upper graph), and segmentation precision were esti-
mated by comparing the volume of the ELS (V, middle graph). Over-
all, DS of all three VOLT variations was high (c6: 97.0%± 0.7, c8: 
96.6%± 0.8, c10: 95.9% 97%± 0.9). The influence of endolymphatic 
hydrops (ELH = colored light green) and data quality (dQ = colored 
blue) can easily be seen in the lowest graph. Data quality was defined 
as mean the greyscale value (or intensity). Note that the grade of ELH 
correlated significantly with the endolymphatic volume of both the 
manual segmentation method (p < 0.05) and VOLT cutoff variations 
c6-8–10 (p < 0.01). c6 cutoff 6, c8 cutoff 8, c10 cutoff 10, D3 data set 
3, dQ data quality, DS Dice score, M manual segmentation
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to the target volume. With carefully tuned parametrizations, 
such algorithms can achieve highly accurate segmentation, 
but segmentations can take 10 min to 2 h per volume [47], 
compared to < 5 s computation time for deep neural nets 
such as [43]. Overall, we, therefore, recommend the usage 
of deep neural nets for inner ear segmentation predictions; 
however, the correct way to generalize the network to new 
sites, e.g., via transfer learning, remains to be established 
in future work.

Methodical limitations

There are methodical limitations in the current study that 
need to be considered in the interpretation of the data. First, 
the performance of VOLT is highly dependent on the seg-
mentation of the inner ear. An inner ear mask that includes 
parts of the dark background voxels surrounding the inner 
ear structures would lead to a false-positive attribution to 
the ELS. VOLT’s high performance and accuracy values 
are probably in part attributable to the novel CNN-based 
deep learning approach. Second, VOLT does not include 
any anatomical knowledge. In the best case, this means that 
the algorithm is entirely unbiased, i.e., not influenced by any 
prior morphological assumptions. The downside is a lack 
of exclusion of apparent errors that would be noticed by the 
human examiner.

An example would be segmentation errors that included 
surrounding structures into the ROI. A human examiner 
would know not to expect endolymph in the outermost tips 
of the cochlea or vestibulum. However, an algorithm does 
not. This is one reason VOLT is designed unusually strict 
in margin areas. Finally, VOLT (or any ELS segmentation 
method) is by nature highly dependent upon the resolution 
and contrast of the MRI raw data to be able to distinguish 
between endolymphatic and perilymphatic space.

Conclusion

We propose a novel pipeline for the automatic segmenta-
tion of endolymphatic hydrops in inner ear MRI. The core 
component is a novel algorithm based on Volumetric Local 
Thresholding (VOLT). Tool validation on artificial and real-
world data resulted in a high level of performance and accu-
racy, in particular in low signal-to-noise ratio. ELS volume 
significantly correlated (p < 0.01) with the clinical grading 
of the ELS. A generic version of our three-dimensional 
thresholding algorithm has been made available to the sci-
entific community via GitHub as an ImageJ-Plugin (https ://
githu b.com/j-gerb/3d-thres holdi ng/tree/maste r).
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