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Abstract
Background Striking changes in the demographic pattern of multiple sclerosis (MS) strongly indicate an influence of modi-
fiable exposures, which lend themselves well to intervention. It is important to pinpoint which of the many environmental, 
lifestyle, and sociodemographic changes that have occurred over the past decades, such as higher smoking and obesity rates, 
are responsible. Mendelian randomization (MR) is an elegant tool to overcome limitations inherent to observational studies 
and leverage human genetics to inform prevention strategies in MS.
Methods We use genetic variants from the largest genome-wide association study for smoking phenotypes (initiation: 
N = 378, heaviness: N = 55, lifetime smoking: N = 126) and body mass index (BMI, N = 656) and apply these as instrumental 
variables in a two-sample MR analysis to the most recent meta-analysis for MS. We adjust for the genetic correlation between 
smoking and BMI in a multivariable MR.
Results In univariable and multivariable MR, smoking does not have an effect on MS risk nor explains part of the association 
between BMI and MS risk. In contrast, in both analyses each standard deviation increase in BMI, corresponding to roughly 
5 kg/m2 units, confers a 30% increase in MS risk.
Conclusion Despite observational studies repeatedly reporting an association between smoking and increased risk for MS, 
MR analyses on smoking phenotypes and MS risk could not confirm a causal relationship. This is in contrast with BMI, 
where observational studies and MR agree on a causal contribution. The reasons for the discrepancy between observational 
studies and our MR study concerning smoking and MS require further investigation.
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Introduction

Multiple sclerosis (MS) is an autoimmune disease of the 
central nervous system, with both genetic and environmental 
factors implicated in its etiology [1]. Genome-wide associa-
tion studies (GWASs) have identified more than 200 inde-
pendent associations mediating disease risk [2–6], but these 
genetic factors explain < 50% of variance in MS risk between 
individuals [3].

Environmental risk factors associated with MS in obser-
vational studies include Epstein-Barr virus infection, low 
serum vitamin D [25(OH)D3], obesity and smoking [7]. 
Unlike genetic risk factors, environmental and lifestyle fac-
tors can be modified, with potential for prevention. Behav-
ioural, socioeconomic, and physiological factors are strongly 
interrelated, which can lead to residual confounding in 
observational studies [8, 9]. Furthermore, causal inference 
from observational studies is impeded by reverse causa-
tion, selection and recall bias. To overcome this, a Men-
delian randomization (MR) analysis uses genetic variants 
that are a proxy for environmentally modifiable exposures 
as an instrumental variable (IV) to assess the presence of a 
causal relationship between environmental factors and an 
outcome [10]. For three of the environmental risk factors 
suggested by observational studies (low serum vitamin D, 
obesity and smoking), sufficiently strong IVs for use in MR 
studies are now available. Such analyses have repeatedly 
supported a causal association of low serum 25(OH)D3 and 
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obesity with increased MS susceptibility [11–15]. However, 
a causal relationship between smoking and MS risk remains 
underinvestigated.

In this study, we make use of the largest GWAS summary 
statistics for smoking to date [16] and apply a two-sample 
MR analysis to the most recent meta-analysis GWAS sum-
mary statistics for MS from the International Multiple Scle-
rosis Genetics Consortium (IMSGC) [3].

Methods

Genetic datasets

Genome-wide significant (p < 5 × 10−8) genetic variants 
associated with smoking initiation, a binary phenotype 
indicating whether an individual has ever smoked regularly, 
were obtained from Supplementary Table 4 of the GWAS 
and Sequencing Consortium of Alcohol and Nicotine use 
(GSCAN) study for smoking initiation [16], with the largest 
sample size to date involving 1,232,091 individuals. The 378 
single nucleotide polymorphisms (SNPs) explain 2.3% of 
the phenotypic variation in smoking initiation [16]. As sec-
ondary phenotypes, we included two measures reflecting a 
dose- and time-effect for smoking. A total of N = 55 genetic 
variants associated with smoking heaviness, measured by 
cigarettes per day in 337,334 individuals, were obtained 
from the same study, and explain ~ 1% of phenotypic vari-
ation [16]. For other variants than those reaching genome-
wide significance, full summary statistics for smoking phe-
notypes were downloaded (Supplementary Table 1), but 
are only available for up to 632,807 individuals, excluding 
23andMe participants. An IV reflecting lifetime smoking 
has been constructed in 462,690 individuals of European 
ancestry from the UK Biobank by integrating information on 
smoking status (current, former, never), age at initiation, age 
at cessation and number of cigarettes smoked per day. This 
IV is based on 126 independent, genome-wide significant 
SNPs and captures 0.36% of the variance [17].

Data from The Genetic Investigation of Anthropometric 
Traits (GIANT) Consortium meta-analysis for body mass 
index (BMI) in 681,275 individuals [18] (Supplementary 
Table 1) were used for investigating the causality between 
smoking phenotypes and BMI and for correcting the effect 
of smoking-associated SNPs on BMI and vice versa. All 
primary and secondary genome-wide significant SNPs 
(N = 941) explain 6% of variance in BMI in a cohort of 8852 
individuals [18]. We include the N = 656 primary associa-
tions listed in the study as IVs. Corresponding effects of 
the smoking- and BMI-associated SNPs on MS susceptibil-
ity were derived from the discovery cohorts of the latest 
IMSGC meta-analysis, including up to 41,505 participants 
(14,802 MS, 26,703 controls) [3]. For the reverse analysis 

of genetically predicted MS risk on smoking initiation, 
cigarettes per day and lifetime smoking, N = 138 primary 
SNP associations with MS were derived from Supplemen-
tary Table 7 of the latest IMSGC meta-analysis for multiple 
sclerosis risk [3].

Selection of instrumental variables

Clumping and data harmonization were implemented in 
R v3.6.1 using the TwoSampleMR package (v0.5.1) [19]. 
For each genetic variant, alleles were aligned and matched 
so that their effects correspond to an increase in the corre-
sponding exposure to which they are associated. The odds 
ratios (ORs) and p values of the summary statistics from the 
IMSGC were transformed into β coefficients and standard 
errors for subsequent analyses. SNPs with OR of exactly 
one were excluded. As the BMI phenotype in the GIANT 
meta-analysis was normalized, β coefficients correspond 
to standard deviations (SD) of BMI, with one SD equaling 
a mean of 4.70 BMI units (kg/m2) among cohorts in the 
GIANT consortium [18]. For smoking, the scale of β is on 
the unit of the SD of the phenotype, with a one SD increase 
in genetically predicted smoking initiation and heaviness 
corresponding to a 10% increased risk of smoking and three 
additional daily cigarettes, respectively [16]. Individuals 
who have never smoked and have no smoking exposure have 
a lifetime smoking score of zero, and a one SD increase is 
equivalent to an individual smoking 20 cigarettes a day for 
15 years and stopping 17 years ago or an individual smoking 
60 cigarettes a day for 13 years and stopping 22 years ago 
[17]. To prevent result bias by strongly correlated SNPs, 
SNPs were excluded from analyses if their measured link-
age disequilibrium (LD) is r2 > 0.05 in the European sam-
ples of 1000 Genomes. For SNPs in LD with r2 > 0.05, the 
SNP with the lowest p value is retained. Furthermore, to 
prevent strand ambiguity issues and as minor allele frequen-
cies were not available for all summary statistics, only non-
palindromic SNPs were retained. For exposure-associated 
variants not directly ascertained in the outcome datasets in 
the univariable analysis, we looked for proxy SNPs in high 
linkage disequilibrium (r2 > 0.9) using LDlinkR package in 
R (v3.6.1). Supplementary Table 2 contains an overview of 
the number of included and excluded SNPs.

In the univariable MR analysis for the effect of exposures 
on MS risk, a total of N = 297 SNPs, N = 38 SNPs, N = 111 
SNPs and N = 529 SNPs were included for smoking initia-
tion (Supplementary Table 3), cigarettes per day (Supple-
mentary Table 4), lifetime smoking (Supplementary Table 5) 
and BMI (Supplementary Table 6), respectively. In the mul-
tivariable MR analysis, N = 576 SNPs associated with either 
smoking initiation or BMI (Supplementary Table 7) were 
retained. To investigate the effect of BMI on smoking initia-
tion and the reverse, N = 530 SNPs (Supplementary Table 8) 
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and N = 266 SNPs (Supplementary Table 9) were included, 
respectively. Finally, to examine causality between BMI and 
cigarettes per day, N = 531 SNPs were used (Supplementary 
Table 10), and for the reverse analysis N = 29 SNPs (Sup-
plementary Table 11).

For the reverse analysis of genetically predicted MS risk 
on smoking initiation, cigarettes per day and lifetime smok-
ing, a total of N = 118 SNPs were included (Supplementary 
Table 12, 13 and 14, respectively).

Statistical analyses

MR analyses were implemented in R v3.6.1 using the Two-
SampleMR package (v0.5.1) [19].

Effects of IVs on outcomes were estimated using the tra-
ditional MR approach, that is a multiplicative random-effects 
inverse-variance weighted (IVW) analysis [19, 20]. Sensitiv-
ity tests more robust to potential pleiotropy but potentially 
less powered included MR Egger [21], weighted median 
regression [22] and the mode-based estimator (simple and 
weighted) [23]. We considered as MR results suggestive of 
causal effects those that were concordant in direction across 
multiple MR approaches and pass nominal significance in 
IVW MR.

The Cochran Q test and I2 statistic [24] were calculated 
to measure the degree of heterogeneity across the individ-
ual effect estimates derived from each genetic variant [25]. 
Horizontal pleiotropy was evaluated based on the intercept 
obtained from the MR Egger analysis being significantly 
different from zero [21, 26] and by visual inspection of the 
funnel plot, where asymmetry is indicative of horizontal 
pleiotropy [19].

BMI and smoking are genetically correlated traits [16]. 
Among the IVs for smoking initiation, 5% (15/297) are over-
lapping or highly correlated (r2 ≥ 0.8) with the IVs for BMI. 
Hence, we performed a multivariable MR (MVMR) to esti-
mate the independent effects of smoking initiation and BMI 
on MS risk. The IVW linear regression model with multipli-
cative random effects was used for multivariable MR.

Results

Smoking phenotypes not associated with MS risk

In an MR analysis, genetic predisposition to smoking ini-
tiation was not associated with MS risk using the random-
effects inverse variance weighted (IVW) method [OR: 1.06, 
95% confidence interval (CI) 0.92, 1.21, p = 0.42], and 
findings from the sensitivity tests were consistent (Fig. 1a). 
The scatter plot of the individual SNP estimates of smoking 
initiation and MS risk is shown in Supplementary Fig. 4a. 
The Cochran Q test and I2 statistic revealed moderate 

heterogeneity among the individual SNP effect estimates 
in the IVW analysis (Q = 443, p = 6.12 × 10−8; I2 = 33%). 
There was no evidence for directional pleiotropy from the 
MR Egger regression intercept [Egger intercept − 0.0008, 
95% CI (− 0.012, 0.010), p = 0.89] and no asymmetry in the 
funnel plot (Fig. 3a).

Genetically predicted smoking heaviness, expressed as 
cigarettes per day, was similarly not associated with MS 
risk in the main analysis [OR: 1.03, 95% CI (0.77, 1.40), 
p = 0.83] nor in sensitivity tests (Fig. 2a, Supplementary 
Fig. 4b). The individual SNP effect estimates showed mod-
erate heterogeneity (Q = 61, p = 0.007, I2 = 40%). MR-Egger 
regression analyses suggested that pleiotropy did not greatly 
influence the results of the MR analyses [Egger intercept 
− 0.0008, 95% CI (− 0.0143, 0.0126), p = 0.90], and neither 
did the funnel plot suggest directional pleiotropy (Fig. 3b).

Integrating different IVs into a measure reflecting life-
time smoking was not associated with MS risk in the main 
analysis [OR: 1.06, 95% CI (0.82, 1.38), p = 0.65] nor in 
sensitivity tests (Fig. 2b, Supplementary Fig. 4c). The indi-
vidual SNP effect estimates showed only limited heterogene-
ity (Q = 138, p = 0.04, I2 = 21%). There was no evidence for 
directional pleiotropy from the MR Egger regression inter-
cept [Egger intercept − 0.0042, 95% CI (− 0.0201, 0.0112), 
p = 0.60] (Fig. 3c).

MR provides the possibility to explore reverse causation, 
a concern in observational studies. In our data, genetically 
predicted MS risk was not associated with smoking initia-
tion [OR = 1.00, 95% CI (0.99, 1.01), p = 0.96], or lifetime 
smoking [β = 0.002, 95% CI (− 0.003, 0.007), p = 0.51], with 
a possible trend seen only for smoking heaviness [β = 0.016, 
95% CI (0.003, 0.028), p = 0.02].

Smoking phenotypes and BMI are correlated

As smoking and BMI are genetically correlated [16], we 
evaluated their relation in an MR approach. The IVW analy-
sis of BMI and smoking initiation was highly significant 
and appeared bidirectional. Each genetically determined SD 
increase in BMI was associated with an increased likeli-
hood of smoking initiation [OR: 1.21, 95% CI (1.17, 1.26), 
p = 8.64 × 10−21] (Supplementary Figs. 1a, 5a). Reversely, 
genetic predisposition to smoking was positively associated 
with BMI [β = 0.16, 95% CI (0.11, 0.21), p = 1.68 × 10−11] 
(Supplementary Figs. 1b, 5c). All sensitivity tests supported 
these findings (Supplementary Fig. 1), and there was no evi-
dence for directional pleiotropy [Egger intercept − 0.0002, 
95% CI (− 0.0020, 0.0016), p = 0.85 and Egger intercept 
− 0.0025, 95% CI (− 0.0061, 0.0011), p = 0.18] (Supple-
mentary Fig. 2a, c). The individual SNP effect estimates did 
show substantial to considerable heterogeneity (Q = 1953, 
p = 5.29 × 10−162; I2 = 73% and Q = 4143, p < 1.0 × 10−200; 
I2 = 94%).
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For smoking heaviness, MR effects were one-directional. 
Genetically predicted BMI was positively associated with 
the number of cigarettes per day [β = 0.35, 95% CI (0.31, 
0.40), p = 3.60 × 10−49], consistent across all sensitivity 
analyses (Supplementary Figs. 3a, 5b). Genetically predicted 
smoking heaviness, on the other hand, was not correlated 

with BMI [β = 0.04, 95% CI [− 0.04, 0.12), p = 0.31] (Sup-
plementary Figs. 3b, 5d). For the latter, there was, how-
ever, considerable heterogeneity (Q = 454, p = 1.88 × 10−78, 
I2 = 94%) and evidence for directional pleiotropy [Egger 
intercept 0.0065, 95% CI (0.0020, 0.0109), p = 0.0088] 
(Supplementary Fig. 2d), and sensitivity tests accounting for 

Fig. 1  Mendelian randomization 
(MR) estimates of smoking ini-
tiation and BMI with multiple 
sclerosis (MS) from the primary 
analysis (IVW) and sensitiv-
ity analyses Data are displayed 
as odds ratio (OR) and 95% 
confidence interval (CI) per 
SD increment in (a) genetically 
predicted smoking initiation (b) 
genetically predicted BMI (c) 
genetically predicted smoking 
initiation and BMI, respectively. 
IVW inverse-variance weighted 
method, MVMR multivariable 
Mendelian randomization. 
In the original GWASs, a SD 
increase in genetically predicted 
smoking initiation and BMI 
corresponds to a 10% increased 
risk of smoking and an increase 
of 4.7 kg/m2, respectively [16, 
18]

Fig. 2  Mendelian randomiza-
tion (MR) estimates of ciga-
rettes per day and the lifetime 
smoking index with multiple 
sclerosis (MS) from the primary 
analysis (IVW) and sensitiv-
ity analyses Data are displayed 
as odds ratio (OR) and 95% 
confidence interval (CI) per 
SD increment in (a) geneti-
cally predicted cigarettes per 
day (b) lifetime smoking index. 
IVW inverse-variance weighted 
method. In the original GWASs, 
a SD increase in genetically 
predicted cigarettes per day 
corresponds to three additional 
daily cigarettes [16]
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pleiotropy indicated even a possible inverse relation (Sup-
plementary Fig. 3b).

BMI associated with MS risk

Previously performed MR analyses have already demon-
strated a causal positive association between BMI and MS 
risk [11, 13]. In our univariable analysis employing 529 
BMI-associated SNPs as IVs to the largest MS genetics data-
set, each genetically determined SD increase in adult BMI 
was associated with a 31% increased risk for MS [OR: 1.31, 
95% CI (1.15, 1.49), p = 5.63 × 10−5] (Fig. 1b). The scatter 
plot of the individual SNP estimates of BMI and MS risk is 
shown in Supplementary Fig. 4d. The Cochran Q test and 
I2 statistic revealed moderate heterogeneity among the indi-
vidual SNP effect estimates in the IVW analysis (Q = 947, 
p = 3.02 × 10−26, I2 = 44%). There was no evidence of sig-
nificant unbalanced horizontal pleiotropy [Egger intercept 
− 0.0016, 95% CI (− 0.0075, 0.0042), p = 0.58], and neither 
did the funnel plot suggest directional pleiotropy (Fig. 3d), 
and all sensitivity tests provided similar estimates with over-
lapping confidence intervals (Fig. 1b).

Multivariable MR: BMI but not smoking affects MS 
risk

A multivariable MR analysis allows to simultaneously 
adjust for the genetically predicted effects of two correlated 
exposures, smoking initiation and BMI, using the weighted 
regression-based framework. This multivariable analysis 
provided estimates for MS risk that were consistent with 
and nearly identical to the univariable results (Fig. 1c). BMI 

[OR: 1.30, 95% CI (1.15, 1.48), p = 2.78 × 10−5] but not 
smoking initiation [OR: 1.08, 95% CI (0.89, 1.32), p = 0.69] 
conferred an increased risk of MS.

Discussion

In this MR study investigating the role of smoking in MS 
risk, we did not find evidence for causal effects of genetically 
predicted smoking initiation, smoking heaviness or lifetime 
smoking index on MS susceptibility.

For low serum vitamin D and increased BMI, MR analy-
ses agree with observational studies and support a causal 
association with increased MS susceptibility [11–15]. For 
smoking, in contrast, our findings do not confirm the obser-
vational literature. Observational studies have repeatedly 
found an increased risk for MS in smokers versus non-
smokers as described by subsequent meta-analyses [27–29]. 
They also observed that smoking correlates with MS risk in 
a dose-dependent manner, with both duration and intensity 
of smoking associated with an increased MS risk, and this 
effect is regardless of age at exposure [30]. No association 
was seen for conversion from clinically isolated syndrome 
(CIS) to MS [28]. The most recent meta-analysis finds little 
evidence for publication bias but reviews other limitations, 
which mostly do not reflect the quality of the studies but 
are inherent to the observational study design. Limitations 
listed are the retrospective case–control design that is prone 
to recall bias in a large majority of studies (89%), smok-
ing status based on self-reporting which tends to lead to 
under-reporting in most studies (94%), and a low response/
participation rate and/or a noticeably different response/

Fig. 3  Funnel plots for the effect 
of smoking phenotypes and 
BMI on risk of MS For each 
single-nucleotide polymorphism 
(SNP), the resulting Mendelian 
randomization (MR) estimate 
is plotted against the inverse 
of the standard error of the 
MR estimate. Symmetry noted 
in this plot provides evidence 
against the presence of direc-
tional horizontal pleiotropy. 
The vertical line represents the 
summary measure of the effect 
of (a) smoking initiation (b) 
cigarettes per day (c) lifetime 
smoking index (d) BMI on risk 
of multiple sclerosis (MS) on 
the log-odds ratio scale
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participation rate between cases and controls in up to 25% of 
studies [28]. Despite overall evidence in observational stud-
ies for a dose–response relationship between smoking and 
MS risk, our MR study could not confirm a causal relation 
between genetically predicted smoking status (ever versus 
never smoker) or smoking heaviness (cigarettes smoked per 
day) and risk for MS.

MR studies are based on their own assumptions, which 
need to be checked adequately. Pleiotropy, that is an effect 
of a genetic variant on the outcome that is independent of 
the exposure, is an important concern. We addressed this 
by quantifying the MR Egger intercept as the average effect 
of IVs, independent of the exposure, by inspecting funnel 
plots and by applying four sensitivity analyses that are more 
robust to pleiotropy than the IVW analysis that is standard 
in MR. For all analyses of exposures on MS risk, there is no 
evidence of pleiotropy and results are consistent across the 
main analysis and sensitivity tests. Co-incident geographi-
cal variation in genotypes and health traits may bias genetic 
studies, including MR [31]. The GWAS studies that we 
used as basis for IVs only included individuals of European 
ancestry, and residual stratification was further corrected at 
the meta-analytic level with study-specific genomic con-
trols. Moreover, latitude and ancestry were not associated 
with smoking in observational studies [29]. The use of the 
same study cohort to identify the genetic variants associ-
ated with an exposure and to apply them as IVs for associa-
tion with an outcome may bias the MR results towards the 
exposure-outcome association from observational studies. 
For the relationship between BMI and smoking, the inclu-
sion of UK Biobank results in a large overlap in individuals 
between the GSCAN and GIANT studies. Hence, the exact 
causal direction and effect size for BMI-smoking should be 
regarded with caution but we mainly wish to emphasize the 
correlation between the two traits as supported by different 
methods. The overlap in samples between exposures and MS 
is much less prominent, although it cannot be excluded or 
quantified precisely. Importantly, we observe a discrepancy 
with rather than a bias towards observational studies for the 
exposure of smoking.

A possible reason for the discrepancy between observa-
tional and MR studies could be weak instrument bias, where 
the strength of the known genetic IVs associated with the 
exposure is insufficient. For smoking initiation, however, IVs 
explain 2.3% of variance in the trait, and this is similar to the 
strength of 97 IVs (2.7%) for BMI in earlier, positive MR 
studies in MS [11, 13]. Also, in contrast to MS, other MR 
studies including smoking initiation as exposure variable 
were in line with observational studies for traits such as the 
risk for ischemic stroke [32], coronary artery disease [33] 
and type 2 diabetes [34], but also for neurological diseases 
such as amyotrophic lateral sclerosis [35] and autoimmune 
diseases such as rheumatoid arthritis [36]. Hence, although 

weak instrument bias cannot be excluded completely, other 
explanations for the discrepancy between observational and 
MR studies specifically in MS should be considered.

Two MS risk factors suggested by observational studies, 
that is smoking initiation/heaviness and BMI, are geneti-
cally correlated traits (r = 0.12–0.19) as demonstrated by 
LD-score regression [16]. Using the most recent IVs and 
summary statistics for BMI and smoking phenotypes, we 
replicate earlier evidence for a bidirectional relationship 
between BMI and smoking initiation [37], and demonstrate 
a unidirectional relationship for BMI on smoking heaviness. 
Both in a univariable MR and a multivariable MR, each SD 
increase in BMI, corresponding to roughly 5 kg/m2 units, 
conferred a 30% increase in MS risk. This effect and its 
size are in line with earlier MR studies starting from 97 
instead of the currently known 656 genetic variants as IVs 
[11, 13]. Our MR study indicates that smoking does not have 
a direct effect on MS risk nor explains part of the association 
between BMI and MS risk. This is in line with the absence 
of an overall genetic correlation between smoking and MS 
using LD-score regression [16]. The observational studies 
associating smoking with MS susceptibility show heteroge-
neity in adjusting for established risk factors and other soci-
odemographic factors [27–29]. The vast majority of studies 
(86%) accounted for age and/or gender but only 6% of stud-
ies controlled for potential confounding by BMI [28], which 
we have here demonstrated to be highly correlated with both 
smoking and MS risk. Any residual confounding by this and 
other factors should hence be excluded.

Although MR provides an elegant approach to the study 
of causal relationships for exposures, it has limitations 
in capturing specific aspects of such relationships which 
may assist in understanding the discrepancies between 
observational studies and MR. First, the risk of smoking 
on MS in observational studies seems time-dependent, 
as it is higher for current versus past smoking [38], and 
abates 5 years after smoking cessation [39]. MR, on the 
other hand, typically captures the genetic predisposition 
to an exposure during one’s life-time, such as ever hav-
ing smoked regularly. MR approaches that better capture 
time-varying exposures are now being developed [40]. The 
lifetime smoking score applied here is an example of such 
an approach. It captures well the known time- and dose-
varying causal association of smoking with lung cancer 
(OR > 4) and cardiovascular diseases, and is correlated 
with known smoking-induced demethylation at the AHRR 
locus [17, 33]. Importantly, all IVs for smoking initia-
tion, heaviness and lifetime smoking provide essentially 
identical results for MS with no evidence for an associa-
tion. Secondly, the strength of the BMI IVs may differ 
by smoking status, as a 20% increase in the effect of the 
BMI genetic score on the actually observed BMI was seen 
in current smokers compared to former or never smokers 
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[37]. Novel MR approaches such as factorial MR allow 
to model interactions between BMI and smoking pheno-
types or an effect modification of smoking on BMI [41]. 
These studies necessitate the availability of individual-
level genetic data, which is typically limited for large-scale 
studies.

Striking changes in the demographic pattern of multi-
ple sclerosis (MS), with increasing prevalence and inci-
dence over time, strongly indicate an influence of modifi-
able exposures on the disease [42]. Modifiable exposures 
lend themselves well to intervention, but it is important 
to pinpoint which of the many environmental, lifestyle, 
and sociodemographic changes that have occurred over 
the past decades such as higher smoking and obesity 
rates are responsible. MR is an elegant tool to leverage 
human genetics to inform prevention strategies in MS 
[43]. Despite observational studies repeatedly reporting 
an association between smoking and MS, our MR analyses 
on smoking phenotypes and MS risk could not confirm 
a causal relationship. The reasons for the discrepancy 
between observational studies and our MR study require 
further investigation, along the lines discussed. In addi-
tion, it remains to be determined whether interventions 
such as smoking cessation after disease onset, when the 
patient comes to the attention of the neurologist, do have 
an effect. Factors shaping the disease course after onset 
appear to be different from factors triggering disease [44, 
45], implying that dedicated observational and MR stud-
ies are required to investigate factors underlying disease 
evolution [43, 46].
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