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Abstract
Gliomas are hard to treat. Their prognosis has improved little over the past few decades. Fundamental therapeutic challenges 
such as treatment resistance, malignant progression, and tumour recurrence persist. New strategies are needed to advance the 
management and treatment of gliomas. Here, we focus on where those new strategies could emerge. We consider how recent 
advances in our understanding of the biology of adult gliomas are informing new approaches to their treatment.
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Introduction

Gliomas are the most frequent primary brain tumour in 
adults [1]. Unlike many other cancers, the prognosis for 
gliomas has improved little over recent decades [2]. The 
standard of care is maximal surgical resection with adjuvant 
chemotherapy and radiotherapy [3–7]. Disappointingly, the 
1- and 5-year relative survival rates for patients of all ages 
with glioblastoma are 41% and 7%, respectively [8]. The age 
at presentation combined with their poor prognosis means 
that people with gliomas suffer the greatest loss of “years of 
potential life” for any adult cancer [9].

Two features of gliomas mean that they are particularly 
hard to treat and make them prone to recurrence. First, the 
majority of gliomas are highly invasive [10]. Consequently, 
the glioma has no clear boundary, which makes it very hard 
for surgeons to remove the entire tumour. Even removing an 
entire cerebral hemisphere may not cure [11]. Second, a gli-
oma is not composed of a single clone of cells. Instead, each 
glioma contains multiple cell types at varying developmental 
stages and with different genetic and epigenetic signatures 
[12–14]. Hence, gliomas do not present a well-defined target 
for (neo)adjuvant chemoradiotherapy.

In this review, we focus on emerging strategies to man-
age and treat adult gliomas. The 2016 WHO classification 
of brain tumours has transformed brain tumour diagnosis by 
combining molecular and histological features of gliomas. 
Since then, there have been several excellent recent reviews 
on different types of gliomas [15–17], standard of care for 
gliomas with management guidelines [6, 7], and treatment 
biomarkers [16]. Here, we consider how recent advances in 
our understanding of the biology of gliomas are informing 
new and different clinical approaches to tackle treatment 
resistance, tumour recurrence, and malignant progression.

Genesis of gliomas

Advances in our understanding of gliomagenesis have led 
to new strategies for treating gliomas. Two influential ideas 
have been clonal evolution and the glioma stem cell hypoth-
esis, which is an example of the more general cancer stem 
cell hypothesis.

Clonal evolution is thought to be a feature of many can-
cers [18, 19]. Essentially, tumour cells have changes in their 
DNA, which enable them to replicate without regulation. 
The clones of tumour cells that are well adapted to their 
environment proliferate. The emergence of multiple clones 
of tumour cells and clonal selection can explain the hetero-
geneity of cell types in tumours, treatment resistance, and 
tumour recurrence.

The glioma stem cell hypothesis is a more recent idea. 
Glioma stem cells are a small, sub-population of the glioma 
cells, which are able to proliferate, self-renew, and propagate 
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the entire tumour when transplanted [20]. They have been 
isolated from human glioblastomas [20–22]. The signal-
ling pathways in glioma stem cells are modified to suppress 
apoptosis and enhance DNA repair, which fosters tumour 
growth [23]. The progeny of the glioma stem cells develop to 
varying extents, which generates the phenotypic variability 
of the glioma cells that form the bulk of glioblastomas [21]. 
It has been harder to show that glioma stem cells are present 
in less malignant adult gliomas. Evidence for their exist-
ence has come from single-cell RNA sequencing of lower 
grade gliomas, but it has not yet been shown that glioma 
cells with stem-like RNA signatures can generate an entire 
tumour when transplanted [24, 25].

Clonal variation and the cancer stem cell hypothesis were 
initially thought to be distinct explanations for tumour het-
erogeneity [26], but others have argued that they should be 
integrated [27, 28]. The combined hypothesis approach has 
been applied to gliomagenesis. A first step is that clonal 
evolution selects glioma cells that have some of the prop-
erties of stem cells. Taking this further, glioma stem cells 
have been proposed to be an end product of clonal variation 
[29]. The progeny of the glioma stem cells take different 
differentiation pathways, which contributes to glioma cell 
heterogeneity [25].

Clinical significance: gliomagenesis 
and therapies

Knowledge of the genetic mutations and the resulting tumour 
proteins implicated in gliomagenesis has opened avenues 
for the development of new precision medicine treatments, 
some of which are undergoing trials. For example, muta-
tions in the isocitrate dehydrogenase 1 (IDH1) gene have 
been identified as driver mutations in many gliomas [30, 31]. 
Small molecule inhibitors of the mutant IDH1 protein have 
been developed to target glioma cells [32].

Immunotherapies have taken advantage of our molecular 
understanding of gliomas too. Gliomas present fragments 
of tumour-specific proteins called neoantigens on their cell 
surface. Peptide vaccines have been developed to prime 
the immune system to attack cells presenting tumour neo-
antigens. Neoantigens derived from mutant IDH1 were an 
early target in preclinical models [33]. More recent peptide 
vaccines trialled in humans target multiple surface proteins 
specific to the patient’s glioma to boost the immune response 
[34, 35]. These vaccines have generated promising results 
in early studies, but have yet to be validated in large clinical 
trials. Similarly, in another immunotherapy, chimeric anti-
gen receptor (CAR) T cells have been modified to express a 
molecule, chlorotoxin, that binds specifically to glioblastoma 
cells and boosts the treatment response [36].

The glioma stem cell hypothesis suggests further 
approaches to treating gliomas. It implies that glioma growth 
would stop if all the glioma stem cells were killed [26]. The 
therapeutic problem is that glioma stem cells are resistant 
to chemotherapy [37] and radiotherapy [23]. Attention has 
turned to the microenvironment involving the glioma and 
surrounding brain. Gliomas hijack the specialised intercel-
lular signalling that occurs between healthy cells in brain 
spaces termed niches to facilitate glioma survival and 
growth. This is particularly true for the perivascular space 
termed the vascular niche. The perivascular space is a major 
route used by glioma stem cells to invade the brain [38]. 
Glioma stem cells are attracted to blood vessels by mol-
ecules, such as bradykinin, released by the endothelial cells 
[39], and induce angiogenesis to promote tumour growth 
[40, 41]. This suggests that inhibiting the signalling between 
endothelial cells and glioma stem cells in the vascular niche 
would be therapeutically advantageous. Great attention 
has been focused on vascular endothelial growth factor A 
(VEGF-A), which is released by glioma cells and promotes 
angiogenesis. However, monoclonal antibodies to VEGF-A, 
which inhibit angiogenesis, have failed to improve overall 
survival of patients with newly diagnosed glioblastoma [42, 
43] or progressive glioblastomas [44]. As a result, other sig-
nalling pathways in the tumour microenvironment are being 
investigated as therapeutic targets. For example, the EphA3 
tyrosine kinase receptor is highly expressed on glioblastoma 
cells with stem-like properties, but is present in low levels 
in healthy adult tissue [45]. A clinical trial (NCT03374943) 
of monoclonal antibodies against EphA3 in glioblastoma 
patients has started.

Glioma cellular heterogeneity

The ability to study the molecular profiles of large numbers 
of single cells enables heterogeneity within gliomas to be 
probed in detail. Primary glioblastomas (WHO grade IV) 
are highly aggressive tumours. Molecular profiling using 
genomic, epigenomic, and single-cell transcriptomic infor-
mation indicates that individual glioblastoma cells converge 
on one of four main cellular states: astrocyte-like, mesenchy-
mal-like, oligodendrocyte-like, and neural progenitor-like 
[46]. Each glioblastoma contains cells from all four states, 
with one state predominating. Notably, glioblastoma cells 
can change their molecular profiles and move between states 
[46]. Hence, killing all the glioblastoma cells in one cellular 
state will have limited benefit, because the remaining glio-
blastoma cells will repopulate the “lost” state when treat-
ment ceases. Instead, effective treatment requires that all 
states are targeted.
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Clinical significance: cellular heterogeneity

Glioma cell heterogeneity has led to a re-evaluation of 
treatment biomarkers. Temozolomide is an alkylating agent 
that is the backbone of chemotherapy treatment for glio-
mas. The effect of Temozolomide is reversed by the endog-
enous enzyme, O6-methylguanine DNA methyltransferase 
(MGMT). The methylation status of the MGMT gene pro-
moter controls MGMT protein expression and, therefore, 
the response of gliomas to alkylating chemotherapy agents 
[47]. The methylation status of the MGMT promoter is 
measured to determine whether Temozolomide should be 
given. However, the methylation status of single cells var-
ies within individual gliomas [48]. Importantly, alkylating 
chemotherapy agents can benefit gliomas with “borderline” 
methylation status [49]. These findings suggest that multiple 
biopsies from a glioma are required to fully characterise its 
methylation status and to guide treatment [50]. This proposal 
needs to be tested in a clinical trial to see whether patient 
outcomes are affected.

Glioma: brain interaction modifies 
the tumour microenvironment

Glioma cells change their cellular state and molecular pro-
file in response to the microenvironment within and around 
the tumour [46]. The glioma microenvironment is not just 
created by ions and molecules released by glioma cells. 
The brain contributes too by adapting to the glioma grow-
ing within it, for example, by activating neuronal plasticity 
mechanisms. Hence, the glioma environment is a function 
of both the glioma and the surrounding brain.

The neocortex around gliomas becomes hyperexcitable 
leading to seizures [51, 52]. It has been proposed that neu-
ronal activity increases the proliferation of high-grade glio-
mas [53, 54]. Experiments in mouse glioma models suggest 
that the mechanism is based on the release of the ectodo-
main of a postsynaptic cell-adhesion molecule, neuroligin-3 
(Nlgn3), which acts as a growth factor. Synaptic Nlgn3 is 
cleaved in response to synaptic activity. The extracellular 
domain is shed into the extracellular space and diffuses to 
the glioma cells where it activates glioma signalling path-
ways that result in cellular proliferation [53, 54]. Blocking the 
enzyme, ADAM10 that cleaves synaptic Nlgn3 is one thera-
peutic approach to disrupt this mechanism for glioma growth.

The idea of a direct interaction between a glioma and the 
surrounding brain has developed further with the finding that 
neurons form putative synapses on glioma cells. Ultrastruc-
tural analysis of human glioma cells transplanted into mouse 
brains revealed that the glioma cells form structures with 
neighbouring axons [55–57]. These structures are similar 
to the excitatory glutamatergic synapses formed between 

neurons. Glioma cells express a variety of synaptic transmit-
ter receptors [58–60], which enable paracrine signalling to 
glioma cells. The existence of functional neuron-to-glioma 
communication was tested by activating the peritumoural 
cortex. The glioma cells exhibited a rapid depolarisation 
with a prominent AMPA-receptor-mediated component, 
recapitulating excitatory neural transmission [55]. Inhibition 
of AMPA receptors in xenograft models increased overall 
survival of the mice by reducing migration and prolifera-
tion [55, 56]. In a proportion of glioma cells, the depolaris-
ing current spread through gap junctions between glioma 
cells. The depolarization wave is accompanied by a tran-
sient increase in calcium concentration within the glioma 
cells, which promotes glioma cell invasiveness [55]. These 
findings suggest that glioma cells integrate themselves into 
neural circuits. The consequence is that neuronal activity 
may promote glioma proliferation and invasion.

The evidence above considered how neural circuitry in 
the brain affects gliomas. Newly emerging evidence sug-
gests that the reverse happens; that is, gliomas modify neural 
circuitry. An early idea was that gliomas caused seizures, 
because glutamate release from glioma cells resulted in 
greater excitotoxic cell death of inhibitory interneurons 
than of excitatory pyramidal cells in the peritumoural cor-
tex [51, 52, 61]. A more nuanced idea has emerged from a 
mouse glioblastoma model that incorporates mutations in 
the RTK–RAS–PI3K pathway. Two mutations in the cata-
lytic subunit of the PI3K enzyme, PI3KCA, were identified 
that altered the expression of synapse-associated genes [62]. 
Mice with these two mutations developed seizures due to 
reduced inhibitory synapses and increased excitatory syn-
aptic synapses between neurons in peritumoural cortex. One 
of the mutations increased the expression of glypican, which 
promotes the formation of excitatory synapses [63]. When 
glypican production in the glioma cells is blocked, the mice 
had fewer seizures and survived longer [62].

Collectively, the recent evidence suggests that a subset of 
gliomas forms a positive feedback loop with the surround-
ing peritumoural cortex. The therapeutic challenge now is 
to break this feedback loop in a way that does not disrupt 
neural activity and impair cognition.

Clinical significance: glioma‑associated 
seizures

Epileptic seizures are the most common presenting symptom 
in patients with glioma [64, 65]. This is concerning, because 
the recent experimental evidence suggests that aberrant neu-
ronal activity in the surrounding peritumoural cortex facili-
tates glioma growth [53, 61]. Low-grade glioma patients that 
present with seizures have longer overall survival if their 
seizures cease [66]. Furthermore, effective seizure control 
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is the best predictor of quality of life in glioma patients [67]. 
Consequently, effective seizure control is critically important 
for people for gliomas. However, glioma-associated seizures 
frequently respond poorly to anticonvulsant medication [68]. 
Surgical removal of the epileptic focus during glioma sur-
gery controls seizures in some patients, but not all [69]. New 
anticonvulsants are needed.

Malignant progression

Some gliomas have an indolent course initially and then 
behave more aggressively. The terminology around this has 
been re-evaluated. Malignant transformation was used to 
describe low-grade (WHO grade I–II) gliomas developing 
features of high-grade (WHO grade III–IV) tumours. The 
practise has been undermined by molecular profiling of glio-
mas, which gives a more accurate prognosis [15]. Increas-
ingly, WHO grade II and grade III gliomas with the same 
molecular profile are grouped together, because they have a 
similar prognosis and are referred to as lower grade gliomas 
[15, 70, 71]. The change from indolent to more aggressive 
behaviour is better termed malignant progression.

We do not understand what causes malignant progres-
sion and where it occurs. Genetic changes associated with 
malignant progression have been identified [71, 72]. How-
ever, there has been less progress in understanding how 
those genetic changes underpin more aggressive glioma 
behaviour. In large part, this is due to the lack of suitable 

experimental models. True lower grade cell lines have been 
hard to obtain. Glioma stem cells have been isolated from 
adult higher grade gliomas, but are challenging to isolate 
from adult lower grade gliomas. As a result, standard in vitro 
or xenograft models have been challenging to set up [32, 73, 
74]. New model systems are needed.

Clinical significance: malignant progression

Malignant progression is a key clinical issue in the man-
agement of gliomas, particularly as lower grade gliomas 
commonly affect young adults. Malignant progression is 
frequently detected neuroradiologically by contrast enhance-
ment or increased perfusion on MRI scans. However, these 
findings are not always present (Fig. 1). The issue is that the 
neuroradiological measures focus on vascular changes and 
not on the glioma cells. Consequently, they detect malignant 
progression when it is established rather than at the earli-
est stages. New biomarkers to predict early stage malignant 
progression are needed.

Liquid biopsy

Tissue biopsies give a snapshot of a glioma. However, the 
molecular profile of glioma cells is not static. It evolves. 
Ideally, treatment would change to mirror progression of 
the glioma. A minimally invasive biomarker based on the 

Fig. 1  Predicting malignant transformation in low-grade gliomas. a 
Patient presented with a generalised seizure. Left panel, FLAIR MRI, 
lesion in the right superior frontal gyrus. Right panel, T1-weighted 
MRI, lesion showed no contrast enhancement. No increase in perfu-
sion (data not shown). Radiological diagnosis, low-grade glioma. 

b Neuropathological diagnosis: IDH2 mutant, 1p/19q co-deleted, 
anaplastic oligodendroglioma (WHO grade III). Top panel, H&E 
stain exhibiting mitotic figures and apoptotic nuclei, no necrosis, or 
microvascular proliferation. Bottom panel, Ki-67-positive nuclei stain 
brown. Proliferation rate ~ 10%. Scale bar; 100 µm
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molecular profile of glioma cells could provide valuable 
information about tumour evolution. Such a biomarker 
could also be used to diagnose chemoradiotherapy-induced 
changes in brain imaging termed pseudoprogression and to 
monitor response of the glioma to treatment.

There has been huge interest in studying body fluids, 
such as blood or cerebrospinal fluid, to detect evidence of 
cancer. This is referred to as liquid biopsy. Blood biomark-
ers include circulating tumour cells, extracellular vesicles, 
and cell-free tumour DNA (ctDNA) [75]. Low frequencies 
of both circulating tumour cells and extracellular vesicles 
have been identified in the blood of glioma patients. The 
detection of circulating tumour cells in the blood of glioma 
patients is highly variable due to the use of different isolation 
techniques [75]. Extracellular vesicles have been shown to 
be significantly higher in gliomas with true progression than 
in patients with pseudoprogression or stable disease [76].

Blood biomarkers have the huge advantage of ease of 
collection. However, the blood–brain barrier limits access of 
tumour tissue to the blood. Tests of blood-derived extracel-
lular vesicles and circulating tumour cells have suffered with 
low sensitivity [77]. As a result, they have not yet reached 
the clinic.

Liquid biopsy based on cerebrospinal fluid offers an 
approach that circumvents the blood–brain barrier. Analy-
sis of ctDNA in the CSF successfully identified glioma in 
approximately half of patients [78, 79]. The probability of 
identifying ctDNA in the CSF was more successful in higher 
grade gliomas, suggesting that the presence of ctDNA in 
CSF could be used to study tumour progression (Fig. 2) [79].

Liquid biomarkers offer a minimally invasive alternative 
to tissue biopsies. Currently, blood- and CSF-derived bio-
markers lack diagnostic specificity, due to the short half-
life, penetrance, and dilution of the biomarker [75]. These 

limitations may be overcome with interventions such as 
transcranial-focused ultrasound that enhances the release of 
the biomarkers into the blood or CSF [80].

Clinical significance: liquid biopsy 
to diagnose glioma mimics?

Liquid biopsy could be used to diagnose glioma mimics. A 
common diagnostic problem for neuro-oncology services is 
to differentiate glioblastoma from primary CNS lymphoma. 
Current practise is that tumour tissue is required from both 
glioblastoma and primary CNS lymphoma to diagnose the 
condition and to plan treatment [81]. Acquiring the tumour 
tissue is almost invariably done with a brain biopsy. Liquid 
biopsy may soon play a role here. The diagnosis of brain 
tumours is increasingly based on molecular features [82]. 
Glioblastoma and primary CNS lymphoma have different 
mutational landscapes [83, 84]. Therefore, it should be pos-
sible to differentiate the two conditions using liquid biopsy. 
This can be done with a vitreous biopsy as primary CNS 
lymphoma can involve the eyes (Fig. 3). Analysis of cell-free 
DNA in the cerebrospinal fluid has great potential, but has 
not yet reached the clinic.

Translating basic science findings 
into glioma management

There has  been considerable  progress  in  our 
understanding of the biology of gliomas. However, 
many outstanding questions remain (Box 1). First, the 
finding that glioma growth and invasion is facilitated 
by aberrant neuronal activity suggests that effective 

Fig. 2  Cell-free DNA analysis of CSF to follow tumour evolution. 
a Fluid attenuated inversion recovery MRI showing glioblastoma 
at the time of resection (grey diamond) and time of CSF collection 
(grey circle). b CSF showed a new platelet-derived growth factor 

receptor alpha (PDGFRA) mutation. c Copy-number variation plots. 
CSF showed PDGFRA gene amplification and loss of the epidermal 
growth factor receptor (EGFR) gene amplification found in the origi-
nal sample. Figure adapted from Miller et al. Nature 2019 [79]
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control of seizures is vital for glioma patients. Novel 
agents to diminish neuronal hyperexcitability will need 
careful titration to avoid inhibiting neuronal plasticity, as 
this could impair cognitive function. Enzyme-inducing 
anticonvulsants need to be avoided as they can increase 
metabolism of some chemotherapy agents. Blood and 
CSF liquid biopsy have great potential as methods to 
diagnose glioma mimics and tumour pseudoprogression, 
and to monitor tumour progression. However, new 
approaches are needed to increase the sensitivity of 
liquid biopsies. What joins all the outstanding questions 
is the overwhelming need to translate the new knowledge 
about gliomas into novel strategies for their diagnosis 
and management.
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Fig. 3  Diagnosis of primary CNS lymphoma with vitreous biopsy. a 
Patient presented with right-sided weakness with stuttering progres-
sion over several months. Left panel, T2-weighted MRI, increased 
signal in the territory of the left middle cerebral artery. Right panel, 
Diffusion-weighted imaging, increased signal suggesting restricted 
diffusion in left-hemisphere white matter. b Photographs of right 
fundus for patient in a: (i) before vitreous biopsy, retina obscured by 
cloudy vitreous; (ii) post-vitreous biopsy, retina visible, no sub-retinal 

deposits identified. c Detection of MYD88 L265P mutation by allele-
specific PCR. The test compares the patient’s DNA with a positive 
control that has MYD88 L265P at 0.625%. The test relies on a fail-
ure of extension of the primers when there is mismatch between the 
primer and the extracted DNA. Any difference between the patient’s 
sample and the positive control is amplified by repeated PCR cycles 
and is measured (ΔF). The presence of the MYD88 L265P mutation 
is reported when the difference crosses a threshold

Box 1: Outstanding questions

1. Does control of seizure activity limit glioma growth 
and invasion?

2. Is killing glioma stem cells sufficient to reduce gli-
oma growth or must all of the glioma cellular states 
be attacked?

3. Can new investigations predict which lower grade glio-
mas will progress into more malignant tumours?

4. Can the sensitivity and specificity of liquid biopsy be 
improved through interventions that increase release 
of glioma tissue fragments into the blood or CSF?

https://www.hra.nhs.uk/
http://creativecommons.org/licenses/by/4.0/
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