
Vol.:(0123456789)

International Journal of Legal Medicine 
https://doi.org/10.1007/s00414-024-03167-6

ORIGINAL ARTICLE

Radiological age assessment based on clavicle ossification in CT: 
enhanced accuracy through deep learning

Philipp Wesp1,2  · Balthasar Maria Schachtner1  · Katharina Jeblick1,3  · Johanna Topalis1  · Marvin Weber4 · 
Florian Fischer5 · Randolph Penning5 · Jens Ricke1 · Michael Ingrisch1,2  · Bastian Oliver Sabel1 

Received: 13 July 2023 / Accepted: 16 January 2024 
© The Author(s) 2024

Abstract
Background Radiological age assessment using reference studies is inherently limited in accuracy due to a finite number of 
assignable skeletal maturation stages. To overcome this limitation, we present a deep learning approach for continuous age 
assessment based on clavicle ossification in computed tomography (CT).
Methods Thoracic CT scans were retrospectively collected from the picture archiving and communication system. 
Individuals aged 15.0 to 30.0 years examined in routine clinical practice were included. All scans were automatically 
cropped around the medial clavicular epiphyseal cartilages. A deep learning model was trained to predict a person’s 
chronological age based on these scans. Performance was evaluated using mean absolute error (MAE). Model performance 
was compared to an optimistic human reader performance estimate for an established reference study method.
Results The deep learning model was trained on 4,400 scans of 1,935 patients (training set: mean age = 24.2 years ± 4.0, 
1132 female) and evaluated on 300 scans of 300 patients with a balanced age and sex distribution (test set: mean 
age = 22.5 years ± 4.4, 150 female). Model MAE was 1.65 years, and the highest absolute error was 6.40 years for 
females and 7.32 years for males. However, performance could be attributed to norm-variants or pathologic disorders. 
Human reader estimate MAE was 1.84 years and the highest absolute error was 3.40 years for females and 3.78 years 
for males.
Conclusions We present a deep learning approach for continuous age predictions using CT volumes highlighting the medial 
clavicular epiphyseal cartilage with performance comparable to the human reader estimate.

Keywords X-Ray computed tomography · Age determination by skeleton · Deep learning · Sternoclavicular joint · Forensic 
medicine

Background

Radiological age assessment is a method that examines cer-
tain physiological properties in radiographic or computed 
tomography (CT) images to estimate a person’s chronologi-
cal age [1, 2]. In this study, we explore a potential approach 
to enhance radiological age assessment based on clavicle 
bone ossification through deep learning.

Importance of age

In many countries, age governs the relationship between 
individuals and the state. Changes in age can lead to the 
acquisition of rights and obligations, such as emancipation, 
employment, criminal responsibility, sexual relation, 
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consent for marriage, or military service [3]. Thus, age is 
a critical component of a person’s identity, particularly for 
children. The United Nations Convention on the Rights of 
the Child (CRC, Article 1) [4] and the EU acquis (Directive 
2013/33/EU, Article 2(d)) [5] define a child as any person 
below the age of 18. States and authorities have specific 
age-related obligations under the CRC that include: 
registration of the child after birth, respecting the right 
of the child to preserve his or her identity, and speedily 
re-establish his or her identity in the case that some or all 
elements of the child’s identity have been deprived [3]. 
In cases where a person’s age is unknown or in serious 
doubt, a state may need to assess the age, e.g., to determine 
whether they are an adult or a child. The European Union 
Agency for Asylum (EUAA) recommends using the least 
intrusive age assessment method possible, gradually 
implementing more invasive methods if necessary, and 
selecting the most accurate method while documenting 
the margin of error [3]. Radiological age assessment is 
one such method and its accuracy may be improved using 
deep learning. Other non-binding recommendations from 
local expert panels exist, e.g., from the Working Group 
for Forensic Age Diagnostics of the German Society for 
Forensic Medicine (AGFAD).1

Reference study‑based radiological age assessment

Radiological age assessment is based on examinations of 
body parts that capture the skeletal development of the per-
son whose age is unknown, such as the carpal bones, the 
molars, or the clavicles [1]. In this study, we focus on the 
ossification status of the medial clavicular epiphyseal car-
tilages, as they are the last maturing bone structures in the 
human body, and enable the estimation of a wide range of 
ages, from teenagers to young adolescents and adults [6]. 
Typically, atlas methods [2] or reference study methods 
[7–9] are applied for age assessment, where the age of the 
examined person is assumed to be similar to the reference 
person or case group with similar skeletal maturation.

However, these methods have several limitations. First, 
the number of case groups is finite, e.g. n = 9 in [7–9], which 
limits the accuracy of age estimates. Second, age differences 
between members of the same case group can be large, 
e.g., up to 14.2 years [7], leading to high uncertainties. 
Third, expanding control groups is challenging because 
the assessment of the ossification stage by experts is time-
consuming. Finally, these methods are subject to intra- and 
inter-reader variability [10, 11].

Deep learning‑based radiological age assessment

A promising tool for more accurate radiological age assess-
ment via the clavicle bones is deep learning. It has been 
successfully applied in a variety of computer vision tasks 
in medical imaging [12] including radiological age assess-
ment through dental radiographs [13], knee MRIs [14], and 
more [15]. The large amounts of data required to train a deep 
network for age assessment [16]—medical images includ-
ing clavicles and sternum, along with the corresponding age 
information—are abundant in many hospitals and can be 
accessed retrospectively through their picture archiving and 
communication systems (PACS). Furthermore, data from 
institutions in different locations can be combined to form a 
dataset that is representative of the global population as well 
as possible. Finally, feed-forward deep learning models are 
deterministic as the same input image always results in the 
same output and age predictions do not suffer from intra- 
or inter-rater variability. This might be an advantage when 
considering which method should be deployed in potential 
legal scenarios.

Therefore, we (a) propose a deep learning approach to 
predict the chronological age based on CT image volumes 
of the medial clavicular epiphyseal cartilage and (b) com-
pare it to a favorable human reader performance estimate 
for the reference study method of Kellinghaus et al. [7, 8]. 
It is widely acknowledged in conventional practice that the 
classification of stage 3b in males and stage 3c in females 
following the Kellinghaus method suggests a minimum age 
of 18 years or above.

Methods

Retrospective data collection

This retrospective study was approved by the institutional 
review board (Ethics Committee, Medical Faculty, LMU 
Munich) and the requirement for written informed consent 
was waived. CT scans were collected retrospectively from 
the PACS of LMU Munich’s University Hospital. We spe-
cifically searched for chest CT scans of persons between the 
ages of 15.0 and 30.0 years, with documented sex, reim-
bursed by a recognized health-insurance provider (state-
mandated or private), acquired during the clinical routine 
for all purposes between 2017 to 2020. To ensure truthful 
age information we excluded scans issued and paid for by 
state agencies, which among other things excludes requests 
for forensic age assessments. Age was calculated as the num-
ber of days between the date of birth and the date of exami-
nation. The selected age range covers a broad spectrum 
of skeletal developmental stages of the medial clavicular 

1 https:// www. dgrm. de/ foren sische- alter sdiag nostik/ empfe hlung en 
(2023/11/28).

https://www.dgrm.de/forensische-altersdiagnostik/empfehlungen
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epiphyseal cartilages [17]. One scan per study was selected 
based on multiple criteria specified in the flow diagram in 
Fig. 1, which summarizes the entire data collection process.

Deep learning model

A schematic overview of the deep learning approach for 
radiological age assessment is shown in Fig. 2. We express 
age assessment as a regression analysis where the depend-
ent variable (age) is a scalar, which is estimated based on 
a feature (CT scan), by a deep learning model. The model 
in this study was an ensemble [18] of 20 deep neural net-
works (deep ensemble) that share the same architecture and 
training process. The mean of the predictions from the 20 
ensemble members was used as the ensemble prediction. 

The architecture was adapted from the popular ResNet-18 
[19], where we replaced the two-dimensional convolutions 
with three-dimensional convolutions to enable processing 
CT volume inputs, and added a second input to process sex 
information.

Prior to model training, the collected CT scans were pre-
processed (described in detail in the supplement) including 
an automated localization of the clavicles [20]. This locali-
zation also served as a filter for chest CT scans that do not 
include the clavicles or scans wrongly labelled as chest CT. 
Next, the dataset was split into a training, a validation, and a 
test set. Validation and test set were sampled to include not 
more than one CT scan of the same person and to have the 
same equal number of samples per age (bin size = 1 year) 
and sex. All remaining samples from persons not in the 

Fig. 1  CT scan inclusion 
diagram. Flow diagram of the 
selection process from study 
identification in the picture 
archiving and communication 
system (PACS) to the chest CT 
scans in the dataset

7791 Studies

22256 Images / Image volumes

7791 Chest CT scans

14465 excluded; reason: did not pass filter

6338 Automated clavicle detections

5000 Chest CT scans

Retrospective PACS search

study contains >= 1 chest CT(s)
chest CT(s) conducted between 2017 and 2022
age at aquisition between 15 and 30

3241 Patients

2535 Patients

1338 excluded; reason: create a more balanced
dataset and limit it to 5000 scans (approved by

ethics committee)

1453 excluded; reason: automated clavicles
localization yielded negative finding

1. is chest CT
2. has highest number of slices
3. has thinnest slice thickness
4. has smallest pixel spacing
5. random selection from

remaining scans

Select 1 scan per study by
applying these criteria:

7791 Studies

14465 excluded; reason: did not pass filter

1453 excluded; reason: automated clavicles
localization yielded negative finding



 International Journal of Legal Medicine

validation or test set were used as the training set. No person 
is part of more than one set. The deep ensemble was trained 
on the training set, and training progress was monitored 
using the validation set. Model performance was evaluated 
by measuring the absolute error of model predictions for 
the test set. Details regarding the dataset split, model, and 
training are provided in the supplement.

Abstention‑performance trade‑off

We applied the estimated predictive uncertainty of the deep 
ensemble to identify samples with a potentially high predic-
tion error. The standard deviation (SD) of the predictions 
made by the ensemble members for a given input served as 
the respective uncertainty estimate [21]. In an abstention-
performance trade-off, we abstain from predictions for the 
fraction of samples with the highest measured uncertain-
ties (abstention rate) to improve average performance for 
the remaining samples. For example, in a trade-off with an 
abstention rate of 20%, we rank all predictions by predic-
tive uncertainty and analyze only the top 80% of samples 
with the lowest uncertainty. This allows the machine learn-
ing model to say “I don’t know” [22] in cases where it is 
unsure, instead of forcing an answer at all costs.

Optimistic human reader performance estimate

To classify the performance of our deep learning 
model, we calculated an optimistic human reader 
performance estimate for the radiological age assessment 

of Kellinghaus et al. [7, 8]. This method is based on 9 
clavicle ossification stages, with three major stages (1, 4, 
and 5) and 6 substages (2a—2c and 3a—3c). They range 
from no ossification of the ossification center (stage 1) 
to complete fusion of the epiphyseal cartilage (stage 5). 
An individual’s age is estimated by first determining the 
ossification stage in a radiological examination [7, 8]. 
Next, the age is derived from the age distribution of a 
case group of known age and with the same ossification 
stage and sex.

The human reader estimate assumes a best-case 
scenario in which (a) the descriptive ossification stage 
statistics described in [7, 8] are derived from a cohort that 
is representative of all individuals, in particular, our test 
set, (b) age in each stage follows a normal distribution and 
(c) trained reviewers always assess the correct ossification 
stage. Under these conditions the HRE provides the lower 
limit for the absolute error that can be achieved with the 
reference study method when applied to a person with a 
certain true age x (Fig. 3).

For a given age x we first calculated the absolute differ-
ence to the mean age M of each ossification stage s:

For example, for a 21.00  year old male, these dif-
ferences are 7.72 years for stage 1 (M = 13.28 years), 
3.60  years for stage 2a (M = 17.40  years), 2.80  years 
for stage 2b (M = 18.20 years), 2.40 years for stage 2c 
(M = 18.60 years), 2.00 years for stage 3a (M = 19.00 years), 
0.10  years for stage 3b (M = 21.10  years), 1.90  years 
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Fig. 2  Deep learning-based radiological age assessment. Schematic 
visualization of the proposed approach for deep learning-based radio-
logical age assessment. First, the CT scan is cropped around the auto-
matically localized structures of interest (SOIs), which are the medial 
clavicular epiphyseal cartilages. Second, the scan undergoes several 
preprocessing steps which include resampling, intensity rescaling, 

and resizing. Finally, the adapted three-dimensional ResNet-18 pre-
dicts chronological age based on the preprocessed scan. Additionally, 
sex information is incorporated into the approach by fusing it with 
the image embedding before the last fully connected layer. While the 
figure only depicts a single network, the deep learning approach uses 
a deep ensemble consisting of 20 uniquely trained networks
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for stage 3c  (M = 22.90  years), 8.63  years for 
stage 4 (M = 29.63  years), 10.77  years for stage 5 
(M = 31.77 years).

Next, we calculated the probability density ps(x) (Fig. 3) 
for a person with the true chronological age x to be in ossi-
fication stage s based on normal distributions calculated 
from the provided mean and SD values. The probabilities 
were normalized such that

It is important to note, that two persons of the same 
chronological age can be in two different ossification 
stages. In the example of a 21.00 year old male, these 
probabilities are p

1
= 2.45 × 10

−5 , p
2a = 2.10 × 10

−2 , 
p
2b = 2.86 × 10

−2 , p
2c = 1.32 × 10

−1 , p
3a = 1.40 × 10

−1 , 
p
3b = 4.01 × 10

−1 , p
3c = 2.55 × 10

−1 , p
4
= 2.24 × 10

−2 , 
and p

5
= 1.29 × 10

−4.
The probability densities ps(x) were multiplied by the 

absolute difference to the mean age.

The sum of these products for all ossification stages 
yielded the absolute error of the reference study method 
for a person with the true age x:

In the example of the 21.00 year old male, the AE is 
1.64 years. The MAE of the reference study method for all 
individuals in the test set was then given by:

∑

s=1

p
s
(x) = 1.

ps(x) ⋅ |x −M(s)|

AE(x) =
∑

s=1

|M(s) − x|ps(x)

Classical expert reader age assessment

A senior radiologist and expert in the field conducted a 
manual reading of a small subset of the test set, comprising 
50 randomly sampled test set scans. The reading followed 
the Kellinghaus method [7, 8] and assessed the ossification 
stages 1, 2a, 2b, 2c, 3a, 3b, 3c, 4, and 5. The mean age value 
of each stage of the respective sex was used as age prediction 
for the manual reading.

Results

Dataset

A retrospective search in our hospital’s PACS identified 
7,791 studies conducted between 2017 and 2020 on 3,241 
patients that involved at least one chest CT scan with a 
recorded age at acquisition between 15 and 30 years, 
documented sex, and recognized health insurance 
provider (state-mandated or private). The 7,791 studies 
included 22,256 images or image volumes. Some studies 
included more than one chest CT scan that would have 
been suitable for analysis. After scan selection (Fig. 1), 
the final dataset consisted of 5,000 chest CT scans from 
2,535 patients (mean age = 24.2 ± 4.0 years), with 44% 
(1,103/2,535) females. The training set consisted of 

MAE =
1

||XTest
||

∑
x∈XTest

AE(x).

Fig. 3  Optimistic human reader performance estimate. The left and 
center panels display the probability density of a person being in a 
certain ossification stage, based on normal distributions described 
in [7, 8], for (a) females and (b) males between the ages of 10 and 

35 years. The right panel (c) shows the best-case mean absolute error 
estimate of predicted ages for true ages between 10 and 35  years 
when applying the radiological reference study method for age 
assessment of Kellinghaus et al. [7, 8]
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4,400 scans from 1,935 patients, with 41% (803/1,935) 
female. The validation and test set were independent 
and both included 300 scans from 300 patients (both: 
mean age = 22.5 ± 4.4  years), 10 scans per age (bin 
size = 1 year), and sex, with 50% (150/300) being female. 
All datasets are summarized in Table 1 and their age 
distribution is shown in supplementary Figure S3.

Deep learning‑based radiological age assessment

The deep ensemble model (Fig. 2) was trained using the 
training data and training was monitored using the valida-
tion data. The model's performance was evaluated on the test 
data. The results showed a mean absolute error (MAE) of 
1.65 years (standard deviation (SD) = 0.53) for all patients, 
1.69 years (SD = 0.53) for female patients, and 1.62 years 
(SD = 0.54) for male patients. The best prediction for a 
female individual had an absolute error of 0.003 years (true 
age = 18.604 years), while the best prediction for a male had 
an absolute error of 0.005 years (true age = 25.142 years). 
The corresponding input CT scans are displayed in Fig. 4 
and show no medical abnormalities. The worst predic-
tion for a female had an absolute error of 6.40 years (true 
age = 15.29 years). The corresponding CT showed a fish 
mouth shape variant with concavely configured clavicle 
ends in the left clavicle (Fig. 4). Shape variants near the 
sternal ends of the clavicle occur frequently and severely 
limit assessability [23, 24]. The worst prediction for a male 
had an absolute error of 7.32 years (true age = 19.20 years). 
A CT examination revealed that the individual had osteolysis 

Table 1  Documentation of the number of patients and CT scans in 
the total dataset, as well as in the training, validation, and test set

Set Total Training

Patients f m f m
1103 (44%) 1432 (56%) 803 (41%) 1132 (59%)
2535 1935

CT scans 5000 4400
Set Validation Test
Patients f m f m

150 (50%) 150 (50%) 150 (50%) 150 (50%)
300 300

CT scans 300 300

Fig. 4  Test set input examples. Selected axial slices of the preproc-
essed CT scans of (a) the best female, (b) best male, (c) worst female, 
and (d) worst male deep learning prediction for age. The worst pre-

dictions show (c) a “fish mouth configuration of the left clavicle” and 
a (d) osteolytic lesion of the right clavicle
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in the right clavicle, presumably as a manifestation of an 
underlying malignant disease (Fig. 4). The distribution of 
absolute errors by age (bin width = 2.5 years) is shown sepa-
rately for male and female patients in Fig. 5. The MAE, 

maximum absolute error (max error), and the 90th percentile 
absolute error (p90 error) for each age (bin width = 1 year) 
are reported in Table 2 for female individuals and Table 3 
for male individuals.

Table 2  Radiological age 
assessment results for female 
persons in the test set using 
deep learning (DL) and 
optimistic human reader 
performance estimate (HRE). 
The table displays the mean 
absolute error (MAE), 
maximum absolute error (max 
error), and 90th percentile 
absolute error (p90 error) 
in years. The number of 
individuals in each age group 
was n = 10

Results for female subjects

Age Deep learning Human reader estimate

MAE Max err p90 err MAE Max err p90 err

15.0- < 16.0 2.85 6.40 4.82 1.41 1.55 1.51
16.0- < 17.0 1.68 2.90 2.78 1.02 1.15 1.14
17.0- < 18.0 1.16 3.84 1.80 0.90 1.23 1.13
18.0- < 19.0 0.94 1.88 1.76 1.57 1.66 1.66
19.0- < 20.0 1.70 5.44 2.55 1.45 1.55 1.55
20.0- < 21.0 1.61 2.48 2.44 1.33 1.38 1.38
21.0- < 22.0 1.18 3.56 2.42 1.34 1.39 1.39
22.0- < 23.0 2.01 3.52 3.14 1.49 1.73 1.70
23.0- < 24.0 1.52 3.30 2.92 2.24 2.56 2.52
24.0- < 25.0 1.72 2.61 2.43 3.02 3.26 3.25
25.0- < 26.0 1.24 2.64 2.36 3.34 3.40 3.39
26.0- < 27.0 1.15 2.03 1.94 2.88 3.20 3.06
27.0- < 28.0 1.45 3.05 2.98 1.85 2.35 2.06
28.0- < 29.0 2.55 5.45 4.21 1.37 1.39 1.38
29.0- < 30.0 2.53 4.24 3.78 1.34 1.37 1.37

Fig. 5  Radiological age assessment results. Absolute prediction error 
of the (green) deep learning approach and the (yellow) optimistic 
human reader performance estimate for radiological age assess-
ment of (left panel) females and (right panel) males between 15 and 

30 years. The boxes extend from the lower to the upper quartile age 
values of each bin, with a line at the median. The whiskers extend 
from the boxes to 1.5 × interquartile range (IQR) (Q3—Q1) in each 
direction. Flier points are age values past the end of the whiskers
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Optimistic human reader radiological age 
assessment

The human reader estimate for the radiological age assess-
ment method of Kellinghaus et  al. [7, 8] was applied 
to the test set. The results showed a MAE of 1.84 years 
(SD = 0.84 years) overall, 1.77 years (SD = 0.74 years) for 
female individuals, and 1.91 years (SD = 0.92 years) for 
male individuals. The distribution of absolute errors by age 
(bin width = 2.5 years) is shown separately for male and 
female individuals in Fig. 5. The MAE, max error, and p90 
error for each age (bin width = 1 year) are reported in Table 2 
for female patients and Table 3 for male patients.

Classical expert reader age assessment

The manual age assessment of 50 randomly sampled test 
set scans by an expert in the field following the method 
of Kellinghaus et al. [7, 8] yielded a MAE of 1.97 years 
(SD = 1.48 years). For comparison, the deep learning model 
achieved a MAE of 1.44 years (SD = 0.95 years) on the same 
subset.

Abstention‑performance trade‑off

In a separate analysis, we applied an abstention-performance 
trade-off to the deep learning model predictions, i.e. we did 
not take results from samples with the highest predictive 
uncertainties into account. MAE, max error, and p90 error 
for abstention rates ranging from 0% (all samples evaluated, 
no abstention) to 100% (no samples evaluated) are shown in 

Table 3  Radiological age 
assessment results for male 
persons in the test set using 
deep learning (DL) and 
optimistic human reader 
performance estimate (HRE). 
The table displays the mean 
absolute error (MAE), 
maximum absolute error (max 
error), and 90th percentile 
absolute error (p90 error) 
in years. The number of 
individuals in each age group 
was n = 10

Results for male subjects

Age Deep learning Human reader estimate

MAE Max err p90 err MAE Max err p90 err

15.0- < 16.0 1.29 2.35 1.85 2.18 2.27 2.27
16.0- < 17.0 1.74 5.43 3.65 1.7 2.06 2.04
17.0- < 18.0 1.1 5.19 2.08 0.9 1.21 0.99
18.0- < 19.0 1.26 5.11 2.53 0.7 0.77 0.75
19.0- < 20.0 2.18 7.32 4.32 1.12 1.42 1.36
20.0- < 21.0 1.44 3.04 2.42 1.6 1.65 1.65
21.0- < 22.0 1.86 3.35 3.34 1.42 1.47 1.45
22.0- < 23.0 1.72 5.32 3.77 1.25 1.32 1.31
23.0- < 24.0 1.34 3.92 2.76 1.66 2.14 1.99
24.0- < 25.0 1.48 2.94 2.82 2.69 3.1 3.01
25.0- < 26.0 0.96 2.26 1.91 3.54 3.76 3.7
26.0- < 27.0 1.11 2.43 1.91 3.68 3.78 3.78
27.0- < 28.0 1.57 3.37 2.57 2.97 3.33 3.32
28.0- < 29.0 2.57 4.75 3.97 2.01 2.39 2.28
29.0- < 30.0 2.67 5.36 4.48 1.19 1.51 1.24

Fig. 6  Abstention-performance trade-off. The abstention-performance 
trade-off for deep learning-based radiological age assessment, where 
we abstain from analysis for predictions with the highest predictive 
uncertainties. Optimistic human reader performance estimate (HRE) 
results are included for reference. Increasing abstention rates lead to 
an improved deep learning mean absolute error (MAE), maximum 
absolute error (max error), and 90th percentile absolute error (p90 
error). For abstention rates > 14.7% the p90 error of the deep learning 
model is below 3.22 years and better compared to the human reader 
estimate (p90 error = 3.29  years). For abstention rates > 82.9% the 
max error of the deep learning model is below 3.49 years and better 
compared to the human reader estimate (max error = 3.78 years)
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Fig. 6. All metrics decreased for increasing abstention rates, 
i.e. the greater the fraction of the most uncertain predictions 
that were not considered for analysis, the better the remain-
ing predictions on average. For abstention rates > 14.7% the 
p90 error of the deep learning model was below 3.22 years 
and outperformed the human reader estimate which had a 
p90 error of 3.29 years. For abstention rates > 82.9% the max 
error of the deep learning model was below 3.49 years and 
thus better compared to the human reader estimate which 
had a max error of 3.78 years. Table 4 reports the deep learn-
ing model’s and human reader estimate’s MAE, max error, 
and p90 error separately for female and male individuals, 
and for abstention rates of 20% and 50%.

Discussion

Radiological age assessment methods based on reference 
studies analyzing the ossification of the sterno-clavicular 
joint are inherently limited in accuracy due to their design. 
The clavicles specifically enable age assessment for older 
minors (15–18 years), adolescents (18–21 years), and young 
adults (21–30 years). In an optimistic human reader per-
formance estimate, we calculated that the well-established 
method of Kellinghaus et al. [7–9] cannot predict chrono-
logical age more accurately than 1.84 years on average and 
no better than 0.66 years at best for individuals whose true 
age is between 15.0 and 30.0 years.

Deep learning model

In an effort to overcome this inherent limitation, we devel-
oped a deep learning approach for radiological age assess-
ment based on clavicle ossification (Fig. 2). The deep learn-
ing model outperformed the human reader estimate of the 
Kellinghaus et al. method on average and achieved a MAE 

of 1.65 years on a balanced test dataset containing 300 chest 
CT volumes that have been cropped around the sterno-cla-
vicular joints.

While the superior average performance highlights the 
potential of deep learning, ensuring the algorithm’s safety 
for all individuals is crucial. Consequently, the model’s high-
est error should be low and high errors should be infrequent 
during testing. Deep learning returned absolute errors up to 
7.32 years and fell short of the human reader estimate which 
only had absolute errors up to 3.78 years (Table 4). However, 
the samples that returned the worst deep learning predictions 
showed norm-variants or pathologic disorders, which would 
be exclusion criteria for radiological age assessment with 
reference study methods [23, 24].

Additionally, rare high error predictions can be avoided 
for deep learning with an abstention-performance trade-
off (Fig. 6): we leveraged predictive uncertainty to iden-
tify potential high error predictions, excluded them from 
analysis, and improved performance for the remaining 
predictions. For abstention rates > 14.7% the deep learning 
model surpassed the human reader estimate’s p90 error of 
3.29 years, indicating the potential for reducing high errors 
during application.

Another benefit of automated deep learning age assess-
ment is the significantly reduced analysis time for scans. 
This advantage may valuable in post-mortem CT examina-
tions for identification purposes, e.g. following mass casu-
alty incidents.

Positioning within the literature

To the best of our knowledge, no deep learning-based age 
assessment using chest CT volumes of the clavicles has been 
reported yet. However, several pioneering studies leverage 
other imaging modalities to predict age based on differ-
ent skeleton areas. Auf der Mauer et al. [14] analyzed 185 

Table 4  Summary of radiological age assessment results for the test 
set using deep learning (DL) and optimistic human reader perfor-
mance estimate (HRE). The table displays the mean absolute error 
(MAE), absolute error standard deviation (SD), maximum absolute 
error (max error), and 90th percentile absolute error (p90 error) for 

female and male persons. Additionally, the table shows the deep 
learning results with an abstention-performance trade-off for absten-
tion rates of 20% and 50%, where predictions with the highest predic-
tive uncertainty (20 or 50% of predictions) are not taken into account 
for analysis

MAE (SD) max error p90 error

f m f m f m

HRE 1.84 (0.84) 3.40 3.78 3.29
1.77 (0.74) 1.91 (0.92) 3.08 3.42

DL 1.65 (1.27) 6.40 7.32 3.38
1.69 (1.18) 1.62 (1.34) 3.10 3.45

DL (20% AR) 1.57 (1.14) 5.44 5.32 3.12
1.61 (1.09) 1.52 (1.18) 3.06 3.36

DL (50% AR) 1.35 (1.00) 4.24 5.32 2.67
1.44 (0.99) 1.26 (1.00) 2.91 2.54
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coronal and 404 sagittal 3D knee MRI volumes of Caucasian 
male subjects between the age of 13.0 and 21.8 years and 
middle to high socio-economic status. Using a combination 
of a deep learning model and a classical decision tree-based 
machine learning algorithm, they could improve the MAE 
from 1.63 (SD = 0.99) years achieved by a naive baseline 
model, which always predicts the mean age of the training 
set, to 0.69 (SD = 0.49) years. Vila-Blanco et al. [13] studied 
2,289 2D dental panoramic radiograph images of Spanish 
Caucasian subjects in the age range of 4.5 to 89.2 years. 
Their deep learning model achieved an MAE of ~ 2.5 years 
for the subgroup of 798 subjects between the ages of 15.0 
and 30.0 years. In the 2017 RSNA Pediatric Bone Age 
Machine Learning Challenge [25], participants trained deep 
learning models to predict expert-assigned bone age.

Limitations

This study has limitations. First, the complex relationship 
between skeletal development and chronological age 
poses an insurmountable natural accuracy barrier [26] 
for age assessment and depends on a variety of factors 
ranging from genetic predisposition to socio-economic 
status [27]. Second, the data used to train, validate, and 
test the deep learning model was collected retrospectively 
and acquired during the clinical routine for all purposes. 
Therefore, it was inhomogeneous, acquired with different 
scanners using different protocols, and includes samples 
that would have been ruled out for radiological age 
estimation by experts based on the health condition of 
the individual. Third, all CT scans in our dataset were 
acquired at the same hospital, which likely introduced a 
bias that prevents the data from being representative of the 
global population. Fourth, the training dataset included 
multiple CT scans per individual (4400 CT scans vs. 1935 
individuals), while only one unique scan per individual 
was used in the validation and test dataset (300 CT scans 
and 300 individuals, respectively). Additionally, the 
dataset included only CT scans for which the automated 
localization of the medial clavicular epiphyseal cartilages 
returned a positive detection. Finally, the human reader 
estimate is based on the statistics reported by Kellinghaus 
et al. [7, 8], but other studies applying the same method 
exist, e.g. from Wittschieber et al. [9].

Ethics disclaimer

We do not endorse the actual or exploratory application of 
the approach presented in this study for radiological age 
assessment. Instead, we suggest further research into deep 
learning approaches for radiological age assessment under 
controlled settings, following the promising results in this 

and similar studies. Specifically, we recommend transfer-
ring the presented approach from CT to magnetic reso-
nance imagining (MRI) data to avoid exposing individuals 
to potentially harmful ionizing radiation. The MRI dataset 
should be extensive and inclusive to ensure its representation 
of all individuals. The research should also focus on reduc-
ing deep learning prediction variance and extreme errors.

Conclusion

In summary, our study demonstrates a deep learning 
approach for radiological age assessment using CT vol-
umes that highlight the medial clavicular epiphyseal car-
tilages. Deep learning surpassed the human reader perfor-
mance estimate in terms of mean accuracy (MAE = 1.65 
vs. 1.84 years). Errors could partially be attributed to 
physiological abnormalities. Also, high errors may be 
avoided by abstaining from predictions with high uncer-
tainty. Looking ahead, deep learning offers an accurate, 
objective, and scalable solution that eliminates intra- and 
inter-reader variability and could be further improved with 
larger and standardized datasets.
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