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Abstract
The possibility of using epigenetics in forensic investigation has gradually risen over the last few years. Epigenetic changes 
with their dynamic nature can either be inherited or accumulated throughout a lifetime and be reversible, prompting investiga-
tion of their use across various fields. In forensic sciences, multiple applications have been proposed, such as the discrimina-
tion of monozygotic twins, identifying the source of a biological trace left at a crime scene, age prediction, determination 
of body fluids and tissues, human behavior association, wound healing progression, and determination of the post-mortem 
interval (PMI). Despite all these applications, not all the studies considered the impact of PMI and post-sampling effects on 
the epigenetic modifications and the tissue-specificity of the epigenetic marks.
This review aims to highlight the substantial forensic significance that epigenetics could support in various forensic investi-
gations. First, basic concepts in epigenetics, describing the main epigenetic modifications and their functions, in particular, 
DNA methylation, histone modifications, and non-coding RNA, with a particular focus on forensic applications, were covered. 
For each epigenetic marker, post-mortem stability and tissue-specificity, factors that should be carefully considered in the 
study of epigenetic biomarkers in the forensic context, have been discussed. The advantages and limitations of using post-
mortem tissues have been also addressed, proposing directions for these innovative strategies to analyze forensic specimens.

Keywords Forensic epigenetics · miRNA · DNA methylation · Post-mortem stability · Histone modifications · Tissue-
specificity

Introduction

Genetic analysis has been widely employed in the last dec-
ades on a variety of biological tissues to uncover individuals’ 
DNA profiles and thus to answer questions of interest to a 
court of law. However, in the last years, attention has grown 
to a new area of genetics called epigenetics. Epigenetics is 
the study of molecular processes that influence variable gene 

expression patterns on the basis of a DNA sequence that 
is always constant and includes DNA methylation, histone 
modification, chromatin remodeling, and non-coding RNA.

One of the most intriguing aspects is that the environ-
ment can influence the epigenetic signatures. Environmen-
tal exposures and our behaviors, including stress, lifestyle, 
drugs, and diet, constantly communicate signals to our cells 
that often shape epigenetic modifications to adapt to a spe-
cific situation, through changes in gene expression, without 
affecting DNA sequence. When the original process that 
induces the modification is over, the modifications might still 
accumulate throughout a lifetime and even be passed from 
parents to offspring, a phenomenon referred to as epigenetic 
inheritance. In fact, increasing evidence suggests that epige-
netic information can not only be mitotically inherited but 
also meiotically transmitted in several organisms, including 
humans. However, evidence of transgenerational inheritance 
in humans via germline in the absence of any direct exposure 
to the driving external stimulus remains controversial [1]. 
Alternatively, epigenetic marks can be transient, and, unlike 
genetic variants, they can be reversible [2]. This has been 
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particularly attractive in cancer research in the past years 
because the enzymes adding or removing the epigenetic tags 
have become targets for new drugs’ development to try to 
restore the original setting of the genes through epigenetic 
editing [3]. The evidence of epigenetic changes influencing 
factors, such as the environment, substance use disorders, 
and past life experiences [4], which in turn can affect the 
behavior of individuals, might be of great interest in the 
forensic field, given their potential impact on the judicial 
evaluation of the role of a criminal or a crime victim. The 
reversibility of epigenetic modifications, as well as their 
hereditary transmission, opens further areas of involvement 
for forensic medicine, which is destined to become increas-
ingly interested in these issues. It also presents a wide field 
of research for forensic psychiatry in criminal management.

Among the most studied environmental exposures, it was 
largely demonstrated that compulsive drug use leading to 
addicted states implies altered plasticity and physiology of 
the brain, which can be partly driven by epigenetic phe-
nomena. This affects the acute response to drugs and the 
development of addiction [5]. For example, regulation of 
histone marks and DNA methylation by cocaine, cannabis, 
methamphetamine, or morphine has been correlated with 
changes in gene expression in addiction models and humans 
[5–7]. Chronic stress was also demonstrated to cause long-
lasting epigenetic changes, triggering mental or psychiatric 
disorders [8]. Adverse experiences, such as physical injury, 
natural disaster, bullying, and childhood maltreatment, 
involve long-term epigenetic modifications and highlight the 
complex crosstalk between the environment and our genome 
across development [9–11]. These issues always involve 
forensic medicine and forensic sciences, so, understandably, 
the future holds great research opportunities in this field.

In light of the environmental effect, forensic epigenet-
ics, applying epigenetics techniques, might help to address 
a wide range of other questions of interest to a court of law, 
obtaining information from a crime scene stain and address-
ing challenges to the evidence that can be made in the court 
[12]. Epigenetic analyses have already been proposed for 
some forensic applications: differential DNA methylation 
among tissues and individuals, for example, has been used 
to determine the tissue type of a human biological trace, 
for the age estimation of an unknown trace donor, and to 
differentiate between monozygotic twins [13]. Non-coding 
RNAs (ncRNAs) among which microRNA (miRNA) in 
post-mortem tissues seem to represent an excellent tool to 
evaluate the elapsed time since death or the post-mortem 
interval (PMI), because of their evidenced stability and tis-
sue specificity [14, 15]. Recently, the detection of the histone 
mark H3K4me3 (the trimethylation at the lysine 4 in histone 
H3) in chromatin has been proposed to reflect transcriptional 
changes in cases with substance use disorders and neuro-
logical deficits [16]. Certain authors have also proposed 

the concept of a new research area known as behavioral 
epigenetics. For instance, two studies suggested that DNA 
methylation could potentially serve as a marker of aggres-
sive behavior, specifically within the glucocorticoid receptor 
genes NR3C1 [17] and NR3C2 [18]. However, it should be 
recognized that the epigenome is dynamic and modulated by 
internal and external factors and often requires complex data 
interpretation. In addition, the application of epigenetic tech-
niques for predicting decision-making processes or criminal 
behaviors raises significant legal and ethical considerations 
[19]. For this reason, experts in the field, especially forensic 
pathologists and legal experts, are encouraged to deepen the 
study of epigenetics with their rigorous methods. This will 
help determine which information derived from epigenet-
ics can potentially prove valuable within the context of the 
justice system.

The present review aims to provide a general overview 
to forensic scientists or forensic pathologists, who are not 
familiar with epigenetics, on the role of epigenetic modi-
fications and their possible application in forensics, trying 
to stimulate the interest of young scientists in this new and 
promising field of research. Moreover, while the number of 
epigenetic studies in forensic medicine is steadily increasing, 
it is fundamental to consider the impact of PMI and post-
sampling effects on epigenetic modifications such as DNA 
methylation, histone modifications, and non-coding RNA. 
It is also important to acknowledge that epigenetic marks 
exhibit tissue-specific patterns of expression [20]. The role 
and function of epigenetic modifications have been summa-
rized, with a particular focus on their post-mortem stability 
and tissue specificity, which are of primary importance to 
forensic scientists. This information might clarify the limita-
tions and the advantages of epigenetic analyses in forensic 
research, assisting researchers in choosing the most suitable 
marker for their studies.

Materials and methods

Peer-reviewed articles related to the post-mortem stability 
and tissue-specificity of the epigenetic modifications were 
comprehensively selected, using terms related to forensic 
sciences, DNA methylation, histone modifications, chroma-
tin, and non-coding RNA. The literature review was per-
formed in the following international databases: PubMed, 
MEDLINE, Google Scholar, Embase, and Scopus, consid-
ering publications up to December 2022. A first screening 
of the articles was completed by reading their headlines 
and abstracts to ensure that the topic and content were rel-
evant and of clear forensic interest. This preliminary step 
was conducted according to the inclusion criteria: publica-
tions in the English language only or availability of English 
abstract, starting biological material constituted by human 
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samples, and range of publication time 2005–2022. Subse-
quently, a more in-depth screening based on inclusion crite-
ria and quality assessment allowed to extract a series of data 
to build Table 1 and 2 of the present review. In detail, the 
data included are sample compositions and size, analyzed 
tissues, molecular targets, design and methods employed, 
data analysis and results, authors and year of publication, 
and PMID. Potentially relevant studies that did not appear 
in the main search were also identified from the References 
of other articles and consultation with experts in the field.

From the literature analysis, a restricted number of studies 
emerged related to human samples concerning epigenetic 
modifications stability, compared to experiments involving 
animals. In addition, only a few human studies on tissue 
specificity, which analyzed mainly DNA methylation and 
miRNA, considered post-mortem samples. For this reason, 
several studies that used body fluids from living subjects as 
starting material were included to represent how epigenetic 
modifications have been studied in the forensic field.

The term “tissues” in the text refers to any biological 
sources, including body fluids.

Results

Given the potential importance of epigenetics in the forensic 
research field, the epigenetic modifications, their functions, 
and potential applications in forensic science are described. 
The epigenetic approach might result in being superior to 
histological and immunological assays in certain forensic 
applications [21]. In addition, the literature related to con-
founders that should be considered in forensic epigenetic 
research, in particular, the post-mortem stability of the epi-
genetic modifications in cadaveric samples and their tissue 
specificity, has been analyzed. In fact, post-mortem tissues 
are frequently used with no clear understanding of the effect 
that post-mortem tissue decay could have on the epigenetic 
marks. Pathological antemortem conditions and the cause of 
death could deeply affect post-mortem changes, and they are 
hardly reproducible in animal experimental settings. Human 
post-mortem tissues offer the possibility to gain a direct 
understanding of the mechanisms of disease, overcoming the 
issues in the interpretation of the results, the reproducibility 
and reliability, and the lack of concordance [22, 23]. Due to 
the importance of working with human samples, we report 
some of the experiments performed to explore the stability 
of the epigenetic modifications in post-mortem human tis-
sues (Table 1).

Moreover, tissue-specificity can be used to trace the tis-
sue of origin at crime scenes. On the other hand, the tissue 
specificity of epigenetic marks can also be crucial in forensic 
pathology for analyzing cadavers to identify possible envi-
ronmental exposures, diseases, causes of death, and more. 

However, in this context, it should be considered that epi-
genetic changes are tissue-specific, and tissue-specific pat-
terns of gene expression often contribute to maintain tissue 
identity and function [24, 25]. Forensic scientists should be 
aware of these potential confounders before using epige-
netic markers because they might bias the results. Studies in 
humans on the tissue-specificity of epigenetic modifications 
in post-mortem samples are lacking. We thus also described 
studies related to the tissue-specificity of epigenetic modifi-
cations in body fluids from living subjects (Table 2).

DNA methylation and possible applications 
in forensics

DNA methylation can be considered the first level of epi-
genetic modification. Despite it was identified back in 1948 
[26], its biological role in the regulation of transcription was 
demonstrated only 25 years later [27]. DNA methylation is 
the addition of a methyl group (-CH3) to the fifth carbon 
of the cytosine to form 5-methylcytosine (5mC), resulting 
in gene expression silencing. This change occurs mainly, 
but not exclusively, at the CpG dinucleotides [28]. CpG 
dinucleotides are not uniformly distributed throughout the 
genome with stretches of DNA, called CpG islands or CGi, 
characterized by a higher CpG density [29, 30]. CGi are 
often localized in genes’ promoters and usually not methyl-
ated. Conversely, CGi associated with intra- or inter-genic 
regions can be methylated or not methylated [31, 32]. This 
leads to a heterogeneous epigenetic landscape.

For several years, CGi in the regulatory genes’ regions 
were not thought to have a tissue-specific profile; however, 
more recently, it has been demonstrated that tissue-specific 
gene silencing for some genes occurs through the promoter 
region’s methylation [33]. Moreover, intragenic CGi and 
those including the transcription start site can be differen-
tially methylated based on the analyzed tissue [34].

In addition to its central role in transcriptional regula-
tion, DNA methylation is extremely important for the main-
tenance of cellular functionality and genomic integrity, 
silencing cryptic promoters and cryptic splicing sites, and 
thus preventing the production of proteins with abnormal 
function [35]. DNA methylation also helps maintain in a 
compact chromatin state the repetitive DNA sequences, as 
transposable elements and satellite DNA, ensuring genomic 
integrity and avoiding illegitimate recombination [36]. More 
generally, even if the precise mechanism has not yet been 
clarified, methyl groups directly contribute to generating a 
close chromatin structure and thus in its three-dimensional 
modeling [37, 38].

The enzymes carrying out DNA methylation are the DNA 
methyltransferases (DNMT). DNMT3a and DNMT3b are 
de novo methyltransferases, which act on not methylated 
sequences and mainly in germ cells where they are recruited 
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on chromatin by DNMT3l [28]. DNMT1 is the maintenance 
DNA methyltransferase that is required to methylate the 
hemimethylated strand after DNA replication, and its action 
guarantees the mitotic inheritance of the methylation pat-
terns [39]. The methylation profile is thus preserved during 
mitosis, especially in the differentially methylated sequences 
subjected to imprinting or the ones in the inactive X chro-
mosome in females. By contrast, the methylation profile of 
sequences without precise regulative functions may not be 
accurately reproduced [40].

In mammalian cells, DNA methylation signals are rec-
ognized by the methyl-CpG binding proteins (MBP) that 
in turn recruit other partners, among which many enzymes 
involved in histone modifications and transcription repres-
sive molecules. They thus provide the link between modified 
cytosines and functional chromatin states [41].

DNA methylation, like all the other epigenetic markers, is 
reversible [42]. Two mechanisms can remove this signature: 
active DNA demethylation mediated by the ten-eleven trans-
location (TET) family enzymes and the passive DNA dem-
ethylation occurring during DNA replication in the absence 
of DNA methylation maintenance activity [43].

Forensic scientists have proposed the analysis of differen-
tially methylated regions in multiple applications [44]. First, 
age prediction is particularly relevant to narrow the circle of 
suspects during investigations, and it is possible thanks to 
the fact that DNA methylation patterns change with increas-
ing age [45]. Initially, common methylation changes were 
detected in cancer and aging cells [46]. Subsequent experi-
ments support the use of a “DNA methylation clock” to 
estimate age with high accuracy [47, 48]. More recently, 
the investigation of the impact of biogeographic ancestry 
stands out as particularly important for DNA methylation-
based age predictions, since prediction differences recently 
emerged comparing the Middle East and Central Europe 
population [49].

Different studies also developed DNA methylation–based 
approaches for tissue and body fluids identification. In par-
ticular, the main tissues considered are blood, urine, skin, 
sweat, saliva, semen, vaginal fluid, and menstrual blood. 
This can help in the reconstruction of a crime assist or sex-
ual assault events [50]. Even if further investigations are 
needed, other applications are under consideration. Since 
it was shown that epigenetic differences can be detected 
in monozygotic twins [51], DNA methylation is emerging 
as relevant in monozygotic twin differentiation, which has 
always been a significant challenge in criminal investiga-
tions, and specific markers have been proposed [52]. In fact, 
personal health and lifestyle and exposure to various envi-
ronments make methylation patterns unique for each individ-
ual. Moreover, in light of the monoallelic expression due to 
the genomic imprinting, the parental origin of an allele could 
be identified by analyzing regions that result differentially 

methylated in the maternal and paternal alleles [53]. This 
could be crucial in overcoming the significant limitations 
of STR profiling, which is only useful when individuals are 
genetically different.

More recently, few studies explored DNA methylation 
for potential smoking habit prediction, identifying CpGs 
correlated with daily cigarettes among smokers of varying 
levels [54, 55]. However, replication studies are needed to 
make DNA methylation analysis a routine test for assessing 
the smoking status of unknown individuals.

The interest in DNA methylation in forensic pathology 
research is sustained also by the observation that ante- and 
post-mortem DNA show similar methylation amounts and 
characteristics. Conversely, in cases of advanced decomposi-
tion, the degradation of DNA will be reasonably followed by 
the concomitant loss of the corresponding methylation [56].

The post‑mortem stability of DNA methylation

In animal models, it was demonstrated that the post-mortem 
interval (PMI) may represent a confounding factor in the 
analyses of 5-methylcytosine; in particular, 5-methylcy-
tosine levels were observed to increase with post-mortem 
time in adult rats [57]. Changes in DNA methylation were 
also detected in human postmortem tissues: three stud-
ies explored DNA degradation and DNA methylation at 
multiple time points or stages of decomposition in differ-
ent genome regions and tissues. Within PMI 38–68 h in 
humans, DNA samples collected from blood and brain were 
undamaged [58]. DNA yields were found high also in buccal 
swabs, and post-mortem methylation was stable from 1 up 
to 42 days. Even though it has been observed that both deg-
radation and methylation variance increased over time [58], 
DNA methylation resulted stable also in human neocortex 
samples up to 72 h post-mortem [59]. Given that most foren-
sic autopsies are performed within 72 h, it can be argued that 
many epigenetic markers can be studied in forensics without 
bias linked to the time elapsed since death (PMI). For post-
mortem analyses that exceed this time range, further studies 
are required, and therefore, caution is needed.

Distinctive DNA methylation‑based signatures 
across tissues

Since RNA is prone to degradation by ubiquitous ribonucle-
ases, and thus its use for forensic identification of body fluids 
is very challenging [6], DNA methylation has been proposed 
as a new molecular marker for body fluid discrimination 
in the field of forensics. Specific CpG sites were identified 
with high sensitivity and specificity to discriminate between 
blood, saliva, semen, and vaginal secretions [60–65].

Interestingly, in light of the environmental impact on 
DNA methylation and for a more comprehensive simulation 
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of forensic conditions, some of these studies analyzing body 
fluids from living subjects considered endogenous and exog-
enous factors that might affect the stability of methylation. 
Differentially methylated markers were detected for the iden-
tification of specific tissues, considering multiple influencing 
factors, such as humidity, tumors, genetic variants in the 
DNA sequence [61], or even the menstrual cycle phases, 
against which DNA methylation profiles can vary [63].

Other studies evidence the importance of considering 
confounding factors that may affect the results. For exam-
ple, DNA methylation has been also proposed to estimate the 
age at the time of death in forensic profiling [66]; however, 
the different cellular compositions in the analyzed tissues 
should be well-known, such as buccal epithelial cells and 
leukocytes in buccal swab samples [64]. In the body fluid 
identification research, having the methylation patterns age-
dependent [67], markers potentially associated with aging 
should be excluded [60].

Specific epigenetic patterns have been thus revealed 
especially in living subjects where it is often necessary to 
select the most useful surrogate tissue for representing the 
brain. The levels of DNA methylation in brain-peripheral 
tissues were shown to vary widely for each CpG and each 
gene, and tools were proposed to reveal the degree of cross-
tissue correlation [68]. However, few studies determined 
inter- and intra-individual differences in DNA methylation 
in post-mortem tissues too. Kozlenkov and coworkers (2016) 
separated neuronal nuclei from the autopsy specimens of 
the human prefrontal cortex, evidencing differences in the 
composition of DNA methylation between the two major 
populations of human prefrontal cortex neuron subtypes, 
GABAergic interneurons and glutamatergic projection neu-
rons [69].

The identification of blood, cerebellum, and the cortex 
from 3 individuals was also performed using tissue-specific 
patterns of mitochondrial DNA methylation. Mitochondrial 
DNA methylation variations among pre-mortem blood, post-
mortem cerebellum, and 5 different regions of the cortex 
were able to separate individuals. Intra-individual differ-
ences across tissue types were greater than inter-individual 
differences within each tissue type [70].

Conflicting results were also evidenced. The analysis of 
1505 CpG loci in 11 human tissues from six autopsy cases, 
in particular DNA methylation of 1505 CpG promoter sites 
in 807 genes, revealed that similar DNA methylation lev-
els in all organs and individuals for many CpG sites were 
detected among the same tissues from different individu-
als than between different tissues from the same individual, 
but in general, the patterns were very homogenous. How-
ever, these results could be affected by the high variability 
of periods between death and the tissue collection and the 
diagnosis of autopsy [71]. Another research explored the 
reliability of 11 tissue-specific DNA methylation sites for the 

identification of blood, saliva, and semen; however, tissue-
specific differentially methylated regions for blood and buc-
cal cells were not specific enough to be suggested as markers 
for blood and saliva [72].

Even if some studies highlighted the existence of an inter-
individual variation in the methylation levels [73, 74], recent 
evidence reported specific methylation patterns in different 
cell types [75] supporting the possibility of using this sig-
nature for forensic applications.

Histone modifications and possible applications 
in forensics

Nuclear DNA is not naked within cells but is associated 
with proteins, mainly histones, to form chromatin. In 1964, 
it was discovered that histones might be subjected to post-
translational modifications that confer important functional 
properties and affect the degree of chromatin condensation 
[76]. The most studied histone modifications are acetyla-
tion, associated with transcriptional activation, and histone 
methylation, associated with both transcriptional activation 
(H3K4) and repression (H3K9, H3K27). Many enzymes 
drive the addition and the removal of these modifications 
that are then recognized by different effector proteins [77].

It should be noted that on each histone, the coexistence 
of multiple signals might interfere, cooperate with, or be 
dependent on each other. Therefore, in each nucleosome, a 
huge number of combinations of different histone changes 
generate the histone code [78], suggesting the existence of 
a highly complex regulation system, still largely unknown 
[79]. The crosstalk takes place not only between different 
histone modifications but also between histone modifications 
and DNA methylation, which thus work together to modu-
late DNA accessibility through changes in the chromatin 
conformation [80].

The state of chromatin within a cell that swings between 
an open and accessible state named euchromatin and a more 
compact state, not accessible to the transcriptional machin-
ery, defined as heterochromatin [81], might be modified by 
chromatin remodeler enzymes [82]. Chromatin remodeling 
is a dynamic event, not yet fully characterized, that requires 
ATP hydrolysis and plays a role in DNA replication, tran-
scriptional regulation, and DNA repair through several 
mechanisms, such as nucleosome positioning, histone sub-
stitution, deposition of histone variant, chromatin compac-
tion, and changes in its accessibility [82–84].

More recently, increasing evidence suggests that DNA 
is non-randomly positioned into the nucleus, with chromo-
somes, gene loci, and nuclear bodies referring to a specific 
arrangement in space and time [85]. This organization in 
precise sub-compartments might be the basis for regulat-
ing chromatin state and ensuring optimal transcriptional 
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efficiency. However, how chromosome positioning could 
affect genomic function is not yet understood [86].

The histone modification profile has been less explored 
in comparison with the other epigenetic signatures in the 
forensic context. Few studies explored the stability of acety-
lation and methylation in post-mortem brain specimens, in 
particular H3K27Ac and H3K4me3 [16], and, investigating 
the genome-wide distribution of histone modifications in 
specific neuronal cells, the existence of distinctive patterns 
of the histone modifications was evidenced [87]. One of the 
current challenges in epigenetics is to analyze histone modi-
fications and their differences among biological conditions 
and cell types. Considering the long and complex pipeline 
of the histone changes’ detection techniques, this analysis 
is currently difficult to apply in forensic practice. Improved 
experimental methods could reveal histones’ utility in foren-
sic applications, as markers for the determination of the 
cause of death and tissue specificity. Furthermore, forensic 
sample handling processes typically do not preserve proteins 
such as histones. Despite the advancements in forensic pro-
tein science and technology in recent years [88], validation 
studies involving real-life applications are necessary before 
forensic proteomics, including histone analyses, can become 
a routine tool for deciphering crime scenes.

The post‑mortem stability of histone modifications

Research investigated the post-mortem stability of histone 
modifications and related enzymes. The pattern of post-mor-
tem degradation for H3K27 methylation and acetylation was 
reported in Sprague–Dawley rats, recording less stability of 
these modifications to histone tails over PMI, in comparison 
to other epigenetic signatures [89]. Huang and coworkers 
(2006) first evaluated chromatin degradation in post-mortem 
prefrontal cortex samples from 16 adult subjects, examin-
ing DNA-histone interactions with micrococcal nuclease 
digestion. The nucleosome DNA resulted attached to the 
core histones for 30 h after death, and differences in the 
levels of the open chromatin mark H3K4me3 and the con-
densed chromatin mark H3K27me3 across some genomic 
loci were similar to freshly prepared samples. In addition, 
the level of the H3 methylation seemed not highly affected 
by autolysis time (PMI range = 5–30 h) and pH variation (pH 
range = 6–6.8) [90]. The stability of H3K4me3 in the human 
prefrontal cortex was also confirmed up to 72 h post-mortem 
in another study that tested this epigenetic signature as a 
marker of methamphetamine use disorder in HIV-infected 
individuals [16]. These studies seem to point towards histone 
modifications as an alternative for transcriptional profiling 
in case of low RNA quality.

Another research highlighted that the acetyltransferase 
and methyltransferase activities, which are involved in the 
process of histone acetylation and methylation, were not 

modified increasing the PMI or storage duration. The same 
study also reported no influence of PMI of 5 h, storage, pH 
value, or neurochemical parameters on RNA integrity [91]. 
Of course, more studies exploring longer PMIs are requested 
to confirm the stability after death of histone modifications.

Non‑coding RNA and possible applications 
in forensics

The term non-coding RNA (ncRNA) refers to RNA not 
translated into proteins; however, this does not imply they 
do not have a specific function or carry information. The 
best-known and most studied ncRNA are structural ncRNA, 
which include RNA transfer (tRNA), ribosomal RNA 
(rRNA), small nuclear RNA (snRNA), and small nucleolar 
RNA (snoRNA). The remaining ncRNA are able to modu-
late gene expression and induce chromatin remodeling with-
out affecting DNA sequence; therefore, they are considered 
a full-fledged epigenetic mechanism. Among these mole-
cules, there are the long non-coding RNA (lncRNA) and the 
small non-coding RNA (sncRNA) among which microRNA 
(miRNA) [92].

The lncRNA class, constituted by transcripts not trans-
lated into proteins longer than 200 base pairs (bp), is highly 
heterogeneous. LncRNA can have multiple functions, among 
which the regulation of transcription, proteins/RNA func-
tioning, chromatin remodeling, and the genome 3D organi-
zation in the nucleus [93].

MiRNA act through RNA interference (RNAi), a pro-
cess that involves the RNA-induced silencing complexes 
(RISC) which incorporate miRNA and guide it towards 
a target mRNA thanks to the sequence complementarity 
[94]. In this way, RISC induces the mRNA degradation or 
its translational repression, depending on the full or partial 
complementarity with the miRNA sequence [95]. Although 
miRNA act at the post-transcriptional level and not tran-
scriptional, they are accounted among the epigenetic mecha-
nisms because they are involved in a complex regulatory 
epigenetic network. In addition, miRNA expression can be 
controlled by epigenetic modifications within the genome 
regions where they are located, and in turn, they can target 
epigenetic modifiers [96].

Even if miRNA biogenesis is well-known, the complex 
regulatory circuit underlying miRNA expression remains 
unclear. This landscape becomes even more complicated 
by the low specificity between miRNA and mRNA, which 
results in a variety of targets [97]. Subsequently, a single 
miRNA can regulate several targets, and the same targets 
can be co-regulated by different miRNA, originating a com-
plex combinatorial code. More than 2600 miRNA (miRBase 
v.22) have been identified in humans, and they are involved 
in gene regulation mechanisms, metabolic pathways of 
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development and differentiation, cellular interactions, and 
disease development [98].

Among the various applications of miRNA described in 
forensic medicine [99], there is tissue identification from a 
single source of body fluid, since they are less susceptible 
to degradation, due to their small length of 22 nucleotides 
on average, compared to mRNA [100]. In addition, in light 
of their stability, even in the face of temperature and envi-
ronmental conditions changes, they have been identified as a 
valuable tool for estimating the post-mortem interval (PMI) 
[14]. Another application that should be further explored 
includes the determination of wound age, having miRNA 
involved in the wound healing progression [101]. Besides, 
their recognized role in myocardial infarction, due to their 
influence on cardiomyocyte regeneration, apoptosis, and 
necrosis, makes them a suitable marker for forensic stud-
ies on acute and chronic myocardial infarction, and on its 
timing [102].

Interestingly, studies also highlighted the potential of 
circular RNA (circRNA) in forensics, another class of sin-
gle-stranded RNA molecules. CircRNA have been shown 
to regulate transcription and interact with miRNA and pro-
teins [103]. In the forensic fields, due to their stage-specific 
expression patterns during development and stability, cir-
cRNA isolated from human blood were recently proposed for 
age prediction [104]. A preliminary model was developed to 
investigate potential associations between chronological age 
and the expression of circRNA derived from genes involved 
in biological metabolic processes. However, there is much to 
do to understand their function and mechanisms of action. 
For instance, although circRNA were originally classified 
as non-coding RNA, there is evidence of their involvement 
in translation processes [105]. This enhances the interest in 
circRNA in the context of forensic applications.

The post‑mortem stability of miRNA

MiRNA are more resistant in various relevant clinical and 
research conditions [106] compared to longer RNA mol-
ecules, like mRNA. We already explained their role as epi-
genetic modulators, affecting the protein levels of the target 
mRNA without modifying the DNA sequences [107], and 
thus, we also report some studies exploring their stability 
after death and long-term fixation. Animal studies reported 
that miRNA were found highly resistant to PMI. A signifi-
cant correlation was observed between miRNA expressions 
and time passed since death, with miR21 and miR205 stably 
expressed especially at 24 h PMI duration [108]. Extreme 
robustness across increasing PMIs, for up to 96 h, was shown 
for miR16, miR34a, miR124a, and miR134 [89].

Since, in forensic cases, fresh or frozen human mate-
rial is not always available, studies analyzed formalin-fixed 
paraffin-embedded samples, highlighting sensitive forensic 

markers, even when signs of putrefaction were detected at 
autopsy. MiR21 resulted in a valid detectable molecular tar-
get in multiple post-mortem samples and putrefied organs 
considered at 18, 72, and 96 h of PMIs [109]. Comparing 
samples frozen or embedded in paraffin, the expression 
of miR146a, miR146b, miR125a, miR125b, miR21, and 
miR155 was identified as a signature of injured skin [110]; 
miR499a was confirmed as a promising acute myocardial 
infarction biomarker [111]. From those studies emerged 
also the importance of identifying endogenous controls for 
miRNA quantification, supporting the use of miRNA instead 
of other classes of small ncRNA to determine the appropri-
ate controls for the post-mortem analysis [111].

The use of miRNA in forensic sciences has been widely 
explored in particular for PMI estimation. The duration of 
the corpse’s storage was reported to not affect the overall 
miRNA pattern of expression in different tissues; in par-
ticular, a storage time between 1 and 14 days at 4 °C has a 
limited influence [112]. Montanari and coworkers (2021) 
reported the related literature, and they suggested miRNA 
use mainly as target markers for longer PMI evaluation, 
instead of early and medium PMI. They also evidenced the 
lack of human data that limits the forensic application of 
PMI estimation based on miRNA analysis [14]. These stud-
ies suggest to better explore miRNA reliability and utility as 
biomarkers in post-mortem examinations.

Tissue‑specific miRNA‑based signature

Considering the small size of miRNA molecules, 20–25 
bases in length, and their strong tissue specificity, studies 
explored their possible use in the forensic field for the assay 
of different body fluids in often degraded or compromised 
samples [113]. Some studies explored large sets of miRNA, 
while others tried to replicate the results obtained in pre-
vious studies including a restricted number of targets and 
improving the methods and the conditions.

A genome-wide miRNA microarray tested approximately 
1700 miRNA to identify 20 body fluid samples. Eight previ-
ously unreported miRNA were detected as relevant miRNA 
markers because of specific expression in one body fluid 
and high expression levels: miR484 and miR182 for blood, 
miR223 and miR145 for saliva, miR2392 and miR3197 for 
semen, and miR1260b and miR654-5p for vaginal secre-
tions. Among the previously reported miRNA, a good body 
fluid–specific expression pattern was confirmed for miR126, 
miR106a, miR451, miR185, miR486, and miR20a for 
blood, miR203 and miR205 for saliva, even if they were 
also expressed in the semen, and miR891a as semen-specific 
[114].

Another research explored 452 human miRNA in 20 
human tissues using real-time quantitative polymerase 
chain reaction (RT-qPCR): nine miRNA (miR451, miR16, 
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miR135b, miR10b, miR658, miR205, miR124a, miR372, 
and miR412) were differentially expressed allowing the 
discrimination of the body fluid origin of forensic bio-
logical stains [115].

To test a small number of specific targets, studies used 
RT-qPCR. One of those confirmed miR451 as a bio-
marker for venous blood, miR412 for menstrual blood and 
miR891a for semen; miR205 was shown to differentiate 
between saliva and semen and miR124a to differentiate 
between vaginal material and saliva [116].

MiR451 was also tested in 200 samples from periph-
eral blood, menstrual blood, saliva, semen and vaginal 
secretion and showed significantly higher expression in 
the blood samples than in the non-blood samples. The 
same authors even suggested the use of miR203, miR205, 
and miR214 to be used to distinguish between peripheral 
blood and menstrual blood [117]. More recently, these 
and other popular miRNA were tested in combinations in 
605 body fluid–related samples to increase the probability 
of the assumptions based on their detection. MiR451a, 
miR144-5p/3p, miR888-5p or miR891a-5p, miR203a-3p, 
miR205-5p, and miR124-3p were all able to distinguish 
between two tissues; however, they were only partially 
body fluid–specific. By contrast, a four-miRNA combi-
nation (miR451a/miR891a-5p/miR144-5p/miR203a-3p) 
completely identified the peripheral blood, menstrual 
blood, and semen [118].

In two studies, miRNA were tested in post-mortem tis-
sues, offering a real-world scenario in which fresh biopsy 
material is not always available for miRNA isolation. 
A miRNA microarray analysis including 2000 miRNA 
among 61 tissue biopsies of 24 different organs from 2 
male bodies revealed that 143 out of all miRNA were 
detected in all tissues; in detail, miR1-3p was the over-
all most tissue-specific, and it was highly expressed in 
muscle and myocardium. Single tissue–specific miRNA 
were miR122-5p, miR7-5p, and miR205-5p expressed in 
the liver, pituitary gland, and skin, respectively. In addi-
tion, hierarchical clustering revealed groups of miRNA 
with tissue-specific expression: a muscle cluster with 
miR133b, miR133a-3p, miR1-3p, a brain-tissue cluster 
including mi338-3p, miR219a-5p, miR124-3p, miR9-5p 
and miR507, and miR514a-3p and miR509-5p exclusively 
detected in the testis samples. The study also confirmed 
that inter-organism variability was significantly lower 
than inter-organ variability [112].

More recently, it was also evidenced that the miRNA 
levels in the same tissue might be different because of 
different sampling sites. In particular, cardiac-specific 
microRNA levels differed in venous blood obtained from 
the external iliac vein, the inferior vena cava, and coro-
nary sinus [119].

Linking epigenetic modifications to gene expression 
changes

It should be noted that many studies focused only on one 
of the epigenetic modifications, often hypothesizing con-
nections with gene expression changes. However, epige-
netics involves complex processes and thus transcriptional 
changes are not always linked. To avoid erroneous conclu-
sions, changes in post-mortem gene expression should be 
taken into account in the experimental design. In order to 
analyze mRNA expression in association with the epigenetic 
changes identified or to use mRNA in forensic investigation, 
post-mortem mRNA degradation across diverse human tis-
sues should be carefully considered. In fact, comparing fresh 
and post-mortem brain tissues, remarkable differences have 
been detected in the transcriptional levels with specific genes 
surprisingly stable in fresh tissues, while the results from 
human post-mortem brain studies were highly impacted by 
the PMI [120].

One research explored approximately 2000 post-mortem 
samples from 15 tissues of 316 donors with PMI ranging 
from 1 to 27 h using RNA sequencing. Different RNA deg-
radation levels were associated with distinct PMI, different 
sites in the same tissue, and even different genes’ functions. 
This means that the time of sample collection should be 
always considered depending on the tissues and genes of 
interest [121]. However, another research, establishing high-
quality RNA up to 23 years at − 80 °C, reported that PMI 
was not a predictor of RNA quality and suggested the RNA 
integrity number, the RIN value, a more critical indicator of 
the suitability of post-mortem tissues [122]. Other research 
has also encouraged the consideration of environmental 
conditions, such as storage temperature, before interpreting 
the results [123, 124]. In human experiments, these might 
represent confounding factors and should be reported.

Discussion

Epigenetic modifications that occur before death can provide 
valuable insights into vital processes. The present review 
reveals how understanding the “epigenetic status” of cells 
in post-mortem samples enables forensic scientists to record 
what cells were prompted to do, capturing a snapshot of 
their condition at the time of death. Forensic pathology has 
acquired an unprecedented interest in epigenetics because it 
acts as a crucial communication system, fostering dialogue 
among cells in various tissues and organs, particularly dur-
ing processes like inflammation resulting from physical or 
hypoxic-ischemic trauma [125].

This opens new possibilities for forensic researchers in 
the understanding of the physiopathology of the deceased, 
which can provide valuable information to the forensic 
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pathologist, contributing to the understanding of the physio-
pathology of the living as well. Similarly, the relative resist-
ance towards post-mortem phenomena found in various epi-
genetic markers [53] paves the way for numerous studies of 
what happens in the human body after death. This favors the 
potential for fitting the PMI estimation within increasingly 
specific ranges. In addition, epigenetic changes are tissue-
specific, and tissue-specific patterns of gene expression often 
contribute to maintain tissue identity and function [71]: 
crime scenes and body investigations can greatly benefit 
from the ability of identifying various biological fluids pre-
cisely and specifically. Further research might help to gain 
better insight into the tissue-specificity of these markers.

Forensic cases thus encompass a wide range of conditions 
of interest to research, also including psychological trauma 
and physical injuries. This helps in a better understanding 
of human reactions to events. However, it is important to 
note that this is a potential future scenario. Currently, there 
are still numerous obstacles to overcome in order to obtain 
reliable and useful results in the context of trials.

The majority of the forensic epigenetic experiments 
focused on miRNA expression and DNA methylation. 
The methods used are mainly array-based experiments for 
genome-wide approaches, to test simultaneously a wide 
range of sites, and pyrosequencing for candidate region 
association studies. Differentially methylated cytosines and 
regions [38] and specific miRNA have been demonstrated 
to differ between tissues and body fluids relevant in foren-
sic analyses. A highly intriguing result is that four miRNA 
(miR205, miR451, miR124, and miR203) are recurrent in 
multiple experiments. Three of these studies included a wide 
range of miRNA with microarray approaches, without prior 
hypotheses, but the identified miRNA often showed differ-
ent body fluid–specific expression patterns. For example, 
miR205 was identified as a marker for saliva [60, 115]; 
however, Ludwig and coworkers reported a highly spe-
cific expression of miR205-5p in the skin [112], and it was 
recently reported for the identification of vaginal secretion 
[118]. One notable finding from studies that have examined 
DNA methylation is instead that this mark is involved in 
the regulation of several molecular mechanisms; it is cell-
specific, as showed by cell-specific differentially methylated 
regions identified in post-mortem brain areas [69, 126], and 
it is widely affected by environmental conditions through-
out life. In particular, confounding factors, such as early 
life events [127], smoking, ethnicity, and gender [128, 129] 
and diseases, can modify DNA methylation levels at spe-
cific sites in the genome. Major application issues might 
thus arise for forensic pathologists in this case because the 
subjects’ history is not always known. In addition, studies 
also underline that part of the mechanism that causes post-
mortem methylation levels to be modified or unmeasurable 
may involve reactive oxygen species, found increased over 

time [57], or post- or perimortem cellular processes or bacte-
rial activity [56]. Even in gene expression studies, confound-
ing factors should be taken into account, and correcting the 
results with knowledge about the cause and timing of death 
is often advisable, as ongoing changes prior to death could 
also play a significant role in the specific mRNA levels. 
Additionally, mRNA appears to be less stable and persistent 
compared to other markers under different environmental 
conditions [130].

Limitations of the studies

In general, studies reveal some weaknesses; first, often only 
one epigenetic mark and one type of specimen at a single 
time point were analyzed. To unlock the full potential of epi-
genetic testing for post-mortem applications, it is essential 
to include diverse tissues and apply diverse marker combi-
nations at different stages of decomposition. Furthermore, 
due to the different identification methods, the techniques 
applied and normalization strategies, the results are not 
equivalent limiting their value for comparison. Due to the 
scarcity of available cases that satisfy the inclusion criteria, 
the studies often include an insufficient number of samples 
which does not allow to achieve solid conclusions. Two spe-
cific additional limitations arise from the analysis of miRNA 
and DNA methylation in the forensic field. First, not all the 
studies specified which of the mature forms of miRNA-3p 
and -5p were considered in the experiments, while the two 
forms might have different tissue specificities [112]. Sec-
ond, not all the studies considered that DNA methylation 
is associated with aging [131]. Each experiment should 
subsequently exclude DNA methylation associated with 
aging from the analysis of tissue-specific DNA methylation 
candidates. As proposed by Park and coworkers (2014), the 
association between aging and possible DNA methylation 
changes in the analyzed genome sites should be investigated 
during the selection of these markers in forensic science 
[60].

Finally, it must always be noted that epigenetic modi-
fications might play a central role in specific pathologies: 
specific miRNA, DNA methylation patterns, and histone 
changes are involved in carcinogenesis processes [132, 133] 
and have been found dysregulated in multiple cancers [134, 
135], in neurodegenerative disorders [136, 137], in obesity 
and type 2 diabetes [138], and in cardiovascular disease 
[139]. This means that the physical and psychological con-
ditions in which a person was prior to death might highly 
affect the level of expression of these molecules.

Perspectives

Despite the limitations, and while many studies are per-
formed on samples from living individuals, there are 
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numerous advantages to working with and researching post-
mortem samples. A more comprehensive epigenetic analysis 
of cells in post-mortem samples can offer new opportunities 
for identifying markers related to injuries, age prediction, the 
timing of events such as myocardial infarction or cerebral 
contusion, or the cause of death, whether due to asphyxia 
or hypoxic factors. These insights are significant in the field 
of forensic pathology. Compared to samples taken from liv-
ing patients, human post-mortem tissues also provide the 
advantage of allowing the collection of larger amounts of 
starting material.

Another aspect to work on in the future concerns the fact 
that combinations of different miRNA, rather than individ-
ual molecules, might enable a more precise identification of 
body fluids. This is because single miRNA are only partially 
specific to particular body fluids, and their expression levels 
may not remain stable for a specific type of tissue. Just as in 
the case of forensic human identification through DNA pro-
filing using autosomal short tandem repeats, which relies on 
the analysis of multiple loci, in the future, miRNA profiling 
for tissue specificity should consider clusters of miRNAs, as 
proposed by some studies [112, 118].

It should also be noted that epigenetic marks have been 
explored for a wide range of applications, including the 
identification of biological fluids or tissues, as well as the 
determination of sex, age, and phenotype of donors. Epi-
genetic modifications have been also associated with many 
pathological conditions and psychiatric diseases [123, 124]. 
However, given the substantial influence of environmental 
confounders on these marks, further research is needed to 
fully understand how to exploit the potential of epigenetics 
in revealing phenotypic and behavioral traits, thus expanding 
our comprehension of complex forensic evidence.

To promote the innovative use of epigenetic markers 
in forensic practice, studies should simultaneously inves-
tigate the differential expression of epigenetic phenomena 
in multiple tissues and organs. Implementing a strategy of 
multicenter studies, where large case datasets are analyzed 
with consistent inclusion/exclusion criteria and methods, 
could address the current limitations related to comparabil-
ity among studies.

Conclusions

Over the past decade, epigenetics has undergone rapid 
development, thus drawing attention to its potential appli-
cations in forensic investigations. In the present review, 
we described the limiting factors that should be taken into 
account in epigenetic research when applied in forensic 
medicine, including considerations of post-mortem stabil-
ity and tissue specificity. While research in this field presents 
numerous potential forensic applications, it is important to 

exercise caution when applying these results in forensic 
cases. Forensic pathologists have long sought markers as 
incontrovertible evidence in trials [140]; however, these 
markers should be unquestionable and able to withstand 
criticism. Working synergistically on the perspectives, it 
may become possible to provide researchers with guidance 
on selecting epigenetic markers based on the available bio-
logical samples and techniques.
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