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Abstract
The estimation of ancestry is important not only towards establishing identity but also as a required precursor to facilitating 
the accurate estimation of other attributes such as sex, age at death, and stature. The present study aims to analyze morpho-
logical variation in the crania of Japanese and Western Australian individuals and test predictive models based on machine 
learning for their potential forensic application. The Japanese and Western Australian samples comprise computed tomog-
raphy (CT) scans of 230 (111 female; 119 male) and 225 adult individuals (112 female; 113 male), respectively. A total of 
18 measurements were calculated, and machine learning methods (random forest modeling, RFM; support vector machine, 
SVM) were used to classify ancestry. The two-way unisex model achieved an overall accuracy of 93.2% for RFM and 97.1% 
for SVM, respectively. The four-way sex and ancestry model demonstrated an overall classification accuracy of 84.0% for 
RFM and 93.0% for SVM. The sex-specific models were most accurate in the female samples (♀ 95.1% for RFM and 100% 
for SVM; ♂91.4% for RFM and 97.4% for SVM). Our findings suggest that cranial measurements acquired in CT images 
can be used to accurately classify Japanese and Western Australian individuals into their respective population. This is the 
first study to assess the feasibility of ancestry estimation using three-dimensional CT images of the skull.

Keywords Forensic anthropology · Multidetector computed tomography · Skull · Japanese · Western Australian · Ancestry 
assessment

Introduction

Establishing the identity of unidentified human remains is 
of fundamental importance in a forensic investigation, par-
ticularly in the analysis of dismembered, burned, or severely 
mutilated corpses or skeletal remains [1]. Although estimat-
ing ancestry is especially challenging [2], ancestry is an 

integral parameter not only to assist identification efforts 
directly but also as a required precursor to estimating sex, 
age at death, stature, and other attributes using population 
specific data [3].

It is generally accepted that the skull, especially the mid-
face, is the most diagnostic region of the skeleton for esti-
mating ancestry [4, 5]. There are two main methodological 
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approaches typically applied in the anthropological assess-
ment: morphoscopic (visual or non-metric) and morphomet-
ric. Procedures for estimating ancestry, whatever the statisti-
cal treatment, focus on non-metric or metric features, based 
on appreciable and/or significant cranial diversity between 
global populations [4]. Although non-metric approaches lack 
objectivity and require more experience, metric methods 
have less so, largely because individual cranial measure-
ments are clearly defined on the basis of established cranio-
metrics landmarks [3].

Ancestry estimation based on linear discriminant analy-
sis (LDA) is one of the most commonly applied statistical 
approaches; computer applications, such as FORDISC [6, 
7] and CRANID [8, 9], simplify the use of LDA for ances-
try estimation, and the associated output includes statisti-
cal quantification of accuracy (e.g., posterior and typicality 
probabilities) that are useful for interpretation and decision-
making. In addition, a machine learning modeling technique 
for ancestry estimation on the basis of skeletal metric data 
has been proposed [10, 11]. However, it has been reported 
that American Southwest Hispanic skulls are often misclas-
sified as Asians, in particular Japanese, when performing 
ancestry estimation using craniometric data [12]. Thus, it 
is important that crania from other global populations are 
examined and compared to those originating from Japan, to 
minimize the possibility of misclassifications.

Computed tomography (CT) clearly depicts bone struc-
tures [13, 14]. In addition, it is known that bone measure-
ments in CT images can be acquired with the same level of 
accuracy as those from real bone specimens [15, 16]. Impor-
tantly, the requisite data for calculating predictive models 
for estimating biological attributes associated with a rou-
tine anthropological assessment can be effectively developed 
using data acquired in CT images [15, 17, 18]. However, 
to date, no study has examined the feasibility of ancestry 
estimation using CT scanning techniques.

The aim of the present study, therefore, is to explore mor-
phological variances between crania from contemporary 
Japanese and Western Australian populations and thereafter 
assess the feasibility of ancestry classification on the basis of 
morphometric data acquired in multidetector CT (MDCT) 
images using machine learning statistical approaches.

Materials and methods

Materials

Japanese population

The sample comprises postmortem CT (PMCT) scans of 
230 adult corpses of known age and sex (111 female, mean 
age 48.96 ± 18.08 years; 119 male, mean age 46.80 ± 18.39 

years) at the Department of Forensic Medicine at the Uni-
versity of Tokyo between July 2017 and May 2022. The 
estimated postmortem interval for all subjects was <14 days. 
The exclusion criteria were fractures of the skull, lethal head 
trauma, burn injuries, and acquired or congenital abnormali-
ties. The study protocol was approved by the ethics commit-
tee of our university (2121264NI).

Western Australian population

The sample comprises MDCT scans of 225 adult individu-
als (112 female patients, mean age = 40.47 ± 12.99 years; 
113 male patients, mean age = 37.97 ± 12.67 years) at one 
of the major Western Australian hospitals for clinical cra-
nial evaluation between September 2010 and May 2011. In 
accordance with the National Statement on Ethical Conduct 
in Human Research (National Statement), the scans were 
anonymized, with only sex and age data retained. Although 
specific information on the ethnicity of each individual was 
not maintained in the patient data, the entire sample was 
taken as representative of a “‘typical” Western Austral-
ian population [19]. Individuals with obvious congenital 
or acquired cranial pathology were excluded if it affected 
their normal morphology and/or ability to accurately locate 
necessary cranial landmarks. Research ethics approval was 
granted by the human research ethics committee of our uni-
versity (2020/ET000038).

Methods

For Japanese subjects, PMCT scanning was performed 
with a 16-row detector CT system (Eclos; Fujifilm Health-
care Corporation, Tokyo, Japan). The scanning protocol 
was as follows: collimation of 0.625 mm, reconstruction 
interval of 0.625 mm, tube voltage of 120 kV, and tube 
current of 200 mA.

For Western Australian subjects, cranial imaging was 
performed using a 64-slice CT scanner (Brilliance; Phillips 
Healthcare, NSW, Australia) with an average slice thickness 
of 0.90 mm, tube voltage of 120–140 kV, and automatic 
tube current modulation (235–423 mA). The images were 
reconstructed to the same thickness.

Image data processing and three-dimensional (3D) vol-
ume rendering were performed on a workstation (OsiriX 
MD version 11.0.2; Pixmeo SARL, Geneva, Switzerland).  
Soft tissue kernel was used for the acquisition of the CT. In 
accordance with previous research [19–25], 35 cranial land-
marks (Table 1) were acquired on each sample. Thereafter, 
18 measurements (Table 2; Fig. 1) were calculated based on 
coordinates of the landmarks obtained in 3D images using 
MorphDB (an in-house developed database application) and 
the Excel software (Microsoft Office 2019, Microsoft, Red-
mond, Washington, USA).
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A subset of six subjects (three females and three males) 
was randomly selected; the original author recollected the 
subset data to assess intra-observer error; another co-author 
collected the subset data to assess inter-observer error. All 
35 cranial landmarks were acquired on each of six subjects, 
and this process was repeated a total of six times, with a 
minimum of two days interval. In an effort to mitigate recall 
between repetitions, landmark acquisition order was varied 
each time. The relative technical error of measurements 
(rTEM, %) and coefficient of reliability (R) were then calcu-
lated. The acceptable rTEM range as outlined by established 
anthropological research [26–28] was < 5%; an R value > 
0.75 was considered sufficiently precise [21, 29].

Descriptive statistics including mean, standard deviation, 
and range were calculated to provide an overview of the 
sample. The Kruskal-Wallis test was used to compare the 
measurements of the four groups (Japanese and Western 
Australian female and male); a p value of <0.05 was con-
sidered statistically significant. A series of post hoc Mann-
Whitney U test was used for between-groups comparisons 
with Bonferroni correction after the Kruskal-Wallis test. 
Two machine learning methods (random forest modeling, 
RFM; support vector machine, SVM) were used to classify 

ancestry. RFM belongs to a class of machine learning tech-
niques that consist of traditional classification trees created 
using a nonparametric algorithm that incorporates major-
ity voting and bagging to assign cases to response classes 
[30–32]. Bagging is a machine learning ensemble meta-
algorithm that generates multiple new training sets by sam-
pling (replacing) the original data, reducing the variance 
between observations and the potential for overfitting, and 
improving model stability and classification accuracy [33]. 
The latter facilitates an estimate of out-of-bag error, which 
provides an unbiased estimate of the generalization ability of 
the random forest compared to K-fold cross-validation [34].

SVMs generate classification rules by maximizing the 
margin between two groups using data located at the edges 
of the multivariate space (the intersection of two groups). 
This method identifies support vectors to define a classi-
fier that maximizes classification accuracy, and thus, small 
sample sizes or outlier values do not affect SVMs [35]. The 
number of support vectors is directly related to the predict-
ability of the model, with a higher number of support vectors 
indicating less separable data [36].

The utility of machine learning models was examined 
in three scenarios: (i) a two-way model distinguished by 

Table 1  Definitions of the landmarks

Landmark Definition

Bilateral landmarks
 Frontoparietal temporale (fpt) [20] Frontoparietal (coronal) suture at the intersection of the superior temporal line
 Mastoidale (ms) [21] The most inferior point on the mastoid process
 Zygion (zy) [21] The most lateral point on the zygomatic arch
 Lateral foramen magnum (fml) [19] The point of greatest lateral curvature of the foramen magnum
 Porion (po) [20] The highest point on the superior margin of the external auditory meatus
 Alare (al) [20] The most lateral point on the nasal aperture
 Supraorbitale (s) [22] The point on the orbital margin in line with the most lateral supraorbital foramen or notch
 Orbitale (or) [21] Lowest point in the margin of the orbit
 Dacyron (d) [23] The point at which the sutures between the frontal, maxillary and lacrimal bones meet
 Inferior lateral zygomatic (ifz) [19] The most inferior, lateral point on the anterior portion of the zygomatic bone
 Zygofacial orbitale (zfo) [20] Point on the orbital margin closest to the most posterior zygomatic-facial foramen
 Ectomolare (ecm) [21] The most lateral point on the buccal surface of the alveolar margin. Generally positioned on the alveolar 

margin of the second maxillary molar
 Frontozygomatic orbitale (fo) [20] Frontozygomatic suture at the orbital margin
 Articular eminence (ae) [20] The lateral edge of the articular eminence
Midline landmarks
 Glabella (g) [23] The most anterior point in the mid-sagittal plane of the bony prominences joining the superciliary ridges
 Opisthocranion (op) [21] The most posterior point on the skull not on the external occipital protuberance
 Basion (ba) [24] The point at which the anterior border of the foramen magnum is intersected by the mid-sagittal plane
 Nasion (n) [24] The point of intersection of the naso-frontal suture and the mid-sagittal plane
 Bregma (b) [24] The posterior border of the frontal bone in the mid-sagittal plane, usually the junction of the coronal and 

sagittal sutures on the frontal bone
 Opisthion (o) [21] The midpoint of the posterior margin of the foramen magnum in the mid-sagittal plane
 Inferior nasal spine (ins) [20] Intermaxillary suture at the inferior margin of the nasal aperture at the tip of the nasal spine
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Table 2  Definitions of the measurements

Measurement Landmarks Definition

Maximum cranial length (MCL) [24] g-op The straight-line distance from glabella to opisthocranion in the mid-sagittal plane
Basion-nasion length (BNL) [24] ba-n The distance between basion and nasion
Frontal breadth (FRB) [19] fpt-fpt Breadth at the coronal suture, perpendicular to the median plane at the temporal line
Bizygomatic breadth (ZYB) [25] zy-zy The maximum breadth across the zygomatic arches, perpendicular to the mid-sagittal plane
Foramen magnum length (FML) [25] ba-o The mid-sagittal distance from opisthion to basion
Foramen magnum breadth (FMB) [25] fml-fml Distance between the lateral margins of the foramen magnum at the point of greatest lateral 

curvature
Left mastoid height (LMH) [24] po-ms The direct distance between left porion and left mastoidale
Right mastoid height (RMH) [24] po-ms The direct distance between right porion and right mastoidale
Nasal height (NH) [21] n-ins Average height from nasion to the lowest point on the border of the nasal aperture on either 

side
Nasal breadth (NB) [24] al-al Distance between the anterior edges of the nasal aperture at its widest extent
Left orbit height (LOH) [24] s-or Height between the upper and lower borders of the left orbit
Right orbit height (ROH) [24] s-or Height between the upper and lower borders of the right orbit
Left orbit breadth (LOB) [19] zfo-d Breadth from dacryon to zygofacial approximating the longitudinal axis that bisects the left 

orbit into equal upper and lower parts
Right orbit breadth (ROB) [19] zfo-d Breadth from dacryon to zygofacial approximating the longitudinal axis that bisects the 

right orbit into equal upper and lower parts
Bimaxillary breadth (MXB) [24] ifz-ifz Breadth across the maxilla between zygomaxillare
Maxillo-alveolar breadth (MAB) [24] ecm-ecm The maximum breadth across the alveolar borders of the maxilla measured on the lateral 

surfaces at the location of ectomalare
Biorbital breadth (BOB) [19] fo-fo Breadth across the face between the most anterior point on the frontomalare suture on 

either side
Biauricular breadth (BAE) [24] ae-ae The least exterior breadth across the roots of the zygomatic processes

Fig. 1  Three-dimensional 
computed tomography images 
showing cranial measurements 
(see Table 2 for definition): 
a maximum cranial length 
(MCL) and left mastoid height 
(LMH); b basion-nasion length 
(BNL); c frontal breadth (FRB), 
biorbital breadth (BOB), left 
orbit height (LOH), left orbit 
breadth (LOB), nasal height 
(NH), and nasal breadth (NB); 
d bimaxillary breadth (MXB), 
maxillo-alveolar breadth 
(MAB), bizygomatic breadth 
(ZYB), biauricular breadth 
(BAE), foramen magnum length 
(FML), and foramen magnum 
breadth (FMB). Right mastoid 
height (RMH), right orbit height 
(ROH), or right orbit breadth 
(ROB) is not shown because 
they are just left symmetrical
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ancestry (without considering sex), (ii) a four-way model 
distinguished by ancestry and sex simultaneously, and (iii) 
two-way models distinguished by sex-specific (female and 
male) population. The random forest feature importance was 
calculated during the analysis. All machine learning per-
formances were analyzed using R 4.2.3 (R Foundation for 
Statistical Computing, Vienna, Austria) with the “random-
Forest” and “e1071” packages [37, 38].

Results

As shown in Table 3, the rTEMs and the R values ranged 
from 0.41 to 2.66% and from 0.785 to 0.993, respectively. 
The mean, standard deviation, and ranges of the 18 meas-
urements are shown in Table 4. Among Japanese individu-
als, all of the mean measurement values in male subjects 
are larger than the corresponding mean measurements for 
female subjects. Among the Western Australian individuals, 
mean male values were greater than females for all measure-
ments, except FRB. Among the same sexes, the mean values 
of some measurements (e.g., MCL, BNL, and FRB) were 
larger in Western Australian compared to Japanese indi-
viduals. Conversely, the mean values of ZYB, LMH, RMH, 

Table 3  Relative technical error of measurements (rTEM) and coef-
ficient of reliability (R)

Measurement Intraobserver error Interobserver error

rTEM R rTEM R

MCL 0.41 0.987 0.68 0.965
BNL 0.63 0.979 0.63 0.980
FRB 0.92 0.993 1.84 0.785
ZYB 0.57 0.952 0.61 0.974
FML 1.11 0.978 1.34 0.890
FMB 1.01 0.912 1.35 0.839
LMH 2.59 0.931 2.66 0.830
RMH 0.72 0.971 1.20 0.880
NH 0.99 0.895 1.42 0.851
NB 1.25 0.982 2.13 0.968
LOH 0.98 0.944 1.60 0.794
ROH 0.72 0.981 1.76 0.878
LOB 1.91 0.925 2.33 0.855
ROB 1.87 0.932 2.14 0.849
MXB 1.65 0.925 1.71 0.886
MAB 1.28 0.960 1.54 0.937
BOB 1.34 0.982 0.65 0.980
BAE 0.62 0.948 1.46 0.904

Table 4  Descriptive statistics of 18 cranial measurements

a Standard deviation

Measure-
ment

Japanese Western Australian

Female (n = 111) Male (n = 119) Female (n = 112) Male (n = 113)

Range Mean ±  SDa Range Mean ± SD Range Mean ± SD Range Mean ± SD

MCL (mm) 158.74–192.72 171.83 ± 5.89 170.33–201.04 183.78 ± 6.10 164.50–195.24 179.46 ± 6.31 170.08–205.07 189.99 ± 7.07
BNL (mm) 89.91–107.38 99.62 ± 3.54 94.59–124.42 106.38 ± 4.16 90.06–109.04 100.42 ± 3.96 95.51–117.97 107.33 ± 4.64
FRB (mm) 85.36–119.27 104.09 ± 6.19 93.87–127.14 106.62 ± 6.09 91.82–126.78 111.11 ± 7.12 90.07–127.65 110.00 ± 7.36
ZYB (mm) 122.98–138.97 130.92 ± 3.91 124.88–150.76 139.77 ± 4.91 114.27–135.22 123.22 ± 3.97 121.92–138.43 131.32 ± 4.01
FML (mm) 29.73–40.35 34.77 ± 2.21 29.22–41.97 36.60 ± 2.24 32.09–43.26 36.59 ± 2.27 30.53–43.21 37.71 ± 2.31
FMB (mm) 24.03–33.56 28.92 ± 1.90 25.19–36.10 30.47 ± 1.79 24.81–37.04 31.09 ± 2.20 26.39–37.56 31.78 ± 2.14
LMH (mm) 21.17–36.06 29.58 ± 3.07 27.29–41.21 34.10 ± 2.91 19.42–36.72 28.70 ± 3.65 25.08–41.47 33.00 ± 3.42
RMH (mm) 22.07–36.92 29.44 ± 3.25 28.25–41.54 34.49 ± 2.90 20.31–38.76 29.24 ± 3.68 24.67–43.01 33.24 ± 3.66
NH (mm) 42.67–62.33 52.57 ± 3.45 48.07–62.51 55.71 ± 2.81 43.93–58.38 50.30 ± 2.93 45.22–60.12 53.51 ± 3.11
NB (mm) 20.81–32.76 25.92 ± 2.17 22.20–31.41 26.89 ± 1.94 19.13–29.26 23.57 ± 2.18 20.06–31.08 24.53 ± 2.03
NOH (mm) 36.63–45.71 41.06 ± 1.90 37.47–47.50 41.98 ± 1.91 34.31–45.94 40.53 ± 2.10 36.01–48.13 42.15 ± 2.38
ROH (mm) 36.78–48.25 40.62 ± 2.13 34.72–46.21 41.04 ± 2.14 34.27–44.81 39.92 ± 2.14 35.34–47.70 41.32 ± 2.64
LOB (mm) 34.07–43.27 37.93 ± 1.63 34.99–44.12 39.39 ± 1.60 35.30–44.66 38.78 ± 1.62 35.51–44.64 39.50 ± 1.89
ROB (mm) 34.72–42.33 37.74 ± 1.47 35.74–43.95 39.31 ± 1.47 35.65–44.94 38.71 ± 1.60 35.44–44.84 39.38 ± 1.89
MXB (mm) 83.42–103.10 95.11 ± 3.90 84.70–108.43 98.72 ± 5.18 73.71–94.40 84.11 ± 4.70 79.46–105.34 91.93 ± 4.89
MAB (mm) 50.52–70.73 61.09 ± 3.62 52.90–75.37 65.72 ± 4.11 48.85–71.42 58.16 ± 4.34 50.24–73.00 61.76 ± 4.33
BOB (mm) 88.12–108.08 96.03 ± 3.11 91.79–109.59 100.79 ± 3.65 85.00–107.22 94.28 ± 3.85 92.37–109.84 99.30 ± 3.62
BAE (mm) 109.98–132.19 120.12 ± 4.37 110.20–137.55 127.43 ± 4.94 104.07–129.46 115.02 ± 4.22 108.73–132.82 120.80 ± 4.15
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and NH were slightly larger in Japanese individuals. The 
Kruskal-Wallis test showed significant differences in all of 
the measurements between the four groups (p < 0.001). The 
results of the post hoc tests comparing the measurements of 
each two groups are given in Online Resource 1.

Results of machine learning models are summarized 
in Tables 5–8. As shown in Table 5, the accuracy of the 
two-way unisex model was 93.2% for RFM and 97.1% for 
SVM, respectively. Accuracy was higher in the Japanese, 
compared to the Western Australian sample. The four-way 
model demonstrated an overall classification accuracy of 
84.0% for RFM and 93.0% for SVM (Table 6). Female 
individuals were more likely to be correctly classified 
according to sex. The sex-specific ancestry analyses also 
revealed that the correct classification rates were higher 
in the female (95.1% for RFM and 100% for SVM) than 

in the male samples (91.4% for RFM and 97.4% for SVM; 
Tables 7 and 8).

Random forest feature importance demonstrated that 
MCL, ZYB, MXB, and BAE ranked in the top five in all 
analyses, indicating that they are the strongest weighted 
measurements (express the greatest population variance) 
relative to achieving correct classifications (Fig. 2; Online 
Resource 2).

Discussion

In the present study, the intra- and inter-observer errors were 
small and likely to be negligible. Considering these results, 
cranial landmark acquisition using 3D CT images in this 
study is highly reproducible.

Table 5  Classification matrix 
showing classification of groups 
according to ancestry

RFM random forest modeling, SVM support vector machine, JP Japanese, WA Western Australian

Group RFM SVM

JP WA % Correct JP WA % Correct

JP 218 12 94.8 227 3 98.7
WA 19 206 91.6 10 215 95.6
All 93.2 97.1

Table 6  Classification matrix 
showing classification of groups 
according to ancestry and sex

JPF Japanese female, JPM Japanese male, WAF Western Australian female, WAM Western Australian male

Group RFM SVM

JPF JPM WAF WAM % Correct JPF JPM WAF WAM % Correct

JPF 95 9 4 3 85.6 105 4 0 2 94.6
JPM 8 100 0 11 84.0 7 111 0 1 93.3
WAF 5 0 95 12 84.8 0 0 106 6 94.6
WAM 2 8 11 92 81.4 1 6 5 101 89.4
All 84.0 93.0

Table 7  Classification matrix 
showing classification of 
groups according to sex-specific 
ancestry (female)

Group RFM SVM

JPF WAF % Correct JPF WAF % Correct

JPF 108 3 97.3 111 0 100
WAF 8 104 92.9 0 112 100
All 95.1 100

Table 8  Classification matrix 
showing classification of 
groups according to sex-specific 
ancestry (male)

RFM SVM

Group JPM WAM % Correct JPM WAM % Correct

JPM 108 11 90.8 118 1 99.2
WAM 9 104 92.0 5 108 95.6
All 91.4 97.4
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Cranial size and shape are known to express significant pop-
ulational variability [39–41]. Previous research has reported 
that the skulls of Australian individuals are on average longer, 
taller, and with narrower frontal bones than those of Japanese 
individuals [19, 42, 43]. The results of this study also showed 
that the mean values of MCL and BNL were larger in Western 
Australian subjects, whereas the mean values of LMH and 
RMH were larger in Japanese subjects. However, the mean 
values of FRB were larger for Western Australian individuals, 
which did not accord with previous findings.

The results of this study revealed that the correct clas-
sification rates of the Japanese and Western Australian indi-
viduals were greater than 90% when sex was not considered, 

and above 80% when sex was classified simultaneously. This 
clearly indicates that cranial measurements derived from CT 
images are useful for the classification of Japanese and West-
ern Australian individuals. Franklin and Flavel [44] reported 
that Australia has become a multicultural country, with a 
dynamic population demographic that includes considerable 
migration from southeast Asia, with intra-population vari-
ation also evident between the States and Territories. Irre-
spective, the results of this study suggest that Japanese and 
Western Australian populations have different skull shapes.

In the present study, the mean age of the Japanese indi-
viduals was higher than that of the Western Australian 
subjects. Previous research has noted an increase in the 

Fig. 2  Random forest feature importance (mean decrease Gini) for the response variable. a The two-way unisex model, b the four-way sex and 
ancestry model, c the two-way female model, and d the two-way male model
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size of some cranial regions in middle-aged to elderly indi-
viduals; it has accordingly been suggested that large dif-
ferences between age distributions may skew results [45]. 
Conversely, Albert et al. [46] reported modest increases 
in craniofacial dimensions (1.1–1.6 mm) in the elderly, 
with facial height presenting the largest change relative to 
antemortem tooth loss. Therefore, although the effects of 
age-related craniofacial remodeling should be recognized, 
age may not be expected to be a major contributor to the 
misclassification rate observed in this study.

Hefner et al. [11] achieved 89.6% accuracy based on 
applying RFM to 110 skulls representing modern Ameri-
can White (n = 72), African American (n = 38), and 
Southwestern Hispanic (n = 39) skulls; the important cra-
niometric variables in the RFM included MCL and PBL. 
Navega et al. [10] used AncesTrees, which is a statistical 
procedure using RFM comprising 23 craniometric vari-
ables from 1734 individuals, representative of six major 
ancestral groups (European, African, Austro-Melanesian, 
Polynesian, Native American, and East Asian). The pro-
gram was tested in 128 adult crania (32 individuals of 
African ancestry and 96 of European ancestry); 75% of 
the African and 79.2% of the European individuals were 
correctly identified. The model involving only Afri-
can and European ancestral groups was more accurate 
(93.8%). Navega et al. [10] also reported that ZYB and 
BAE are the important variables in the RFM for ancestry 
and sex estimation. Similarly, our study demonstrated that 
MCL, ZYB, and BAE were the important factors (Fig. 2). 
Furthermore, there were significant differences in these 
variables between each two groups except for ZYB and 
BAE between Japanese female and Western Austral-
ian male groups, indicating that these measurements are 
useful in the classification of ancestry in multiple global 
populations.

Hefner and Ousley [47] also reported that RFM demon-
strated an overall classification rate of 85.5% for ancestry in 
a sample of 543 Americans (African American, Hispanic 
and White). The most significant advantage of RFM is that 
it transforms a low-bias and high-variance model into a low-
bias and low-variance model by training multiple decision 
trees simultaneously; the low variance is the most valuable 
feature for anthropological application [10]. Although LDA 
is also a valuable method to perform ancestry estimation 
from metrical data, it can usually be outperformed by the lat-
est machine learning classification algorithms [11, 48–50].

Spiros and Hefner [35] and Hefner and Ousley [47] 
reported that the SVM model provided higher classification 
accuracy than the RFM for the American individuals. Nikita 
and Nikitas [51] also reported that the SVM is more effective 
than RFM for skeletal ancestry and sex assessment. In this 
study, SVM revealed higher correct classification rates than 

RFM, probably due to the relatively small amount of data. 
Further studies considering other machine learning methods 
are necessary in the future.

In this study, when only female samples were consid-
ered, the correct classification rates according to ancestry 
were over 95%. Therefore, it is hypothesized that if an 
unidentified skull can be presumed to be female, it may be 
possible to estimate ancestry more accurately. However, 
other studies on sex-specific ancestry estimation using the 
skull are scarce and further research is required.

The majority of previous craniometric research specific 
to the estimation of ancestry have involved the analysis 
of data acquired in physical specimens [10, 52]. The 
data in the present study are, to the best of our knowl-
edge, amongst the first to assess the feasibility of ances-
try estimation using 3D CT images of the skull. Non-
invasive imaging techniques can maintain and visualize 
the arrangement of spatial structures and their potential 
relationships [53]. Previous research has considered the 
reliability and accuracy of estimating other biological 
attributes, such as sex, age, and stature in CT images 
[19, 54–57]. Sharing CT data among facilities in vari-
ous countries should facilitate collection of global and 
contemporary multi-populational data and thus afford a 
deeper understanding of craniometric diversity relative to 
ancestral origin.

Regarding skeletal measurements for ancestry estima-
tion, it should be recognized that some populations are 
poorly described in the published literature. Therefore, 
more comprehensive databases of missing persons are 
required to enhance identification efforts. In addition, it is 
crucial to consider that cranial features and measurements 
are phenotypic characteristics that are partially determined 
by heritability and influenced by the environment [58], and 
as noted above, are changing through time and especially 
with increased admixture in contemporary populations.

The literature clearly indicates that the majority of 
forensic anthropology ancestry studies focused broadly 
on the skull, despite bones such as the femur and tibia 
also potentially providing useful information [3]. Thus, 
further research addressing other skeletal measurements 
based on CT imaging is needed to assess the feasibility of 
ancestry estimation.

This study demonstrated several limitations. First, data 
were collected from two different facilities using 16- and 
64-row detector CT systems, with different conditions for 
the reconstructed images. Although these issues were not 
expected to significantly affect the measurements, it would 
be more appropriate to use the same detector CT images 
under the same conditions. Second, PMCT data and CT 
data from living patients were used in this study. Although 
it is unlikely that the shape or measurements change sig-
nificantly between ante- and post-mortem human remains, 
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the difference was not investigated in the present study. 
Third, morphometric geometric analysis may detect other 
significant differences by detailing differences due to cra-
nial size and shape [59, 60].

Conclusions

This study demonstrated that cranial measurements derived in 
3D CT images are useful for the accurate statistical classifica-
tion of Japanese and Western Australian individuals. This is 
the first study to investigate the feasibility of ancestry estima-
tion using 3D CT images of cranial measurements. Further CT 
data involving other populations should be collected to enable 
research of more diverse populations across the globe. In addi-
tion, further research addressing other skeletal measurements 
based on CT imaging to estimate ancestry is required.
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