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Abstract
Mitochondrial DNA (mtDNA) is of great value in forensics to procure information about a person when a next of kin, personal 
belongings, or other sources of nuclear DNA (nDNA) are unavailable, or nDNA is lacking in quality and quantity. The quality 
and reliability of the results depend greatly on ensuring optimal conditions for the given method, for instance, the optimal 
input of the copy number (CN) in next-generation sequencing (NGS) methods. The unavailability of commercial quantita-
tive PCR (qPCR) methods to determine mtDNA CN creates the necessity to rely on recommendations to infer mtDNA CN 
from nDNA yield. Because nDNA yield varies between individuals, tissues, parts of the same tissue, and because mtDNA 
CN varies between tissues, such assumptions must be examined for a specific context, rather than be generalized. This study 
compares mtDNA CN calculated from nDNA yield and qPCR measured mtDNA CN. Seventy-five femurs from the Second 
World War victims were used as samples; they were cut below the greater trochanter, surface contaminants were removed 
by mechanical and chemical cleaning, samples were fully demineralized, and DNA was isolated. PowerQuant® Kit (Pro-
mega) was used to analyze DNA yield. An in-house method was used to determine mtDNA CN. Comparison of mtDNA CN 
from nDNA derived calculations and measured mtDNA CN highlighted vast differences. The results emphasize the need to 
perform qPCR to assess mtDNA CN before NGS analyses of aged bones’ mitogenomes rather than estimating mtDNA CN 
from nDNA yield to ensure the quality and reliability of the results of NGS analysis.
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Introduction

In both routine practice and research in forensic genetics, 
samples such as hair shafts without roots or skeletonized 
human remains are frequently encountered that are deemed 
difficult to analyze because of the poorly preserved state they 
are found in. This is reflected in nucleic acid forensic analy-
ses, such as gold standard STR typing, for which nDNA 
from such samples may be lacking in quantity and quality, 
resulting in the use of alternatives to at least partially find the 
desired answers [1–4]. The most advantageous of these—
despite lacking discriminatory power—is mtDNA [5]. The 
mitogenome has distinct characteristics such as a round, 
enclosed shape, making it more resilient to breakdown 
[6]. The specific inheritance pattern of mtDNA—a mother 
passes on the mitogenome to all her children, both male and 
female—makes it possible to examine and follow maternal 
lineages and populations [7–9]. A unique characteristic of 
mtDNA is its rather diverse and strongly tissue-dependent 
copy number (CN) per cell as opposed to DNA, which is 
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always present in two copies per cell [10–14]. Cases in point 
include crime and missing person identification investiga-
tions [15], ancient DNA studies [16], historical case studies 
[9, 17], and ancestry studies [5].

When badly preserved DNA samples are analyzed, and 
sequencing of mtDNA must be performed, a correct assess-
ment of the mtDNA copy number is needed, especially 
when the next-generation sequencing (NGS) approach is 
used. For NGS, a precise input of nucleic acids is recom-
mended or even required for ruling out factors such as chi-
meric read and nuclear mitochondrial segments of nDNA 
called NUMTs, which could impact results and their inter-
pretation, especially when input DNA is too high [18, 19]. 
According to Parson (W. Parson, personal correspondence, 
MtDNA analysis, and interpretation using EMPOP, ISFG 
pre-congress workshop, Prague, September 9th, 2019), 1000 
to 5000 mitogenome copies are optimal for the best perfor-
mance of NGS analysis. For quantifying mtDNA, there are 
no commercially available kits; this problem was addressed 
by researchers developing various in-house qPCR mtDNA 
kits [20–23]. It is possible to follow different published mul-
tiplex approaches when preparing an in-house qPCR assay, 
for example, the one published by Alonso et al. [24]. How-
ever, for the widespread use in routine forensic casework, 
the use of commercial kits is preferred due to the validations 
required [25–27]. To overcome the problem of the lack of 
commercial mtDNA qPCR kits, various manuals for using 
NGS technology for mtDNA sequencing recommend esti-
mation of the input amount of mtDNA based on the nDNA 
quantity measured. Such an example is the Application 
Guide for Precision ID mtDNA NGS panels for both the 
whole genome and control region [28], for which 0.3 ng of 
DNA is claimed to correspond to 8700 copies of the mitog-
enome; even so, it is noted that the sample source and degra-
dation may affect this prediction [28]. Because of the tissue 
specificity of the mitogenome CN, such predictions may be 
inaccurate to various degrees even if made for a certain type 
of tissue—the aforementioned poorly preserved bones being 
one example—which poses a problem for further analyses. 
However, the recently published Technical Note on the Opti-
mization of Input DNA for Applied Biosystems™ Preci-
sion ID mtDNA Panels [29] included commentary advising 
mtDNA quantification, but no changes have been made in 
the guidelines for HID Ion Chef™ Instrument automated 
library preparations.

Generally, the mitogenome CN is tissue-specific [14], and 
bone tissue requires special attention when determining the 
correct mtDNA NGS input quantity if one takes into account 
the findings on the preservation of DNA in old bones. For 
aged bones, high nDNA degradation has been observed 
[30, 31], and there is a great variability in the preservation 
of DNA between different types of bones [31–34] within 
each bone [35–37] and between individuals [30, 31]. This 

represents the extraordinary complexity of old bone tissue, 
which most likely also reflects the differences in mtDNA 
preservation and its quantity and quality.

This study compares mtDNA CN calculated from nDNA 
qPCR results ([Auto] fragment (ng/μl) quantity measured 
with the PowerQuant™ kit (Promega) [38]) based on an 
NGS panel application guide recommendations [28] and 
measured mtDNA CN ([113 bp] fragment (copies/μl) meas-
ured with an in-house method based on Alonso et al. [24]) to 
ascertain a possible prediction ability of mtDNA CN from 
nDNA, using skeletonized human remains excavated from 
two separate Slovenian Second World War mass graves as 
a DNA source.

The Slovenian Medical Ethics Committee approved this 
study, approval number 0120-22/2017/3.

Materials and methods

Sample selection

Samples from two mass gravesites located near one another 
and dating back to the Second World War were selected 
because of their challenging yet relevant characteristics in 
forensic genetic examinations (skeletonized human remains, 
long postmortem interval, and DNA degradation). The sam-
ples were the diaphyses of femurs, cut below the greater 
trochanter, from 75 skeletons. Both gravesites are located 
in Slovenia, and their characteristics have been described in 
previously published studies [30, 37].

Preventing contamination

The utensils were cleaned with 6% sodium hypochlorite, 
followed by a bidistilled water rinse, 80% ethanol wash, and 
sterilization. UV irradiation of utensils, plastic consumables, 
and reagents was the final step in preventing contamina-
tion. Single-use nitrile gloves, gowns, and caps were used by 
personnel to avoid contamination with contemporary DNA. 
Extraction-negative controls and negative template controls 
were used to track any possible contamination events.

Bone sample preparation and automated DNA 
extraction

A room designed specifically for treatment of skeletonized 
human remains was used to prepare the samples; contami-
nants that were possibly present on the surface were removed 
with the outermost layer of bone in a fume cupboard (Iskra 
Pio, Šentjernej, Slovenia) by using a rotary tool (Schick, 
Schemmerhofen, Germany) with detachable burrs and dia-
mond discs. A 5% Alconox detergent (Sigma-Aldrich, St. 
Louis, MO, USA) wash followed, proceeded by washing 
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with bidistilled water (Millipore, Darmstadt, Germany) and 
80% ethanol (Fisher Scientific, Loughborough, UK). The 
samples were then dried overnight and broken into smaller 
pieces that were then pulverized; to prevent DNA damage 
caused by overheating, the metal jars used for grinding were 
cooled with liquid nitrogen just before grinding the samples 
into powder with a Bead Beater MillMix 20 homogenizer 
(Tehtnica, Domel, Železniki, Slovenia). The oscillation fre-
quency was set to 30 Hz and the time of grinding to 1 min. 
Ten milliliters of ethylenediaminetetraacetic acid (EDTA; 
Promega, Madison, WI, USA) was added to 0.5 g of fine 
bone powder to demineralize it through overnight incuba-
tion at 37 °C. A previously published research [39] describes 
this optimized process in extensive detail. The Biorobot EZ1 
(Qiagen, Hilden, Germany) and the EZ1 DNA Investigator 
Kit (Qiagen) were used with the following settings as sug-
gested by the manufacturer: trace protocol and 50 μl of DNA 
in a Tris EDTA buffer elution.

DNA quantification

An average of replications was used as a result for each 
sample, and requantification was performed in samples 
where more than 2-fold difference between the replicates 
was observed.

DNA yield

To analyze DNA, the PowerQuant System (Promega) was 
used. The kit measures the amount of nDNA [Auto] target, 
the amount of Y-chromosome DNA, and a longer [Deg] 
target to assess potential degradation (the ratio between 
the [Auto]/[Deg] targets) and the presence of PCR inhibi-
tors. The two multi-copy targets for assessing degradation 
differ in length: the shorter 84 bp autosomal [Auto] target 
and the longer 294 bp degradation [Deg] target. The pres-
ence of PCR inhibitors is determined with internal positive 
control (IPC), which co-amplifies with the sample. The 
[Auto]/[Deg] ratio threshold was set to 2, and the IPC shift 
threshold was set to 0.30, as per the manufacturer’s guide-
lines. The QuantStudio™ 5 Real-Time PCR System (TFS) 
and Design and Analysis Software v1.5.2 (TFS) were used. 
Serial dilutions (0.0032 ng/μl, 0.08 ng/μl, 2 ng/μl, and 
50 ng/μl) of PowerQuant® Male gDNA (Promega) with 
PowerQuant® Dilution Buffer (Promega) were used for 
the standard curve, as per manufacturer’s guidelines. The 
PowerQuant Analysis Tool (Promega), a Microsoft Excel 
macro file provided by the manufacturer, was used to view 
the results, calculate the results averages, and calculate 
the Auto/Deg ratio. Quantifications were performed in 
duplicate for all samples, and a negative template con-
trol was included in each run. The quantity of DNA was 

determined from the shorter [Auto] target, and the [Deg] 
target was used only for calculating the degradation of 
DNA [38].

mtDNA copy number

A modified in-house qPCR protocol was structured in line 
with the method published by Alonso et al. (2004), in which 
a 620 bp fragment (isolated from a human donor DNA) cov-
ering the HV1 region of mitogenome was used as a standard, 
and a single-copy target (113 bp) was used to determine 
the mitogenome copy number [24]. A spectrophotometric 
method using Synergy H4 (BioTek) was used to quantify the 
mitogenome. The copy number was then calculated based on 
the molecular weight of the fragment. After concentration 
normalization, serial dilutions (6,000,000 copies/μl, 600,000 
copies/μl, 60,000 copies/μl, 6000 copies/μl, 600 copies/μl, 
and 60 copies/μl) were used to create a standard curve. The 
primers and fluorescent-labeled TaqMan MGB probes were 
custom-ordered (Applied Biosystems, Renfrewshire, UK). 
The QuantStudio™ 5 Real-Time PCR System (TFS) and 
Design and Analysis Software v1.5.2 (TFS) were used for 
quantification. TaqMan™ Universal Master Mix II with 
Uracil-N-glycosylase (TFS) was used instead of 1X TaqMan 
Universal PCR Master Mix (AB) because the latter has been 
discontinued. Duplicate quantifications were made for all 
samples, and a negative template control was included in 
each run.

Additionally, the copy number of mitogenome was calcu-
lated as per manufacturer’s guidelines, where it is stated that 
0.3 ng of nDNA corresponds to 8700 copies of mitogenome 
(or 0.1 ng of nDNA is 2900 copies of mitogenome) [28]. 
Furthermore, a ratio between measured and calculated copy 
number of mtDNA has been determined.

Statistical evaluation

IBM SPSS Statistics for Mac, Version 23.0 (IBM Corp., 
Armonk, NY 2015), and Microsoft Excel for Mac, Version 
16.67 (Microsoft Corporation 2022), were used to carry out 
descriptive statistics.

Results

The complete results for 75 femurs excavated from the Sec-
ond World War mass graves for the nDNA PowerQuant Kit 
(Promega) qPCR analyses, mtDNA in-house qPCR analy-
ses, and calculations are shown in Supplementary Material 
1 (SM1—Table 1, 2, and 3) and in Fig. 1.
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qPCR and calculations

The quantity of nDNA [Auto] fragment expressed in ng/μl 
ranged between 0.0022 ng/μl and 0.3283 ng/μl, and it aver-
aged 0.0846 ng/μl. IPC shifts were between −3 (S59) and 
0.76 (S65) (see SM1, Table 1).

The measured CN of the mtDNA 113 bp fragment (cop-
ies/μl) ranged from 5547 to 375,685 copies/μl and averaged 
115,019.79 copies/μl (see SM1, Table 1).

The calculated mtDNA CN ranged from 64 to 9521, and 
the ratio between the measured and calculated CN ranged 
from 3 to 2498 (see SM1, Table 2).

Discussion

Our results derived from 75 femurs from two Second World 
War mass graves showed that there is a vast difference 
when calculating mtDNA copy number from nDNA quan-
tity (using the short multi-copy target PowerQuant System 
(Promega), and as recommended by TFS [28]) and mtDNA 
quantity measured with qPCR (using short in-house single-
copy target from quantification assay published by Alonso 
et al. [24]). When quantifying nDNA with the PowerQuant 
System (Promega) and mtDNA with Alonso’s in-house 
assay, shorter targets are used to determine nDNA and 
mtDNA yields [24, 38], and therefore, these targets (84 bp 
for nDNA and 113 bp for mtDNA) were used for calcula-
tions and comparisons. The length of the shorter mtDNA 
target also coincides with the length of the targets in NGS 
applications; for example, 153 bp is the average amplicon 
size for the Precision ID mtDNA Control Region Panel, as 
stated in the Precision ID mtDNA Panels with the HID Ion 
S5™ / HID Ion GeneStudio™ S5 System Application Guide 
[28], indicating that, for estimating the appropriate input of 
mtDNA for NGS analysis, information on the quantity of the 
shorter 113 bp mtDNA fragment is important.

Even if the same type of skeletal element was used, and 
the same intra-bone part was sampled, the wide interval 
between minimum and maximum in both targets for meas-
uring the nDNA yield as well as the mtDNA copy num-
ber shows large variability in DNA content in samples 
even though the remains had the same postmortem inter-
val (~75 years) and had been exposed to similar environ-
mental conditions (both mass graves were located in karst 
caves), indicating the high complexity of aged bone tissue 
in the preservation of DNA. Namely, numerous studies have 
shown that there are differences in nDNA yields between 

different types of skeletal elements [33, 40, 41] and even 
between different parts of the same skeletal element [35–37]. 
Furthermore, in all samples measured, mtDNA CN was 3 
to 2498-fold larger than from nDNA qPCR results calcu-
lated mtDNA CN, which indicates that an underestimation 
would have been made if mtDNA CN was calculated from 
nDNA qPCR results instead of being measured using qPCR 
mtDNA target. This can be attributed to the better resilience 
[6] and much larger CN of mitogenome in comparison to 
nDNA [10–14]. Our results conclude that nDNA is much 
more degraded compared to mtDNA, which certifies that 
mtDNA has a better preservation ability in aged skeletal 
remains. Calculating mtDNA CN from nDNA qPCR results 
as per recommendations [28] therefore portrays much lower 
mtDNA CN than it would if mtDNA CN is measured with 
qPCR using mtDNA target. Moreover, variability in DNA 
content between the samples can also be attributed to inter-
individual differences, as seen in our study of Second World 
War femur diaphyses and other studies performed on aged 
bones [30, 31].

Successful identification of skeletonized remains often 
relies upon DNA analyses, frequently focusing on the mid-
diaphysis of weight-bearing long bones. In a study that 
explored intra-bone DNA variability using bovine and por-
cine femora, along with calcanei and tali, DNA from fresh 
and short-term environmentally exposed bone was extracted 
utilizing demineralization and standard lysis buffer proto-
cols. DNA quantity and quality were measured. Overall, 
femoral epiphyses, metaphyses, and tarsals had more nuclear 
and mitochondrial DNA than did the femoral diaphyses. 
DNA loss was much more rapid in buried bones than in 
surface-exposed bones, while DNA quality differed based 
on environment but not bone region/element. However, 
the relation between nDNA yield and mtDNA CN was not 
explored, bones were of animal origin and either fresh or 
only short-term exposed to the environment (buried) [42]. 
To gain insight into specific contexts such as mtDNA copy 
number in decades-long environmentally exposed human 
bones, additional analyses must be performed. Because of 
the high complexity of DNA preservation in old skeletal 
remains, we recommend performing the mtDNA qPCR anal-
yses before mtDNA NGS, and not assessing it from nDNA 
qPCR results, to avoid issues that could result from incorrect 
mtDNA input in high-priced NGS analyses. Low-cost qPCR 
tests are undemanding and—when working with challenging 
samples—a necessity.

Conclusion

According to the comparison between calculated mtDNA 
CN from nDNA quantity (PowerQuant [Auto] target) and 
qPCR measured mtDNA CN [113 bp target], there would 

Fig. 1   Comparison of qPCR results of mtDNA [113 bp] in copies/μl 
and calculated mtDNA copies/μl based on nDNA [Auto] target (84 
bp) (PowerQuant System, Promega) and manufacturer's instructions 
[28]

◂
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have been an underestimation at assessing mtDNA CN in 
the 75 Second World War femurs studied. Because of the 
great complexity of aged bones, there is a need for mtDNA 
qPCR quantification for NGS analyses to correctly meet the 
input requirements of such analyses and to generate accu-
rate results. It must be stressed that the association between 
nDNA and mtDNA examined in this study is only applica-
ble in this way when comparing the results of the specific 
kit/method combination: a multi-copy target PowerQuant 
System (Promega) for nDNA and an in-house single-copy 
target qPCR mtDNA quantification method based on Alonso 
et al. [24] using short targets of each assay. Comparisons 
and relations between any other combinations of kits used 
for determining the nDNA quantity and mtDNA CN must 
be tested separately.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00414-​023-​03074-2.
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