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Abstract
Introduction The estimation of post-mortem interval (PMI) remains a major challenge in forensic science. Most of the 
proposed approaches lack the reliability required to meet the rigorous forensic standards.
Objectives We applied 1H NMR metabolomics to estimate PMI on ovine vitreous humour comparing the results with the 
actual scientific gold standard, namely vitreous potassium concentrations.
Methods Vitreous humour samples were collected in a time frame ranging from 6 to 86 h after death. Experiments were 
performed by using 1H NMR metabolomics and ion capillary analysis. Data were submitted to multivariate statistical data 
analysis.
Results A multivariate calibration model was built to estimate PMI based on 47 vitreous humour samples. The model was 
validated with an independent test set of 24 samples, obtaining a prediction error on the entire range of 6.9 h for PMI < 
24 h, 7.4 h for PMI between 24 and 48 h, and 10.3 h for PMI > 48 h. Time-related modifications of the 1H NMR vitreous 
metabolomic profile could predict PMI better than potassium up to 48 h after death, whilst a combination of the two is better 
than the single approach for higher PMI estimation.
Conclusion The present study, although in a proof-of-concept animal model, shows that vitreous metabolomics can be a 
powerful tool to predict PMI providing a more accurate estimation compared to the widely studied approach based on vitre-
ous potassium concentrations.

Keywords Vitreous humour · 1H NMR metabolomics · PMI · Potassium concentration · Animal model · CIA

Introduction

Determining the post-mortem interval (PMI) has always 
been a major challenge for forensic pathologists. Although 
different methods have been developed over the years 
[1–10], an accurate PMI estimation, highly required in the 
forensic setting, is still difficult to be obtained.

In consideration of its peculiar anatomy and physiology, 
the eye has thoroughly been studied for forensic purposes 
[11–14]. In particular, vitreous humour (VH) has been a 
biofluid of choice for forensic purposes [15], being inves-
tigated through chemical, biochemical, toxicological, and 
metabolomic approaches to address not only the cause but 
also the time since death. The post-mortem modifications 
in VH potassium concentration  [K+] have probably been 
the most studied biological parameter to infer the time since 
death [15].
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Recently, multiparametric approaches, such as -omics sci-
ences, appear more suitable to study the multitude of bio-
logical phenomena occurring in the post-mortem compared 
to the traditional methods based on single or few param-
eters [16–20]. Amongst them, metabolomics, gradually tak-
ing over in forensic research [21, 22], appears suitable to 
intercept time-related modifications in the early-mid PMI 
window (up to 72/96 h). In fact, a growing body of evi-
dence suggests that elapsing time represents the main factor 
driving metabolome modifications in the post-mortem [23]. 
Some of the authors have already demonstrated the feasibil-
ity of VH metabolome analysis with 1H NMR approach [24].

Recently, we applied 1H NMR metabolomics to study 
post-mortem modifications of aqueous humour in an animal 
model (Ovis aries) for PMI estimation [25] using potassium 
analysis for comparison with an established approach [26]. 
Through a rigorous statistical evaluation, it was possible 
to estimate PMI with a prediction error of 100 min on the 
entire time range investigated (24 h). The results suggested a 
shared biological phenomenon driving the modifications of 
both metabolome and  [K+], being the former able to explain 
most of the information carried by potassium but showing a 
greater predictive power in PMI estimation.

The paramount need to investigate higher PMIs fostered 
the translation of this approach to the VH. To the best of 
the authors’ knowledge, this is the first work in which VH 
metabolome and potassium are investigated and compared 
for an accurate estimation of PMI in a controlled animal 
model.

Materials and methods

Sample collection and preparation

Thirty-six heads from young adult female sheep (Ovis aries) 
belonging to the same herd were obtained from a local 
slaughterhouse after animal sacrifice (for meat consump-
tion) by incision of the jugular vein after electrical stunning. 
Sheep heads are discarded as waste material, and, conse-
quently, formal approval from the local Ethic Committee 
was not required for the experimental procedure. All ani-
mals were aged between 24 and 48 months and had passed 
standard controls for food consumption. Sheep heads were 
rapidly transported to the morgue of the Forensic Science 
Unit of the University of Cagliari and kept under controlled 
conditions of humidity (50 ± 5%) and temperature (25 ± 
2 °C) for all the period of VH collection. Sampling was 
started at 6 h after death to allow adequate VH collection 
for metabolomics, since it was shown that in this time win-
dow VH metabolomic composition may be affected by topo-
graphical differences of VH sampling [27]. Approximately 
1 mL of VH was collected from intact heads using a 5-mL 

G22 syringe through a single scleral puncture in the lateral 
canthus. Sampling was carried out at different post-mortem 
intervals, ranging from 6 to 84 h. Any eye was sampled once 
only, to avoid possible contamination. The VH samples 
taken from the two eyes of the same animal were collected 
at different times after death. After collection, the VH sam-
ples were centrifuged at 13,000 g for 5 min to remove any 
solid debris, mixed with 10 μL of an aqueous solution of 
sodium azide  (NaN3, 10% w/w) in order to prevent bacte-
rial growth, and immediately frozen at − 80 °C. A stratified 
random selection procedure based on the different ranges of 
PMI was applied to select 47 VH samples for the training 
set. The remaining 24 samples were used for the test set. One 
sample was excluded due to blood contamination.

VH sample preparation for NMR analysis

Before NMR analysis, samples were thawed and ultrafiltered 
using a 30-kDa filter unit (Amicon-30kDa; Merck Millipore, 
Darmstadt, Germany) for 10 min at 13,000 g and 4 °C in 
order to remove macromolecules and active enzymes. Fil-
ters were previously washed out from glycerol by adding 
500 μL of distilled water and by centrifuging for 10 min at 
10,000 rpm at room temperature for 15 times. For the NMR 
analysis, 250 μL of filtered VH was diluted with 350 μL of a 
0.33-M phosphate buffer solution (pH=7.4) in  D2O (99.9%, 
Cambridge Isotope Laboratories Inc., Andover, USA) 
containing the internal standard sodium 3 (trimethylsilyl)
propionate-2,2,3,3,-d4 (TSP, 98 atom % D, Sigma-Aldrich, 
Milan) at a 0.75-mM final concentration, and transferred into 
a 5-mm NMR tube. A volume of 650 μL of the final solution 
was then transferred into a 5-mm NMR tube.

1H NMR experiments and data processing

1H NMR experiments were carried out on a Varian UNITY 
INOVA 500 spectrometer (Agilent Technologies, CA, USA) 
operating at 499.839 MHz. Spectra were acquired at 300K 
using the standard 1D NOESY pulse sequence for water 
suppression with a mixing time of 1 ms and a recycle time 
of 21.5 s. Spectra were recorded with a spectral width of 
6000 Hz, a 90° pulse, and 128 scans. Spectra were pro-
cessed using MestReNova software (Version 9.0, Mestre-
lab Research S.L.). Prior to Fourier transformation, the free 
induction decays (FID) were multiplied by an exponential 
weighting function equivalent to a line broadening of 0.5 Hz 
and zero-filled to 128K. All spectra were phased, baseline-
corrected, and referenced to TSP at 0.00 ppm. The spectral 
region 0.80–9.00 ppm was segmented into buckets of 0.02 
ppm width. The integrated area within each bin was nor-
malised to a constant sum of 100 for each spectrum. The 
region containing the residual water resonance was excluded 
before integration. The assignment of the metabolites in the 
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1H NMR spectra was performed based on literature data [24, 
27], the HMDB database (http:// www. hmdb. ca) [28], the 
Chenomx NMR Suite 8.2 Library (Chenomx Inc., Edmon-
ton, Canada), and comparison with spectra of standard com-
pounds recorded using the same experimental conditions. 
Moreover, using the Chenomx NMR Suite Profiler tool, a 
set of 52 quantified metabolites was obtained (Supplemen-
tary Table S1). The final data set was exported as a text file 
for multivariate statistical data analysis. Mean centring was 
applied prior to performing data analysis.

CIA experiments for potassium determination

Standards and chemicals

Standard solutions of potassium  (K+) and barium  (Ba2+) 
were prepared from AnalaR salts (KCl and  BaCl2) (Merck, 
Darmstadt, Germany). 18-Crown-6 ether (99% pure) and 
α-hydroxybutyric acid (HIBA) (99% pure) were obtained 
from Aldrich (Milan, Italy); imidazole (99% pure) and 
glacial acetic acid were obtained from Sigma (St. Louis, 
MO, USA). All chemicals were of analytical-reagent grade. 
Ultrapure water was obtained by an ELGA VEOLIA (Lane 
End, High Wycombe, UK) water purification system.

Instrumentation

All experiments were performed using a P/ACE MDQ 
Capillary Electrophoresis System (Beckman, Fullerton, 
CA, USA) equipped with a UV filter detector set at 214 nm 
wavelength, with indirect detection. In all the experiments, 
untreated fused-silica capillaries (75 μm I.D., 50 cm effec-
tive length; Beckman) were used. The capillary was ther-
mostated at 25 °C. Beckman P/ACE Station (version 8.0) 
software was used for instrument control, data acquisition, 
and processing. Separations were performed as previously 
described [29]. Briefly, the running buffer was composed 
of 5 mM imidazole, 6 mM HIBA, and 5 mM 18-crown-6 
ether adjusted to pH 4.5 with acetic acid. Constant voltage 
runs were performed in all experiments by applying a field 
of 500 V/cm. The analytes were injected at the anodic end 
of the capillary at 0.5 psi for 10 s. Prior to analysis, all sam-
ples were diluted 1:20 with a 40 μg/mL solution of  BaCl2 
(internal standard). Between consecutive runs, the capillary 
was washed with water (3 min) and then with the running 
buffer (2 min).

Statistical data analysis

Exploratory data analysis was performed by principal com-
ponent analysis (PCA) to discover outliers and specific 
trends in the data. Thus, supervised data analysis based on 
Projection to Latent Structure (PLS) regression [30] was 

applied to evaluate the effects of PMI on the metabolomic 
profiles of the collected samples.

Since PMI showed a non-linear behaviour with respect 
to the metabolite content of VH, two different regression 
approaches were applied.

The first approach considered PMI as an ordinal variable 
after dividing the PMI window into intervals. Because the 
metabolite concentrations measured in VH were strongly 
correlated and the number of training samples was smaller 
than the number of predictors, standard regression methods 
developed for ordinal data such as ordered logistic regres-
sion could not be applied. For this reason, we developed 
a new method based on PLS. The method is a three-step 
procedure where in the first step the levels of the ordinal 
variable are used as classes to drive a PLS for a classifica-
tion (PLS2-C) [31] model whose score components are used 
as predictors in the second step where post-transformation 
of PLS (pfPLS2) [30] is used to model the ordinal variable 
represented by means of the rank of its levels. As a result, 
an order between the levels of the ordinal variable is intro-
duced. After these two steps, the latent variable explaining 
the ordinal variable is calculated. To transform the continu-
ous latent variable into a categorical variable, a Naïve Bayes 
classifier is built. Since PLS techniques are robust in the 
presence of predictor matrices that are not full-column rank 
matrices, the method is suitable for metabolomics investiga-
tions. Repeated N-fold cross-validation was applied in model 
optimization to estimate the number of PLS components 
to use for PLS2-C and ptPLS2, and randomisation test to 
assess the reliability of the obtained model. A suitable cost 
function based on the misclassification error was minimised 
during cross-validation. Selectivity ratio (SR) [32] based on 
the predictive component of the ptPLS2 model was calcu-
lated to discover the metabolites mainly associated to PMI.

The second approach was developed to directly estimate 
PMI by regression. Since PMI has only positive values, we 
considered the logit-transformation to map PMI into a new 
space where regression was performed. Specifically, PMI 
was linearly mapped into the closed interval [ε1, ε2], being ε1 
and ε2 two model parameters in ]0,1[ with ε2 > ε1 to be esti-
mated from the data, and the images ε of PMI in [ε1, ε2] were 
logit-transformed to obtain the response to be submitted to 
PLS2 regression. PMI was, then, predicted applying the 
PLS2 model on the metabolic profile and using the logistic 
function to obtain the image ε of PMI in ]0,1[. That image 
was linearly transformed into PMI in the range [0,L] where 
L is the maximum value assumed for the prediction of PMI. 
The procedure assured that the predicted values were posi-
tive. Moreover, non-linearity could be introduced modifying 
the model parameters ε1 and ε2. Indeed, assuming ε1 and ε2 
are close to 0.5, the model was linear whereas non-linearity 
was introduced for ε1 and ε2 moving towards 0 or 1. Param-
eters ε1 and ε2 and the number of PLS2 components were 
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optimised by repeated N-fold cross-validation maximising 
the R2 calculated by cross-validation, i.e. Q2. A randomi-
sation test was applied to test the reliability of the model. 
Model interpretation in terms of single predictors was per-
formed calculating the SR parameter.

PCA was performed by SIMCA 17 (Sartorius Stedim 
Data Analytics AB) whereas suitable in-house functions 
implemented by R 4.0.4 platform (R Foundation for Sta-
tistical Computing) were built to perform PLS-based data 
analysis.

Results

VH metabolomic profile vs. PMI

VH samples (n = 71) collected at different PMIs, ranging 
from 6 to 84 h, were analysed by 1H NMR. The 47 samples 
selected for the training set and the remaining 24 samples 
used as test set covered the entire investigated PMI window.

Outlier detection was performed considering the cen-
tred binned data and applying the T2 Hotelling test and the 
Q-residual distance test. Assuming α = 0.05, no outliers 
were detected.

Exploratory data analysis by PCA applied to the 
autoscaled set of 52 quantified metabolites generated a 
model with 2 principal components, R2 = 0.488 and Q2 
= 0.363. The score scatter plot and the loading plot are 
reported in Fig. 1. Colouring the samples in the score scat-
ter plot (Fig. 1A) according to PMI shows a PMI-related 
trajectory of samples from the upper right-hand corner to 
the bottom left-hand corner, proving that the data variation 

of the quantified metabolites included information about 
PMI. Specifically, the investigation of the loading plot 
(Fig. 1B) allowed the identification of single metabolites 
mainly associated to PMI, as indicated in the caption of 
Fig. 1. After exploratory data analysis, regression model-
ling was applied. Firstly, the PMI temporal window was 
split into three intervals corresponding to PMI less than 
24 h (interval A), PMI from 24 to 48 h (interval B), and 
PMI greater than 48 h (interval C), respectively, and an 
ordinal regression model based on PLS was built to pre-
dict the interval of PMI given the quantified metabolites. 
Samples resulted to be balanced with respect to the PMI 
intervals: interval A included 15 training samples and 7 
test samples, and interval B included 14 training and 8 
test samples, whereas 18 training and 9 test samples were 
included in interval C. Autoscaling the data, the model 
showed 3 components for the PLS2-C part and 2 compo-
nents for the ptPLS2 part. The model passed the randomi-
sation test (1000 random permutation) assuming α = 0.05. 
The results in calculating, cross-validating (20 repetitions 
of 5-fold cross-validation), and predicting the test set have 
been reported as confusion matrices in Fig. 2. It is worth 
noting that misclassification errors occurred only in con-
tiguous intervals. In particular, when the test set is used, 
only two samples belonging to interval B were misclassi-
fied, one being predicted to belong to interval A and the 
other to interval C. Assuming α = 0.05, we found that ala-
nine, creatine, succinate, glycine, hypoxanthine, choline, 
ethanolamine, glutamate, taurine, and 3-hydroxybutyrate 
resulted to be significantly related to PMI on the basis of 
SR. Only 3-hydroxybutyrate decreased with PMI whilst 
the other relevant metabolites were positively correlated 

Fig. 1  PCA model: PMI increases from the upper right-hand cor-
ner to the bottom left-hand corner (panel A). Investigating the load-
ing plot (panel B), the decreasing of glucose, pyruvate, and 3-OH-
butyrate with the increasing of PMI is observed, whilst late PMI 

samples (48–84 h) are characterised by higher levels of taurine, cho-
line, creatine, hypoxanthine, ethanolamine, and succinate. Samples of 
the training set are indicated as “training” whereas samples of the test 
set as “test”
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to PMI. Thus, PMI was directly modelled using the new 
PLS approach developed for positive response and non-
linear regression. The dataset of the quantified metabolites 
was log-transformed and autoscaled. The model showed 3 
components, ε1=0.02, ε2=0.10, R2=0.941 (p < 0.001), and 
Q2=0.852 (p < 0.001). The model passed the randomisa-
tion test (1000 random permutation) assuming α = 0.05. 
The root mean square error (RMSE) in calculation was 
5.6 h, RMSE by 20-repeated 5-fold cross-validation was 
8.9 h, and RMSE obtained predicting the test set was 8.5 
h. Considering the intervals defined in the case of ordinal 
regression, the RMSEs estimated using the test set were 
6.9 h for PMI < 24 h, 7.4 h for PMI between 24 and 48 h, 
and 10.3 h for PMI > 48 h. Assuming α = 0.05, the analy-
sis of the SR spectrum allowed us to discover threonine, 
alanine, glutamate, and glycine, which are positively cor-
related to PMI, and glucose and 3-hydroxybutyrate, which 
are negatively correlated to PMI, as significantly relevant. 
The results of the interpretation of the regression models 
are summarised in Fig. 3.

[K+] vs. PMI

VH potassium concentrations  [K+] were determined in 71 
VH samples collected at different PMIs, ranging from 6 to 
84 h. The potassium concentrations in the analysed samples 
ranged from 7.60 to 39.20 mM.

The relationship between  [K+] and PMI was investi-
gated by linear regression. The model showed R2=0.582 
(p < 0.001), Q2=0.543 (p < 0.001), RMSE in calculation 
equal to 14.7 h, RMSE estimated by 20-repeated 5-fold 
cross-validation equal to 15.4 h, and RMSE in prediction 
equal to 11.5 h. Specifically, the RMSEs estimated using 
the test set were 14.2 h for PMI < 24 h, 8.8 h for PMI 
between 24 and 48 h, and 11.2 h for PMI > 48 h. In Fig. 4, 
we have reported in the same plot  [K+] vs. PMI. The pre-
diction errors resulted to be worse than those obtained 
considering the quantified metabolites. This is particu-
larly relevant for PMI less than 24 h. However, potassium 
concentration may help in predicting PMI if considered 
together with metabolite concentration. As a proof-
of-principle, we investigated the relationship between 
potassium concentration and quantified metabolites by 

PLS2 regression. Metabolic data were log-transformed 
and autoscaled. The PLS2 model showed 1 component, 
R2=0.631 (p < 0.001), and Q2=0.535 (p < 0.001). The 
metabolites that better explain  [K+] were discovered by SR 
(Fig. 5). Considering the unexplained variance of  [K+] and 
modelling PMI by linear regression, we obtained a model 
with R2=0.022 (p = 0.315) and Q2=− 0.097 (p = 0.760) 
that resulted to be unreliable. We could conclude that most 
of the data variation of the potassium concentration can 
be explained by the quantified metabolites and that the 
unexplained variance is not related to PMI. Therefore, the 
use of potassium concentration together with metabolite 
concentration may not lead to a relevant improvement in 
the modelling of PMI with respect to the use of the quanti-
fied metabolites alone.

Fig. 2  Regression model for ordinal data: confusion matrices obtained calculating the training set (A), performing cross-validation (B) and pre-
dicting the test set (C)

Fig. 3  The SR obtained for the ordinal regression model (SRordinal) 
and that of the regression model (SR) are reported in the same plot; 
both the ordinal and the regression models discovered 3-hydroxy-
butyrate, negatively correlated to PMI, and alanine, glutamate, and 
glycine, positively correlated to PMI, as significantly relevant in pre-
dicting PMI (the profiles of these metabolites are reported in Fig. S2 
of Supplementary Materials). The SR values have been multiplied 
by the sign of the Pearson correlation coefficient calculated between 
PMI and metabolite concentration; dashed red lines indicate the 
thresholds of SR at level α = 0.05
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VH metabolites and  [K+] vs. PMI

The 52 quantified metabolites and the potassium concen-
tration were considered to model PMI using the non-linear 

PLS regression approach. Metabolic data were log-trans-
formed, and the potassium concentration was included as 
 [K+]γ being the power γ estimated from the data. The param-
eters γ, ε1, and ε2 and the number of components of the 
PLS2 model were optimised maximising Q2 calculated by 
20-repeated 5-fold cross-validation. The best model showed 
2 components, γ = 3, ε1=0.015, ε2=0.10, R2=0.942 (p < 
0.001), and Q2=0.871 (p < 0.001). The model passed the 
randomisation test (1000 random permutations) assuming 
α = 0.05. The RMSE in calculation was 5.5 h, the RMSE 
in cross-validation 8.4 h, and the RMSE in prediction 7.4 h. 
Specifically, the errors estimated using the test set were 5.7 
h for PMI < 24 h, 7.4 h for PMI between 24 and 48 h, and 
8.4 h for PMI > 48 h. In Table 1, we have summarised the 
results of the obtained models. As expected, the improve-
ment obtained including potassium concentration in the set 
of the predictors is weak and mainly concerns PMI after 48 
h. Moreover,  [K+] is not significantly relevant if one consid-
ers SR and α = 0.05.

A tentative refinement of our model through the selection 
of the optimal subset which minimises the error in cross-
validation (10 predictors instead of 53) leads to an error 
in prediction of 8.1 h compared to 8.4 h when all the 53 
predictors are considered, namely a decrease of less than 
5%. Moreover, considering each single relevant predictor, 
the errors in prediction increase more than 70% compared 
to the use of all predictors.

Fig. 4  Potassium concentration  ([K+]) vs. PMI; the dashed line indi-
cates the regression line estimated by linear regression

Fig. 5  Potassium concentration vs. quantified metabolites: SR plot; 
threonine, choline, alanine, hypoxanthine, taurine, creatine, gluta-
mate, and glycine, positively correlated to  [K+], and glucose and 
3-hydroxybutyrate, negatively correlated to  [K+], were discovered as 

relevant. The SR values have been multiplied by the sign of the Pear-
son correlation coefficient calculated between  [K+] and metabolite 
concentration; dashed red lines indicate the thresholds of SR at level 
α = 0.05
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Discussion

VH has been long established as a biofluid of choice in 
forensic post-mortem investigation, with particular atten-
tion to PMI estimation. The work here presented is part of a 
wider project aimed at testing new methods for PMI estima-
tion over different temporal windows in animal models. The 
rationale of our approach was based on the specific choice 
of biological matrices appropriate for the study of different 
PMI ranges. In particular, AH was successfully tested to 
accurately establish PMI up to 24 h after death, with a new 
approach combining 1H NMR metabolomic and potassium 
analysis [26]. Since AH cannot be usually sampled at higher 
PMIs, the approach was translated to VH which has been 
traditionally used for this purpose [13, 15].

The observed post-mortem VH metabolome modifica-
tions were exploited to build a predictive model for PMI 
and was compared with the model based on VH potassium 
obtained in the same dataset, being the latter the actual 
scientific gold standard for PMI estimation. In the hypoth-
esis of investigating two different biological phenomena, 
the combined use of the two experimental approaches was 
also tested.

Results show that VH metabolomic composition is grad-
ually modified both qualitatively and quantitatively with 
increasing PMIs. The best regression model for PMI estima-
tion obtained using VH quantified metabolites is a non-linear 
model characterised by a high predictive ability; indeed, 
when tested on an independent set of VH samples, it shows 
an error in prediction of 8.5 h over the entire PMI range (80 
h ranging from the 6th to the 86th h after death). When three 
selected PMI ranges are considered (< 24, 24–48, > 48 h), 
the errors in prediction increase with increasing PMI. This 
is foreseeable as both endogenous and exogenous inferences 
may cause a progressively increasing biological complexity, 
yielding to less detectable phenomena.

Another approach using sample classification over three 
selected PMI ranges appeared very robust, allowing 22 out 
of 24 samples to be correctly assigned to the proper range. 
Interestingly, the two misclassified samples belong to the 
intermediate range, and they occur between contiguous 
classes. This is consistent with the fact that modifications 

related to post-mortem interval are continuous, progressive, 
and developing phenomena.

Focusing on qualitative features of the VH metabolome, 
glycine, glutamate, alanine, creatine, choline, succinate, 
hypoxanthine, taurine, threonine, and ethanolamine showed 
a strong positive correlation with PMI, whereas 3-hydroxy-
butyrate and glucose were negatively correlated. Compari-
son of results coming from the two models clearly shows 
that several metabolites are responsible for most of the time-
related differences. Considering that 3-hydroxybutyrate, ala-
nine, glycine, and glutamate are shared between an ordinal 
and regression model, a major biological relevance can be 
inferred. The observed metabolomic modifications showed 
a linear behaviour over the entire PMI range, as no specific 
features can be identified in the three selected ranges.

The best PMI regression model obtained with VH potas-
sium concentrations displays a lower predictive ability com-
pared to metabolomics. The errors in predictions resulted 
higher over the entire PMI range mainly due to the error in 
the first 24 h, which tends to improve in later PMIs, reaching 
a predictivity with comparable metabolomics. This is con-
sistent with literature data, suggesting human VH potassium 
as a valuable PMI estimation tool above 24 h after death 
(PMI ranging from 2 to 110 h) [29].

In the hypothesis that the two approaches inherently 
carry different or complementary biological information, 
we used a combined model. Whilst in early and middle 
PMI ranges the predictive ability is comparable to the one 
obtained by the sole metabolome, potassium contribution 
becomes noticeable in the longest PMI range (> 48 h). This 
can be explained by the fact that all the potassium variance 
is already included in the metabolome modifications up to 
48 h. At higher PMIs, metabolome is likely influenced by 
exogenous bacterial contribution whereas potassium might 
still reflect the endogenous phenomenon.

As we previously reported in the AH model, a multivari-
ate metabolomic approach better describes the multifacto-
rial post-mortem phenomenon compared to the best univari-
ate model (i.e. based on a single metabolite taken from the 
profile) [23, 26]. In particular, predictor selection did not 
show any significant improvement of our model based on 
53 predictors—[K+] and 52 metabolites. Moreover, limiting 

Table 1  Summary of the results of the regression models: RMSEC 
is the RMSE in calculation, RMSECV is the RMSE calculated by 
cross-validation, and RMSEP is the RMSE calculated predicting the 

test set. Errors are expressed in hours. The PMI predicted for the test 
set is reported in Fig. S1 of Supplementary Materials

Model RMSEC RMSECV RMSEP RMSEP
PMI ≤ 24 h

RMSEP
24 h < PMI ≤ 
48 h

RMSEP
PMI > 48 h

Metabolites 5.6 8.9 8.5 6.9 7.4 10.3
[K+] 14.7 15.4 11.5 14.2 8.8 11.2
[K+] and metabolites 5.5 8.4 7.4 5.7 7.4 8.4
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the analysis to the best-performing predictors reduces the 
accounted inter-individual variability and could represent 
a bias for the prediction of new samples. This is extremely 
important in view of the translation of this model to real-life 
human forensic samples.

This study has several limitations. The investigation was 
conducted on an animal model, a highly homogeneous and 
controlled experimental setup being mandatory to precisely 
estimate PMIs. The translation to human cases represents the 
following step and should include real-life scenario, differ-
ent environmental conditions, and multiple causes of death. 
Furthermore, VH was sampled from isolated sheep heads 
leading to a possible exogenous bacterial interference on 
both metabolome and potassium, although the model seems 
to be reliable and robust. Lastly, VH samples were delivered 
from the University of Cagliari, where the animal experi-
ment was performed, to the University of Verona for potas-
sium analysis; this may have influenced sample stability, and 
therefore the potassium CIA results, although the behaviour 
on the investigated range is consistent with literature data.

To the best of our knowledge, this study and the previous 
one on AH [26] proposed a tool for PMI estimation pro-
viding for the first time a PMI prediction model externally 
validated using an independent set of samples. This model 
validation strategy, which is a specific issue of potassium 
according to the literature [33], is mandatory to assess inter-
laboratory reproducibility, a fundamental step towards the 
implementation in routine casework.
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