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Abstract
DNA methylation patterns change during human lifetime; thus, they can be used to estimate an individual’s age. It is known, 
however, that correlation between DNA methylation and aging might not be linear and that the sex might influence the meth-
ylation status. In this study, we conducted a comparative evaluation of linear and several non-linear regressions, as well as 
sex-specific versus unisex models. Buccal swab samples from 230 donors aged 1 to 88 years were analyzed using a minise-
quencing multiplex array. Samples were divided into a training set (n = 161) and a validation set (n = 69). The training set was 
used for a sequential replacement regression and a simultaneous 10-fold cross-validation. The resulting model was improved 
by including a cut-off of 20 years, dividing the younger individuals with non-linear from the older individuals with linear 
dependence between age and methylation status. Sex-specific models were developed and improved prediction accuracy in 
females but not in males, which might be explained by a small sample set. We finally established a non-linear, unisex model 
combining the markers EDARADD, KLF14, ELOVL2, FHL2, C1orf132, and TRIM59. While age- and sex-adjustments 
did not generally improve the performance of our model, we discuss how other models and large cohorts might benefit from 
such adjustments. Our model showed a cross-validated MAD and RMSE of 4.680 and 6.436 years in the training set and 
of 4.695 and 6.602 years in the validation set, respectively. We briefly explain how to apply the model for age prediction.
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Introduction

If the source of a biological trace cannot be identified by 
conventional DNA comparison, forensic DNA phenotyping 
(FDP) of biological traces might provide further investiga-
tive leads. Information on phenotypical aspects of the donor 
of a trace, such as skin, eye and hair color, height, or even 
male baldness patterns [1–3], might help narrowing down 

the group of potential trace donors. While such character-
istics are mainly determined by single nucleotide polymor-
phisms (SNPs), a trace donor’s age can be estimated based 
on epigenetic modifications such as age correlated DNA 
methylation [4, 5].

Beside analyzing DNA traces, further potential fields of 
applying molecular age estimation comprise the identifica-
tion of unknown bodies [6, 7] and the objective confirma-
tion of age in potentially underaged individuals: in many 
countries, unaccompanied underaged refugees are entitled 
to special protection, and objective age estimation can sup-
port such claims.

Recent studies revealed high estimation accuracy of 
age estimation models for blood with a MAD ranging 
from 3.16 to 10.33 years [8–13]. Best correlations and the 
lowest estimation errors were found for blood, buccal epi-
thelium, and saliva among other tissues [14]. Currently, 
most forensic studies on age correlated methylation pat-
terns and model validation are based on blood, while 
for saliva and buccal swabs, fewer models have been 
described. Estimation accuracies for saliva and buccal 
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swabs are comparable to those for blood with MAD rang-
ing from 3.13 to 5.8 years and 3.22 to 5.33 years, respec-
tively [13, 15–19].

Several recent studies focused on methylation patterns 
of young individuals [20, 21]. While there is a significant 
overlap between age-associated methylation loci between 
adults and children, DNA methylation in children changes 
with up to fourfold higher rates compared to adults [20]. 
Furthermore, correlation between methylation and age is 
not always linear but might be logarithmic [20]. Several 
studies made similar conclusions describing that DNA 
methylation alters at a more rapid pace between childbirth 
and adolescence compared to adulthood [22, 23].

The aim of this study was to develop an age esti-
mation model and analyze whether or not considering 
varying methylation change rates in young versus older 
individuals improves the prediction model. Human oral 
mucosa samples were analyzed by minisequencing mul-
tiplex PCR. The eight markers used in the study (PDE4C, 
EDARADD, SST, KLF14, ELOVL2, FHL2, C1orf132, 
and TRIM59) have been previously reported separately 
to show a correlation with age [6, 8, 15, 18, 19, 24, 25]. 
Especially ELOVL2, KLF14, and TRIM59 have been 
described as highly accurate markers for age estimation 
[15, 26].

Material and methods

Sampling, DNA extraction, and quantification

Oral mucosa samples from 230 donors (102 male and 128 
female) aged 1 to 88 years (mean 38 years) were collected 
using sterile swabs. The Ethics Committee of the Ham-
burg Medical Association (Ethikkommission bei der Bun-
desärztekammer) approved the study protocol (PV6098) 
and all participants or their legal representatives provided 
written informed consent. DNA was extracted using the 
Casework Extraction Kit and Maxwell 16 (Promega) fol-
lowing manufacturer’s recommendations. DNA was quan-
tified using the PowerQuant System (Promega) following 
manufacturer’s recommendations. Purified DNA samples 
were stored at 6 °C until further use.

Bisulfite conversion

DNA samples were bisulfite converted and purified follow-
ing the instructions of the EpiTect Fast DNA Bisulfite Kit 
(Qiagen) for high concentration samples. Depending on the 
determined concentration of each sample, up to 400 ng DNA 
was used for the treatment. Carrier RNA was not added to 
Buffer BL. Unmethylated cytosines were converted to uracils 

by bisulfite treatment, whereas methylated cytosines remained 
unconverted. To prove a successful bisulfite conversion, a sec-
ond PowerQuant reaction was performed. The PCR primers 
should not bind to the converted DNA, meaning that a nega-
tive result would prove a complete conversion [19]. Bisulfite 
converted samples were stored at 6 °C.

PCR and minisequencing multiplex

The bisulfite converted DNA was amplified by PCR using the 
PyroMark PCR Kit (Qiagen). Each sample was set in three 
reactions with primers for eight different markers (for primer 
sequences see Supplementary Table 1); first reaction contained 
primers for PDE4C, EDARADD, SST, and KLF14, second 
reaction contained primers for ELOVL2 and C1orf132, and 
third reaction contained primers for FHL2 and TRIM59. After 
PCR, 1.25 μl rAPid Alkaline Phosphatase (1 U/μl, Roche) 
and 0.025 μl Exonuclease I (20 U/μl, Thermo Fisher Scien-
tific) were added to each sample for enzymatic digestion. The 
samples were incubated for 1 h 35 min at 37 °C followed by 
denaturation for 15 min at 78 °C. For differentiation between 
cytosines (methylated) and thymines (originally unmethylated 
cytosines), a minisequencing reaction was conducted using 
SNaPshot Multiplex Kit (Thermo Fisher Scientific). Following 
the sequencing reaction, another 1 μl rAPid Alkaline Phos-
phatase (1 U/μl, Roche) was added to each sample for enzy-
matic digestion. The samples were incubated for 1 h 15 min 
at 37 °C and 15 min at 78 °C and afterwards stored at 6 °C.

Capillary electrophoresis and analysis

Samples were analyzed by capillary electrophoresis on a 3130 
Genetic Analyzer (Applied Biosystems). Size standard 120 
LIZ (Applied Biosystems); diluted 1:100 in HiDi formamide 
(Applied Biosystems) was used and results were evaluated 
using Gene Mapper ID (v3.2). The proportion of methylated 
cytosines of the samples was determined by calculating the 
relative peak heights for adenine and guanine or thymine and 
cytosine, respectively.

Statistics

Correlations between chronological age and methylation 
status of each CpG site was assessed calculating Pearson 
correlation coefficient (r) and corresponding p values.

Data was split into a training and validation set, compris-
ing 161 and 69 samples, respectively. Model accuracy was 
tested for both, training and validation set using the coeffi-
cient of determination R2, adjusted R2 value. Mean average 
deviation (MAD) and the root-mean-square error (RMSE) 
were computed on the training set (via cross-validation) as 
well as on the validation set. Statistical analyses were per-
formed using R (version R-4.1.2) including the packages 
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ggplot2 [27] and gridExtra [28] for the creation of figures, 
Microsoft Office Excel 2016, and IBM SPSS Statistics 25 
(IBM Corporation, Somers, NY, USA).

To make it easier to follow, a detailed description of 
model development and validation regarding non-linear 
dependences and influence of the sex can be found in the 
“Results and discussion” section.

Results and discussion

Examples of the multiplex results are shown in Supple-
mentary Figure 1. The correlation between chronological 
age and methylation status of each CpG site was assessed 
using R2 (Fig. 1), Pearson correlation coefficient (r), and 
corresponding p values (Supplementary Table 2). There 
were statistically noticeable correlations between chrono-
logical age and the methylation status at seven of the eight 
CpG sites (PDE4C, EDARADD, SST, KLF14, ELOVL2, 
FHL2, and TRIM59). The strongest correlation was detected 
for the CpG site in TRIM59 (r = 0.86). In this study, SST, 
ELOVL2, and TRIM59 revealed the strongest correlations 
with age, matching the results of previous studies [15, 18, 
26]. In contrast, PDE4C (cg17861230 +36 bp) showed 
weaker correlations with age compared to a previous study 
[19]. EDARADD and C1orf132 were the only markers in 
this study showing negative correlations with age. In pre-
vious studies [15, 19], SST cg00481951 was a promising 
marker for age estimation and was incorporated into the 
model of Hong et al. [15]. Although SST showed moderate 
to good correlation and R2 values in our study, it had to be 
removed from further analysis due to missing values from 
two thirds of all samples.

Model construction and validation

Due to missing values in the data set of SST, this marker was 
excluded. The rest of the markers showed moderate to strong 
correlations with chronological age; therefore, the seven 
CpG sites of the markers PDE4C, EDARADD, KLF14, 
ELOVL2, FHL2, C1orf132, and TRIM59 of 161 individu-
als (training set) were included in the regression analysis.

It is well known that the relationship between methylation 
and chronological age is not necessarily linear [14, 29]. Our 
methylation data shown in Fig. 1 also raises this suspicion. 
In particular, the epigenetic age advances faster during ado-
lescence (age ≤ 20) and slower for elderly people (age ≥ 80) 
compared to chronological age. In between, epigenetic and 
chronological age are assumed to have a linear relationship 
(see Figure 1c in [29]). As the amount of elderly people with 
an age over 80 is rather small in our data set (3 subjects in 
the training data set and 1 subject in the validation data set), 
we focus on the non-linear relationship for adolescents. The 

following transformation has been suggested to model the 
described behavior by connecting chronological age yc and 
epigenetic age ye and improve the performance of subse-
quent regression analyses [14]:

This transformation is also displayed for yc, adult = 20 on 
the right hand side of Fig. 2. Larger values of yc, adult lead 
to even steeper curves at the origin. For a fixed value of 
yc, adult, one may then conduct a regression analysis to esti-
mate regression parameters β for the linear model:

where x1, …, xk denote methylation values from k dif-
ferent CpG sites. The estimated chronological age can be 
identified afterwards by application of the inverse of f for a 
fixed value of yc, adult, where 𝛽  denotes the estimated regres-
sion parameters:

Upon first-time application of this transformation [14], 
the value yc, adult was set to 20. Since a study on further 
choices of this value has not been described in the origi-
nal work by Horvath, we investigated whether the choice of 
this cut-off value can be optimized. That is, we regard the 
cut-off yc, adult from Horvath’s transformation as a hyper-
parameter whose value shall be determined via a repeated 
10-fold cross-validation on the training data. We repeated 
this cross-validation 100 times to exclude a dependence of 
the results from the choice of the folds.

Furthermore, we investigated potential sex-specific differ-
ences in epigenetic development. As sex-specific influences 
on age estimation models were discussed in previous stud-
ies [11, 19, 30], we also examined these effects in our data. 
Therefore, we repeated the procedure described above for 
the subsets of data consisting only of women resp. men to 
find sex-specific differences. That resulted in different cut-off 
values yc, adult for women and men. The results of the cross-
validation procedure on the training data set can be found in 
Fig. 2. While the cross-validated RMSE indicates that the 
choice of yc, adult = 20 is a good choice for a unisex model and 
a separate model for men, the RMSE for a separate model for 
women can be improved by choosing a larger cut-off value. 
This suggests that there are differences in the epigenetic 
aging pattern between men and women [14] which give rise 
to establishing sex-specific models to improve prediction, 
especially for adolescents and young adults. The exact values 
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Fig. 1  Correlation between chronological age and methylation at the eight CpG sites in all 230 buccal swap samples
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for the minimal RMSE and the corresponding cut-off value of 
the cross-validation can be found in Table 1. Please note that 
a cut-off value of 0 corresponds to the standard linear model.

Finally, we fitted the different models on the training data 
resp. its sex-specific subsets and computed the RMSE on the 
validation set. While the observations from the cross-vali-
dation could be replicated for women, this was not possible 
for the unisex model (where the optimized model performed 
worse than the default choice) and men (where both transfor-
mations performed worse than the standard linear model). 
However, this may be due to the small sample sizes, espe-
cially for men with only 29 individuals in the validation set.

As shown in Fig. 2 and Table 1, our results suggest a faster 
epigenetic aging in men compared to women. These findings 
are concordant with the results of Hannum et al. [31]. Table 1 

shows higher RMSE values for men on the validation set, 
which supports findings of previous studies [9, 11, 19].

As we are dealing with quite small sample sizes, the sex-
specific models have a clear disadvantage in that they can 
only be fitted with half of the observations. This disadvantage 
should diminish with an increasing overall sample size [32]. 
In this light, based on the results obtained here, it appears rea-
sonable to consider sex-specific models and respective trans-
formations for estimating chronological age in future studies 
with larger sample sizes.

Age estimation of the training set revealed a strong correla-
tion with age (r = 0.942) and a MAD and RMSE of 4.680 and 
6.436 years, respectively. Within the training set, the seven CpG 
site model could explain 88.8% of the age variance (R2 = 0.888, 
adj. R2 = 0.883).

Fig. 2  On the left: RMSE from repeated cross-validation of age pre-
diction models on the training set given different cut-off values for 
a unisex model (first row), a model for sex 0 = men (second row), 
and a model for sex 1 =women (third row); vertical line indicates the 
cut-off value achieving the smallest RMSE; horizontal lines indicate 

RMSEs for the standard linear model (dotted), the default cut-off 
value (dashed), and the minimal value (solid). On the right: shape of 
the transformation function linking chronological and epigenetic age 
with the standard cut-off (vertical line)

639International Journal of Legal Medicine (2023) 137:635–643



1 3

Application of the model

In the present situation, it appears most appropriate to 
apply the unisex model with the default cut-off value 
of yc, adult = 20 when the chronological age of new sub-
jects shall be estimated. We give a brief outline of how 
the age estimation for an individual of unknown age can 
be performed by applying this model with methylation 
values xPDE4C, xEDARADD,  xKLF4, xELOVL2, xFHL2, xC1orf132, 
and xTRIM59 (each between 0 and 1). Firstly, the linear 
prediction according to our estimation of the epigenetic 
age ŷecan be computed via:

ŷe = −1.5880 − 0.0400 xPDE4C − 1.9120 xEDARADD + 5.0157 xKLF4

+ 0.5961 xELOVL2 + 1.7463 xFHL2 − 0.0108 xC1orf132 + 3.5634 xTRIM59

If this value is positive, the chronological age can be 
transformed back to the chronological scale with the linear 
transformation:

Otherwise (if values are negative), one obtains the esti-
mated chronological age via:

Prediction intervals for the chronological age can be 
computed from the same backtransformation procedure 
after computing prediction intervals on the epigenetic 
scale with the model’s residual standard error of 0.2905. 
One should note that the shape of the backtransformation 

ŷc = f −1
(
ŷe; 20

)
= ŷe ∗ (20 + 1) + 20

ŷc = f −1
(
ŷe; 20

)
= exp

(
ŷe + log (20 + 1)

)
− 1

Table 1  Results of repeated cross-validation (columns 3–5) and vali-
dation on separate set (columns 6–8). First three rows show results 
of standard linear regression, rows 4–6 show results of model with 
transformation based on default cut-off of 20, and last three rows 

show results of models in which the cut-off point was chosen based 
on the cross-validation on training set. Models in rows 1, 4, and 7 
were fitted based on data from females and males; other models were 
only fitted based on the respective sex-specific subsets

Model yc,adult RMSE in cross-validation RMSE on validation set

All samples (n 
= 161)

Men (n = 73) Women (n = 88) All samples 
(n = 69)

Men (n = 29) Women (n = 40)

Linear 0 6.6646 5.8977 6.9222 6.8551 7.0728 6.6928
Linear, men 0 – 6.4145 – – 7.4086 –
Linear, women 0 – – 7.1769 – – 6.6804
Default 20 6.4356 5.6179 6.7257 6.6018 7.3008 6.0446
Default, men 20 – 6.0293 – – 7.8691 –
Default, women 20 – – 6.9886 – – 6.1999
CV, unisex 24.3 6.4225 5.6144 6.7177 6.6831 7.4848 6.0356
CV, men 20.1 – 6.0293 – – 7.8757 –
CV, women 32.0 – – 6.8490 – – 6.1775

Fig. 3  The seven CpG site age 
estimation model predicting age 
for both training and valida-
tion set
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function leads to shorter prediction intervals for subjects 
that are estimated to be young.

Model performance on the validation set

The resulting model comprised seven CpG sites of the markers 
PDE4C, EDARADD, KLF14, ELOVL2, FHL2, C1orf132, and 
TRIM59, explaining 87.8% of age variance in the validation 
set (R2 = 0.878, adj. R2 = 0.864). The age predictions of the 
resulting model have a strong correlation between chronological 
and predicted age (r = 0.937) with a MAD of 4.695 years and 

a RMSE of 6.602 years (Fig. 3). As seen in Fig. 3, age predic-
tions of training and validation sets showed a similarly strong 
correlation between predicted and chronological age. The high 
comparability of the training and validation set is also shown in 
Fig. 4, which compares the estimation errors of both data sets. 
Further visualization of the difference between chronological 
and estimated age is shown in the Bland-Altman plot in Fig. 5. 
A mean difference of −1.718 (SD 6.417) years indicates a slight 
underestimation of age. The 95% limit of agreement ranges from 
10.86 to −14.295 years. The plot shows a tendency to overesti-
mate younger individuals, especially from 0 to 20 years, and to 
underestimate older individuals (50+ years). Studies from Naue 
et al. [26] and Schwender et al. [19] made similar observations. 
The largest positive deviation from chronological to estimated 
age within the validation set (20.904 years) was found for a 
30-year-old individual with an estimated age of 50.904 years. 
The largest negative deviation (−20.685 years) was found for an 
86-year-old individual with an estimated age of 65. 315 years. 
To further assess model performance, we followed the recom-
mendations of Schwender et al. [33]. The validation set was sub-
divided into age categories and the absolute deviation between 
estimated and chronological age was split into four categories 
(up to ±3 years deviation, up to ±4 years, up to ±5 years, and up 
to ±6 years deviation) as shown in Table 2. In general, prediction 
accuracy in younger individuals was higher compared to older 
individuals. Similar tendencies were observed regarding the 
MAD, confirming results of previous studies [9, 18, 26, 30, 34].

The study presented here comprises two obvious short-
comings: the number of individuals ages 60+ was rather 
small within our validation set. Consequently, prediction 
accuracy of the model cannot be reliably assessed within this 
age group. Secondly, environmental influences have not been 
taken into account in this study, even though they might play 
a role in the changing of DNA methylation patterns [34].

Fig. 4  Deviation of estimation errors from chronological age for the 
training and validation set. Boxplots represent the estimation error 
deviation for the training and validation set. Circles represent outliers 
in the corresponding set

Fig. 5  Agreement between 
estimated and chronological 
age in the validation set. The 
chronological age was plotted 
against the difference between 
estimated age and chronological 
age. Each data point represents 
one analyzed sample within 
the validation set (n = 69). The 
dotted line represents the mean 
difference; the dashed lines 
show the upper and lower limits 
of agreement (1.96 × SD and 
−1.96 × SD, respectively). SD 
standard deviation
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Conclusion

The main aim of this study was to evaluate a set of CpG 
sites as reliable DNA methylation predictors of chronolog-
ical age in minors as well as in adult individuals and differ-
ent sexes by performing a minisequencing multiplex assay. 
Seven CpG sites (cg17861230 (+36 bp), cg09809672 (−12 
bp), cg14361627, cg16867657 (−16 bp), cg06639320, 
cg10501210 (+6 bp), and cg07553761) in EDARADD, 
KLF14, ELOVL2, in FHL2, in C1orf132, and TRIM59 
were included in this study. Validation of the final model 
revealed a cross-validated MAD and RMSE of 4.680 and 
6.436 years in the training set and 4.695 and 6.602 years in 
the validation set, respectively, making this model likely to 
be useful in forensic investigations in the future. Regard-
ing RMSE, sex-specific models did not outperform the 
unisex models in our limited data set. In larger sample 
sets, however, sex-specific modeling might increase pre-
diction accuracy. DNA methylation analysis by minise-
quencing has the potential to become a tool in criminal 
investigation. Compared to massively parallel sequencing 
approaches, minisequencing has the benefit of being more 
flexible, less time consuming when analyzing small sam-
ple numbers, and easy to implement into forensic laborato-
ries without the need for specified sequencing equipment.
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