
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00414-021-02645-5

ORIGINAL ARTICLE

Searching for improvements in predicting human eye colour from DNA

Magdalena Kukla‑Bartoszek1,2  · Paweł Teisseyre3,4  · Ewelina Pośpiech2  · Joanna Karłowska‑Pik5  · 
Piotr Zieliński6  · Anna Woźniak7  · Michał Boroń7  · Michał Dąbrowski8  · Magdalena Zubańska9,10  · 
Agata Jarosz2  · Rafał Płoski11  · Tomasz Grzybowski12  · Magdalena Spólnicka7  · Jan Mielniczuk3,4  · 
Wojciech Branicki2,7 

Received: 31 March 2021 / Accepted: 17 June 2021 
© The Author(s) 2021

Abstract
Increasing understanding of human genome variability allows for better use of the predictive potential of DNA. An obvious 
direct application is the prediction of the physical phenotypes. Significant success has been achieved, especially in predicting 
pigmentation characteristics, but the inference of some phenotypes is still challenging. In search of further improvements 
in predicting human eye colour, we conducted whole-exome (enriched in regulome) sequencing of 150 Polish samples to 
discover new markers. For this, we adopted quantitative characterization of eye colour phenotypes using high-resolution 
photographic images of the iris in combination with DIAT software analysis. An independent set of 849 samples was used 
for subsequent predictive modelling. Newly identified candidates and 114 additional literature-based selected SNPs, pre-
viously associated with pigmentation, and advanced machine learning algorithms were used. Whole-exome sequencing 
analysis found 27 previously unreported candidate SNP markers for eye colour. The highest overall prediction accuracies 
were achieved with LASSO-regularized and BIC-based selected regression models. A new candidate variant, rs2253104, 
located in the ARFIP2 gene and identified with the HyperLasso method, revealed predictive potential and was included in 
the best-performing regression models. Advanced machine learning approaches showed a significant increase in sensitivity 
of intermediate eye colour prediction (up to 39%) compared to 0% obtained for the original IrisPlex model. We identified a 
new potential predictor of eye colour and evaluated several widely used advanced machine learning algorithms in predictive 
analysis of this trait. Our results provide useful hints for developing future predictive models for eye colour in forensic and 
anthropological studies.
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Introduction

Increasing understanding of human genome variability 
is enabling better use of DNA’s predictive potential [1]. 
Besides clinical applications, predictive DNA analysis 
can be useful in forensics for intelligence purposes [2], 
in molecular anthropology [3] and in identification of his-
torical figures [4–6]. In recent years, intensive research 
has been carried out on the prediction of various human 
appearance characteristics [e.g. 7–15]. The most signifi-
cant progress was made in the prediction of pigmentation 
characteristics, and eye colour in particular [16]. Nev-
ertheless, the genetic architecture of some categories of 
pigmentation phenotypes remains elusive, their prediction 
is still inaccurate and research to improve accuracy contin-
ues. One such category is intermediate eye colour, which 
in the most commonly used IrisPlex model is predicted 
with low sensitivity [16]. Because of the very complex 
genetic basis of the appearance traits, a promising direc-
tion is building predictive tools that take into account 
markers based on the criterion of improved prediction 
and not genetic association, and the use of more advanced 
mathematical methods in prediction modelling [17]. There 
are many machine learning (ML) methods available for 
developing predictive models, and their effectiveness may 
depend on the type and amount of data used; some of them 
may be more suitable than others for taking into account 
diverse genetic phenomena, including epistasis. First, we 
can distinguish linear and nonlinear methods [18]. The 
linear methods in their basic form are limited to detect-
ing the linear dependency between a class variable and 
attributes. Representative examples are logistic and multi-
nomial regression, linear discriminant analysis (LDA), the 
basic linear version of support vector machines (SVM) or 
perceptron. The nonlinear methods are designed to detect 
more complex dependencies between a class variable and 
attributes. Examples include various tree-based methods, 
multivariate adaptive regression splines (MARS) and mul-
tilayer neural networks (NN). The advantage of the first 
group is the relatively low computational cost of fitting 
the model as well as simplicity and interpretability. On 
the other hand, nonlinear models usually achieve greater 
predictive power, especially in the case of complex clas-
sification issues. Moreover, they are also able to detect 
interactions among attributes [19]. In addition to single 
models, ensemble techniques, which combine multiple 
learning algorithms, have gained great popularity. It has 
been proved that ensemble methods such as random forest 
(RF) or extreme gradient boosting (XGB) are among the 
most powerful classification models; they usually achieve 
significantly higher accuracy when compared to simple 
models. The price for this is the higher computational cost 

and more complicated interpretation. An important line 
of research in ML is focused on combining classification 
methods with feature selection techniques. Feature selec-
tion plays a crucial role in many analyses, especially when 
the number of attributes is large compared with the sample 
size. Selection of relevant attributes improves the under-
standability of the considered model and allows one to 
discover the relationship between attributes and the class 
variable. Secondly, it helps to devise approaches with bet-
ter generalization and larger predictive power [20]. In the 
case of some classification methods, feature selection is 
an integral element of learning the model; for example, in 
tree-based methods, relevant attributes are chosen during 
the building of the tree. Another solution is using regu-
larization techniques [18], such as least absolute shrink-
age and selection operator (LASSO) regularization, which 
ensure sparsity in the parameter vector and allow one to 
find attributes influencing the class variable.

In this study, we explored the possibility of increas-
ing the accuracy in predicting eye colour. To this end, we 
adopted the following strategies: (1) quantitative charac-
terization of samples using high-quality images of the iris 
analysed with Digital Iris Analysis Tool (DIAT) software; 
(2) whole-exome sequencing (WES)-based identification 
of new potential predictors in a group of 150 phenotypi-
cally diverse Polish samples using the HyperLasso method 
and regression-based single-SNP association testing; (3) 
predictive modelling conducted based on the literature 
and WES-identified markers, using various machine learn-
ing algorithms and independent sets of samples in order to 
find the most accurate method for eye colour in a moderate 
dimensional dataset.

Materials and methods

Sample collection and DNA extraction

The study cohort consisted of 999 unrelated individuals 
(673 males and 326 females), collected together within the 
NEXT project, funded by the National Centre for Research 
and Development, grant number DOB-BIO7/17/01/2015. 
The study was approved by the Ethics Committee of 
the Jagiellonian University in Kraków (decision no. 
KBET/122/6120/11/2016), and all volunteers gave writ-
ten informed consent prior to their inclusion in the study. 
Recruitment of the participants was carried out in the Police 
Academy in Szczytno.

Whole blood was collected from the volunteers and sub-
jected to DNA extraction using the PrepFiler Express™ 
Forensic DNA Extraction Kit (Thermo Fisher Scientific) 
according to the manufacturer’s protocol. Quantification 
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of the extracted samples was performed using the Quan-
tifiler™ Human DNA Quantification Kit or the Plexor® 
HY System.

Phenotype assessment

Phenotyping of the investigated samples for eye colour was 
conducted in two independent ways: quantitative measure-
ments, used for identification of new SNP candidates from 
WES analysis, and categorization, used at the predictive 
modelling stage. The evaluation was performed based on 
collected high-resolution photographic documentation. Pho-
tos of both eyes were taken in identical conditions for all vol-
unteers using a Nikon D5300 camera with an R1C1 Wireless 
Close-up Speedlight System (Nikon, Tokyo, Japan). Images 
of the iris were taken from a distance of about 20–30 cm, 
with the following settings: shutter speed 1/125, aperture 
f/22, ISO 200, flash A = 1/8, B = 1/4. Eye colour was clas-
sified into 3 categories: blue, intermediate (green, green-
hazel) and brown. Classification was performed based on 
photographic documentation of both irises, by one asses-
sor. The assignment to a specific category was carried out 
in two independent rounds of classification, or three, when 
there was an inconsistency between the first and the second 
round of assessment. The second approach consisted in an 
objective, quantitative characterization of eye colouration. 
Eye colour quantitative evaluation was conducted based on 
high-quality images and with DIAT software [21]. Blue and 
brown pixels in the area of the iris are counted and the Pixel 
Index of Eye (PIE score) is calculated as a measure of eye 
pigmentation. The PIE score ranges between − 1 (which cor-
responds to perfectly brown eye colour) and 1 (which cor-
responds to perfectly blue eyes). Additional information that 
was used in statistical analyses included age and sex. The 
studied group was divided into two sets: the discovery cohort 
consisted of 150 phenotypically diverse samples, used for 
candidate markers selection based on WES analysis, and the 
predictive modelling cohort consisted of the remaining 849 
samples, used to develop and evaluate predictive models.

Whole‑exome sequencing of the discovery cohort

Exonic sequences (66 Mbp) enriched in regulatory regions 
of > 160 loci with a known association with human appear-
ance traits (1.5 Mbp) extracted from Nencki Genomics Data-
base and FANTOM [22, 23] were sequenced and bioinfor-
matically analysed in the group of 150 carefully selected, 
phenotypically diverse individuals, as described in detail in 
[14]. As a result, genetic data for 77,485 SNPs with less than 
20% of missing data and global minor allele frequency ≥ 5% 
were extracted for further statistical analyses.

Selection of potential DNA predictors

Taking into consideration the high importance of precise 
phenotype characterization and the fact that the studied 
trait exhibits continuous distribution, WES-based marker 
selection for eye colour was performed based on quantita-
tive measurements, which provide an objective and accurate 
trait description. Two different statistical approaches were 
applied for candidate marker selection. As it is still the most 
common concept, especially when handling large numbers 
of tested variables, single marker testing was applied. In 
order to increase the chance of identification of powerful 
predictors, we decided to set the suggestive threshold of 
P-value < 1 ×  10−4 for candidate SNP selection. Because of 
the character of the data, linear regression for quantitatively 
described eye colour was used. Results were adjusted for 
age and sex. In addition, the HyperLasso method (https:// 
www. ebi. ac. uk/ proje cts/ BARGEN) was applied as an alter-
native approach for feature selection. It is a highly attrac-
tive method that addresses the computational challenge of 
simultaneous SNP analysis from large-scale experiments. It 
is a model selection method that utilizes a Bayesian-based 
penalized maximum likelihood approach, which can handle 
high-dimensional inputs [24]. Various penalty and shape 
parameters were tested. The best ones were selected empiri-
cally, based on the assumption that the model should consist 
of a reasonable number of predictors (p), i.e. 0 < p < 100. 
All newly selected candidate SNP markers were subjected 
to linkage disequilibrium (LD) pruning and one SNP from 
each LD block  (r2 > 0.7) was kept for further analyses. LD 
analysis was conducted using PLINK 1.9, while remaining 
analyses were conducted with R v3.5.2 using ‘ordinal’ pack-
age and ‘HyperLasso’ code. Since many variants associated 
with human pigmentation traits have already been identified, 
an intensive literature review was conducted and 114 SNP 
markers, previously correlated with pigmentation in general, 
were selected for further statistical analyses (Supplementary 
Information; Table S4).

Targeted sequencing of DNA candidates

Genetic data for 141 DNA variants in a population of 849 
individuals were collected using targeted high-through-
put DNA sequencing with Ion AmpliSeq™ technology 
and an Ion S5™ or Ion Proton™ platform. Two inde-
pendent Ion AmpliSeq™ custom panels were designed 
using Ion AmpliSeq™ Designer tool (https:// www. 
ampli seq. com/ https:// www. ampli seq. com) with Thermo 
Fisher Scientific support, and covered DNA markers for 
various human appearance traits, including pigmenta-
tion, hair morphology, hair greying, earlobe, monobrow 
and other traits investigated within the NEXT project. 
Because of technical problems, four SNPs were replaced 
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by SNPs in LD (rs2004775—> rs60247077 in RBFOX1, 
rs7762830—> rs743589 in MYB, rs224223—> rs224219 in 
MEFV and rs12052928—> rs9636495 in ANKRD36). DNA 
libraries were prepared manually and sequenced as described 
previously [11]. Missing SNP data were at the level of 0.2% 
and were imputed using the ‘missForest’ method in R v3.5.2 
(with a total number of trees equal to 500).

Predictive modelling

All candidate SNP variants selected from the literature and 
WES analysis were used in prediction modelling except four 
variants (rs1800414 in OCA2, and rs3212355, rs312262906 
and rs201326893 in MC1R), which were monomorphic in 
our dataset and were excluded from statistical analyses. The 
final list of variables also included age and sex. Various 
machine learning algorithms were evaluated for the most 
accurate model development. Models were developed to 
predict eye colour categorized in three classes.

Regression models

Marker selection for regression models was performed by 
the forward selection method with two classical statistical 
approaches, the Akaike Information Criterion (AIC) [25] 
and the Bayesian Information Criterion (BIC) [26]. They 
are used to find a trade-off between the goodness of fit of a 
model and its complexity and are suitable in the case where 
p < n (p-total number of variables, n-total number of cases). 
In order to determine their robustness, two additional regres-
sion models, i.e. (1) developed using only one marker—the 
most important one—chosen in the first round of SNP selec-
tion (LOG 1-STEP), and (2) using all the analysed in this 
study SNPs (LOG FULL), were added for comparison pur-
poses. In addition, we used LASSO, in which the penalized 
log-likelihood function is considered [27]. This regularized 

regression method is particularly popular in high-dimen-
sional statistical data analysis. LASSO shrinks some coeffi-
cients of the model to zero, and therefore, it can be regarded 
as a feature selection method. Analyses were carried out 
using RStudio (v 1.1.456) and the glmnet package.

Other machine learning algorithms

The performance of seven additional machine learning 
algorithms was also tested. They included Classification 
and Regression Trees (TREE), Random Forests (RF), 
Extreme Gradient Boosting (XGB), Multivariate Adap-
tive Regression Splines (MARS), Neural Network (NN), 
Support Vector Machine (SVM) and Naïve Bayes (NB). A 
random naive classifier, which assigned observations ran-
domly to classes according to apriori probabilities (Naive), 
was used as a benchmark. Default settings were applied to 
tested algorithms. Feature selection for TREE, RF, XGB and 
MARS algorithms is embedded in the learning algorithm, 
i.e. relevant features were selected during fitting the models. 
Analyses were carried out using R (v 4.0.3) and the follow-
ing packages: infotheo, missForest, cvTools, rpart, random-
Forest, xgboost, glmnet, class, ROCR, earth, nnet and caret. 
All tested algorithms with their abbreviations used in the 
text are listed in Table 1.

Evaluation of the models’ performance

In order to assess the performance of the fitted models, the 
predictive modelling cohort was divided into training (70%) 
and testing (30%) datasets, which is a commonly used strat-
egy, close to optimal for reasonable sized datasets (n ≥ 100) 
with strong signals (≥ 85% accuracy) [28]. Additionally, 
to reduce randomness of data splitting, the process was 
repeated 100 times, with seed numbers 1–100, using the 
function set.seed in R. The final performance of the models 

Table 1  List of the machine 
learning approaches evaluated 
for eye colour prediction

Algorithm/model Abbreviation

Random classifier Naive
Logistic/multinomial regression with LASSO regularization LOG REG
Logistic/multinomial regression with AIC-based model selection LOG AIC
Logistic/multinomial regression with BIC-based model selection LOG BIC
Logistic/multinomial regression with 1 step (1 SNP) LOG 1-STEP
Logistic/multinomial regression model with all SNPs LOG FULL
Classification and Regression Tree TREE
Random forest RF
Extreme gradient boosting XGB
Multivariate and adaptive regression splines MARS
Neural networks NN
Support vector machine SVM
Naïve Bayes NB
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was determined based on the results collected from 100 test-
ing sets, by calculation of the mean values of the following 
measures:

• AUC — area under the ROC curve — expressing the 
overall prediction accuracy and ranges between 0.5, 

which corresponds to random classification, and 1.0, 
which corresponds to perfect classification

• Accuracy (acc.) — the percentage of individuals cor-
rectly classified into a specific category over the total 
number of individuals in the analysis, expressed by the 
equation:

Accuracy =
True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives

Table 2  Characteristics of the 
study group

Discovery cohort 
[N = 150]

Predictive modelling 
cohort [N = 849]

Total [N = 999]

Sex
 Females 67 44.7% 259 30.5% 327 32.7%
 Males 83 55.3% 590 69.5% 673 67.4%

Age
 min 19 19 19
 max 77 62 77
 mean value 31.5 30.4 30.6
 SD 10.3 8.7 9.0

Eye colour
 Blue 76 50.7% 551 64.9% 627 62.8%
 Intermediate 28 18.7% 122 14.4% 150 15.0%
 Brown 42 28.0% 139 16.4% 181 18.1%
 NA 4 2.7% 37 4.4% 41 4.1%
 PIE score, min  − 1.0  − 1.0  − 1.0
 PIE score, max 1.0 1.0 1.0
 PIE score, mean value 0.0 0.2 0.2
 PIE score, SD 0.9 0.8 0.8

• Sensitivity (sens.) — true positive rate, expressed by the 
equation:

• Specificity (spec.) — true negative rate, expressed by the 
equation:

We calculated the above measures for each class (eye col-
our), i.e. the observations corresponding to the considered 
class are treated as positive examples, whereas observations 
corresponding to the two remaining classes are treated as 
negative examples.

Sensitivity =
True Positives

True Positives + False Negatives

Specificity =
True Negatives

True Negatives + False Positives

Results

Characteristics of the study group

The study cohort consisted of 673 (67.4%) males and 326 
(32.6%) females in the age range 19–77 years (mean = 30.6; 
SD = 9.0). Considering the categorized pigmentation phe-
notype, most individuals had blue eyes (62.8%) followed by 
brown (18.1%) and intermediate (15.0%). Due to difficulties 
in unambiguous eye colour categorization, forty-one indi-
viduals’ eye colour was not determined (4.1%) mainly due 
to varying degrees of heterochromia. There was no statisti-
cally significant correlation between categorized eye colour 
and age or sex (P-value = 0.349 and P-value = 0.582, respec-
tively). Quantitative measurements of eye colour revealed a 
whole range of possible phenotypes, from PIE score =  − 1 to 
1. Mean PIE score was 0.2 (SD = 0.8). The borderline statis-
tical significance was noted for correlation between quantita-
tively described eye colour and age (P-value = 0.041) but not 
sex (P-value = 0.321). Nevertheless, although statistically 
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significant, correlation between PIE score and age was neg-
ligible in the studied sample set (r = 0.065). Information 
about eye colour of the whole studied cohort, and divided 
into discovery and predictive modelling cohorts, is provided 
in Table 2.

Selection of DNA markers

Univariate association testing conducted on WES data 
generated for 150 samples included in the discovery 
cohort allowed the selection of 14 candidates for eye col-
our (P-value < 1 ×  10−4) (Supplementary Information; 
Table S1). The HyperLasso method identified an additional 
20 candidate SNPs and age as important variables for eye 
colour (Supplementary Information; Table S2). Subsequent 
analysis of the linkage disequilibrium (Supplementary Infor-
mation; Table S3) led to a set of 30 independent  (r2 < 0.7) 
candidate DNA markers for eye colour. A literature search 
revealed a further 114 DNA markers previously associated 
with pigmentation (all listed in Supplementary Informa-
tion; Table S4) and three SNPs (rs12896399 in SLC24A4, 
rs7495174 in OCA2 and rs11636232 in HERC2) overlapped 
with WES-based selected variants. Overall, WES analysis 
discovered twenty-seven novel candidates for eye colour. As 
the four SNPs were monomorphic in the studied dataset, 
prediction modelling finally involved analysis of 137 SNPs, 
age and sex (Fig. 1).

Prediction modelling using regression methods

Development of the models

AIC, BIC and LASSO were used for marker selection, 
resulting in unique sets of variables selected in each of 100 
data splits. Analysis revealed that the BIC method produced 
the most parsimonious models while the most extensive 
models were developed using AIC. Further analysis showed 
that these extensive models contained variables that were 
selected for parsimonious models, which means that in many 
cases, markers selected by BIC were a subset of AIC- and 
LASSO-based developed models. The most important pre-
dictors were chosen on the basis of two criteria: (1) selected 
in > 50 out of 100 data splits and (2) selected by at least two 
selection methods. Among them, besides well-known litera-
ture predictors, was the novel marker rs2253104 in ARFIP2. 
The most important variants fulfilling both conditions are 
listed in Table 3. Figure 2 shows all ‘stable’ variants, i.e. 
those that were selected with each selection method in > 50 
out of 100 data splits.

Testing of models’ performance

Five different approaches were analysed in order to find 
the most accurate methods for regression model devel-
opment. The highest prediction accuracies were achieved 
using the BIC and LASSO regularization methods. These 
values reached acc. = 0.84 and 0.85, respectively, which 
means that 84–85% of individuals were classified into the 
correct eye colour category. Slightly lower accuracies were 
achieved with the AIC method and for the 1-STEP model 
(for both acc. = 0.79), and the lowest for the LOG FULL 
model (acc. = 0.74). Moreover, high AUC values were 
noted for all categories, including intermediate eye colour 
(AUC = 0.85), equal for models developed with the help 
of the BIC and LASSO approaches. Using these meth-
ods, blue and brown eye colours were predicted with an 

Fig. 1  Selection of markers subjected to the predictive modelling

Table 3  The most important SNP variants selected in > 50 out of 100 
data splits, by at least two of variables selection methods for regres-
sion models

SNP_ID Chromosome posi-
tion (GRCh38)

Gene Selection method

rs10874518 1:101,806,756 OLFM3 LASSO, AIC
rs16891982 5:33,951,588 SLC45A2 LASSO, AIC, BIC
rs2253104 11:6,479,079 ARFIP2 LASSO, AIC
rs12913832 15:28,120,472 HERC2 LASSO, AIC, BIC
rs1800407 15:27,985,172 OCA2 LASSO, AIC, BIC
rs74653330 15:27,983,407 OCA2 LASSO, AIC, BIC
rs885479 16:89,919,746 MC1R LASSO, AIC
rs8049897 16:89,957,794 DEF8 LASSO, AIC
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AUC of 0.96 and 0.93–0.94, respectively. Interestingly, a 
1-STEP model (which was always based on one of the key 
variants in the HERC2 gene, selected as the best predictor) 
achieved slightly better AUC values than both AIC-based 
and FULL models and only marginally lower compared 
to BIC- and LASSO-based developed models for all eye 
colour categories. The differences were mostly observed 
for the intermediate category (AUC = 0.83 for the 1-STEP 
model, 0.75 for LOG AIC, 0.67 for LOG FULL and 0.85 
for both LOG REG and LOG BIC), while for blue and 
brown eye colours, the differences were less pronounced. 
Most importantly, the sensitivity of intermediate eye col-
our prediction reached high values, especially in the case 
of LOG AIC: sens. = 0.40 and LOG FULL: sens. = 0.41. 
LOG BIC and LOG REG also showed relatively good 

values of 0.29 and 0.17, respectively, but not LOG 
1-STEP: 0.00. At the same time, the specificity of the LOG 
BIC and LOG REG models was very high, reaching values 
of 0.96 and 0.97, respectively, while LOG FULL and LOG 
AIC remained reasonably high: 0.85–0.88. Detailed results 
of prediction performance analysis are shown in Table 4.

Prediction modelling using other machine learning 
methods

In search of improvements in predicting eye colour, espe-
cially the intermediate category, several more advanced 
machine learning approaches were evaluated. Results 
showed that all tested methods revealed quite similar per-
formances as measured by accuracy and AUC parameters. 
Among them, the highest accuracies were found for RF 
and MARS (acc. = 0.83 and 0.82, respectively). The poor-
est accuracies were achieved by NB and NN (acc. = 0.77). 
When it comes to AUC, the highest values were estimated 
for RF for all eye colour categories. Nevertheless, all these 
methods (RF, XGB, MARS and SVM) gave similar AUC 
and accuracy outcomes.

However, sensitivity and specificity values varied sub-
stantially among the tested methods. The lowest sensitiv-
ity values were estimated for RF (although the overall pre-
diction accuracy estimated for this method was relatively 
high) and SVM, followed by NB and NN. The greatest dif-
ferences were found for intermediate eye colour, which was 
particularly interesting. The highest sensitivity values were 
estimated for MARS (sens. = 0.39), TREE (sens. = 0.35) and 
XGB (sens. = 0.34), while they were significantly lower for 
NN (sens. = 0.18), NB (sens. = 0.16), RF (sens. = 0.11) and 
SVM (sens. = 0.10). On the other hand, specificity values 
were the highest for RF and SVM (spec. = 0.98 and 0.97, 
respectively), followed by NB and NN (spec. = 0.95 and 
0.94) then TREE, XGB and MARS (spec. = 0.91–0.92). 
Details of prediction modelling analysis conducted using 
advanced machine learning algorithms are shown in Table 4.

Discussion

Accuracy of phenotype prediction from genetic data is 
essential for the successful application of predictive meth-
ods in biomedical studies including anthropology, paleoge-
netics and forensics [29]. Several factors determine good 
accuracy of DNA-based predictive methods, including high 
heritability of a trait, identification of appropriate predic-
tors and selection of the best mathematical approach to 
model development. Even highly heritable traits are often 
difficult to predict, due to polygenicity, epistasis, and allelic 
and locus heterogeneity. In this study, we used quantitative 
assessment of eye colour phenotypes and whole exome/

Fig. 2  Predictive marker selected by the LASSO (LOG REG), AIC 
(LOG AIC) and BIC (LOG BIC) approaches for eye colour predic-
tion. Only stable markers (selected to at least 50, i.e. 50% of models) 
are presented in the chart
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regulome sequencing to identify additional predictors, and 
additionally, we verified multiple machine learning meth-
ods to assess their impact on prediction accuracy, focusing 
especially on more complex intermediate phenotypes. The 
studied cohort of Polish individuals shows a relatively large 
diversity of pigmentation phenotype compared to some other 
European populations, which makes it useful for studying 
the genetics of pigmentation traits. Objective phenotyping of 
eye colour for finding new loci provided quantitative meas-
urements. The analysis using DIAT software [21] confirmed 
that the calculated PIE score reflecting the ratio of blue to 
brown pixels highly correlates with human evaluation of eye 
colour (Spearman correlation =  − 0.82, P-value = 5.46 ×  10−233). 
Using the single-SNP association testing of the WES/regu-
lome data under P-value < 1 ×  10−4, and the HyperLasso 
algorithm, which aimed to select the subset of SNPs that best 
predicted the trait under study simultaneously controlling the 
type I error of the selected variants [24], we identified 34 
SNPs and age as important factors for eye colour prediction. 
In the next step, we moved directly to the extensive predic-
tive modelling.

A large number of algorithms have been developed to 
deal with a variety of increasingly demanding and compu-
tationally challenging data analyses. Analysis of AIC, BIC 
and LASSO methods of marker selection conducted in this 
study revealed that all of them are robust, since they pro-
duced models with better performance compared to models 
without any selection method applied (i.e. LOG FULL). We 
confirmed that BIC, which more heavily penalizes the intro-
duction of additional variables, produced the most parsimo-
nious models. Together with BIC, LASSO yielded models 
with the best predictive performance. Interestingly, focusing 
on SNPs selected by at least two out of three feature selec-
tion methods and in at least 50% of data splits, we found 
the well-known pigmentation markers and the intronic vari-
ant rs2253104 in ARFIP2, newly identified by HyperLasso 
(Table 3). ARFIP2 is located on 11p15.4 and encodes for 
ADP-ribosylation factor-interacting protein 2 (ARFIP2), 
which is highly expressed in various tissues. This protein 
has been shown to be involved in several cellular processes 
and signalling pathways. They include Rac1-mediated sig-
nalling, triggering actin polymerization [30], which in mel-
anocytes is involved in dendrites formation and therefore 
the transport of melanosomes to keratinocytes [31]. Also, 
ARFIP2 has been shown to negatively regulate NF-κB sig-
nalling [32], inducing MITF expression, one of the most 
important melanogenesis regulators [33]. Interestingly, 
ARFIP2 was among the downregulated genes in human 
melanoma cells treated with arbutin [34], which is a known 
inhibitor of melanin biosynthesis used in cosmetology for 
skin whitening [35]. Therefore, although there is no evi-
dence that ARFIP2 is directly involved in melanogenesis, 
it is possible that it may be engaged in indirect regulation 

of pigmentation-related genes. It has been speculated that 
the missing heritability of many complex traits can be 
explained by gene action outside the core pathways [36]. 
So far, rs2253104 in ARFIP2 has been associated with 
lung cancer [37]. Rs2253104 in ARFIP2 was selected in 
65% of LOG AIC models and in 51% of LOG REG models, 
therefore more frequently than, e.g. rs12203592 in IRF4 or 
rs1408799 in TYRP1 (LOG REG), the other well-established 
eye colour predictors (Fig. 1). Nevertheless, as the univariate 
association analysis did not reveal statistically significant 
association of rs2253104 with eye colour either in discovery 
or predictive modelling cohort, its effect appears to be very 
complex and the direction of the effect difficult to interpret. 
Therefore, further studies are needed to support our hypoth-
esis about the potential role of this variant and better under-
stand this effect. The nonsynonymous OCA2 rs74653330 
variant, which was very often selected by all three (AIC, 
BIC, REG) methods, also deserves more attention. The 
research by Yuasa et al. showed a north–south geographic 
gradient of the rarer T allele, which was interpreted as a 
possible case of adaptive evolution [38]. Indeed, it has been 
suggested that this OCAC2 variant is responsible for reduced 
efficiency of melanogenesis [39] and thus lighter pigmenta-
tion, which is preferred in areas with lower ultraviolet radia-
tion content. Notably, the T-allele was also found to have a 
measurable effect on normal eye colour variation in Scandi-
navian samples [40, 41]. The incidence of the minor T allele 
in the Scandinavian population was 0.005 and this variant 
was not present in the Italian and Portuguese populations 
[40]. In our population, the derived T allele was observed 
10 times in 999 individuals, in the heterozygous genotypes. 
Our study confirms importance of rs74653330 for eye col-
our prediction and further indicates that allelic heterogeneity 
altogether with the population-specific differences in allele 
frequencies may be important factors in predictive DNA 
analysis. Other SNPs for eye colour prediction included 
three out of six variants implemented in the IrisPlex model: 
rs12913832 (HERC2), rs1800407 (OCA2) and rs1689182 
(SLC45A2) [16, 42] as well as others, previously associated 
with eye patterning (rs10874518, OLFM3; [43]), or other 
pigmentation traits (rs885479; MC1R, rs8049897, DEF8; 
[44]) (Table 3).

Importantly, the accuracy of predicting intermediate 
eye colour achieved a high level (e.g. regression model 
developed with BIC approach or with LASSO regulari-
zation: AUC = 0.85), higher than reported for IrisPlex 
[16] and Snipper [45], the two most widely used eye col-
our predictive tools. In data analysed here, the sensitiv-
ity of intermediate eye colour prediction was also better 
(LOG BIC sens. = 0.29) compared to the results obtained 
with the original IrisPlex model (sens. = 0.00). In previ-
ous research, a significant increase in the sensitivity of 
intermediate eye colour prediction was achieved due to 
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additional variation in the HERC2 gene included in the 
predictive model. The positive effect was, however, revers-
ible, since the addition of other HERC2 variants decreased 
the ability of the model to predict intermediate eye col-
ours [45]. A small increase in accuracy of intermediate eye 
colour was also reported in a study that involved genetic 
interactions [46].

Besides classical regression, several more advanced 
machine learning algorithms were evaluated. The study 
demonstrated that advanced machine learning methods 
showed even higher sensitivity values of intermediate 
eye colour prediction (i.e. TREE, XGB and MARS with 
sens.interm. = 0.34–0.39); however, a slightly reduced sen-
sitivity of brown eye colour prediction was observed for 
these models when compared to the regression model. It 
is well known that more advanced machine learning meth-
ods may better cope with recognition of complex pheno-
types, including intermediate eye colour, due to the abil-
ity to identify possible nonlinear dependencies between 
variables, such as interactions. Nevertheless, while some 
advanced methods were found to demonstrate increased 
sensitivity or specificity in predicting certain categories, 
none of these approaches outperformed the regression 
method developed following prior features selection using 
BIC or LASSO, when AUC or accuracy metrics were com-
pared. Moreover, differences between the tested methods 
were modest. These results suggest that more sophisticated 
learning algorithms may need larger datasets to demon-
strate their superiority and do not reveal their potential 
in low- and medium-dimensional data. Also, a system-
atic review [47] of logistic regression and other machine 
learning methods (among which the most common were 
classification trees, random forests, artificial neural net-
works and support vector machines) showed that in the 
group of low risk of biased study, no performance benefit 
of machine learning over logistic regression methods was 
reported for clinical prediction models. Further, evalua-
tion of deep learning methods (multilayer perceptron and 
convolutional neural networks) conducted on high-dimen-
sional data (~ 100 k individuals and ~ 500 k SNPs) did not 
provide any proof that these methods outperform simple 
linear methods and improve complex human trait predic-
tion by a sizeable margin [48]. Although our analysis did 
not involve advanced machine learning hyperparameters 
tuning aimed at improving the obtained prediction accu-
racies, there is evidence in the literature that such tuning 
may still not be helpful for significantly improving accu-
racy [49]. Nevertheless, it was found that the superiority 
of the advanced ML approaches (random forests) depends 
on the dataset and tends to be more pronounced for an 
increasing number of analysed features or an increase in 
the ratio of the number of features to the number of cases 

[50]. Indeed, it has been shown that some of the advanced 
algorithms can be very successful in predicting complex 
traits if applied to very high-dimensional data [51]. It is 
also worth noting that advanced machine learning methods 
outperform basic linear regression in age prediction using 
DNA methylation data. In the evaluation of 17 different 
machine learning approaches performed by Aliferi et al., 
the support vector machine with the polynomial function 
method was chosen as highly robust, generalizable and 
the best-performing modelling approach [52], as it was in 
another previous study [53]. Also, neural networks (e.g. 
[54]) and random forest regression [55] were successfully 
applied to accurate human age prediction. This demon-
strates the superiority of some ML approaches over clas-
sical regression methods in data with observed nonlinear 
correlation effects and also suggests a possible dependence 
of ML methods’ efficiency on the data type: discrete for 
SNP vs. quantitative for DNA methylation.

In summary, whole-exome sequencing of 150 individu-
als has allowed identification of 27 DNA variants that are 
relevant for eye colour prediction which have not been 
reported before in pigmentation predictive studies. Besides 
well-known pigmentation-associated variants, rs2253104 
in ARFIP2 was selected by at least two different feature 
selection methods for regression predictive models, which 
turned out to be the most accurate. None of the sophisti-
cated machine learning algorithms outperformed the over-
all prediction accuracy of regression models developed 
following prior features selection using BIC or LASSO 
regularization, indicating that medium-dimensional data 
does not use the whole potential of these more advanced 
algorithms.
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