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Postmortem age estimation via DNA methylation analysis in buccal
swabs from corpses in different stages of decomposition—a “proof
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Abstract
Age estimation based on the analysis of DNA methylation patterns has become a focus of forensic research within the past few
years. However, there is little data available regarding postmortem DNA methylation analysis yet, and literature mainly encom-
passes analysis of blood from corpses without any signs of decomposition. It is not entirely clear yet which other types of
specimen are suitable for postmortem epigenetic age estimation, and if advanced decomposition may affect methylation patterns
of CpG sites. In living persons, buccal swabs are an easily accessible source of DNA for epigenetic age estimation. In this work,
the applicability of this approach (buccal swabs as source of DNA) under different postmortem conditions was tested.
Methylation levels of PDE4C were investigated in buccal swab samples collected from 73 corpses (0–90 years old; mean:
51.2) in different stages of decomposition. Moreover, buccal swab samples from 142 living individuals (0–89 years old; mean
41.2) were analysed. As expected, methylation levels exhibited a high correlation with age in living individuals (training set: r2 =
0.87, validation set: r2 = 0.85). This was also the case in postmortem samples (r2 = 0.90), independent of the state of decompo-
sition. Only in advanced putrified cases with extremely low DNA amounts, epigenetic age estimation was not possible. In
conclusion, buccal swabs are a suitable and easy to collect source for DNA methylation analysis as long as sufficient amounts
of DNA are present.
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Introduction

Epigenetic age estimation using “molecular clocks” [1–4]
opens up new opportunities in forensic case work. The basis
of such an epigenetic clock is an age-dependent methylation
pattern at specific CpG sites. Several models for epigenetic
age estimation have been described, which differ regarding
number and combination of CpG sites (for review, see [5]).

This new approach for age estimation can be used especially
in the context of the analysis of crime scene samples [6] as
well as for low- or non-invasive age estimation of living indi-
viduals based on easily accessible test material such as blood,
saliva, or buccal swab samples (e.g., [7–11]).

Another forensic application for epigenetic age estimation
may be age at death estimation of unknown deceased. Bekaert
and colleagues [12] developed a 4-CpG-model (ASPA,
PDE4C, ELOVL2 and EDARADD) using blood samples from
37 living and 169 deceased individuals. Estimated ages of the
deceased were in accordance with those from living individ-
uals. Similar results were reported by Hamano et al. [13] and
Naue et al. [14] using two (ELOVL2 and FHL2) [13] and 13
CpG sites (RPA2, F5, TRIM59, KLF14, HOXC4, NKIRAS2,
ZYG11 A, MEIS1, ELOVL2, GRM2, LDB2, SAMD2, DDO)
[14], respectively. Additionally, the work of Naue et al. [14]
revealed that methylation levels of several CpG sites were also
associated with chronological age in several tissues collected
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postmortem including muscle, brain, bone and buccal swabs.
The applicability of age estimation based on DNA methyla-
tion to postmortem tissues was also confirmed by further
groups like Dias and colleagues for blood [15], Lee et al. for
bone samples [16], Pfeifer et al. for blood [17] and Marquez-
Ruiz et al. for teeth [18]. However, most authors either
analysed only corpses in early stages of decomposition or
did not describe the degree of decomposition in their cases.

Dias et al. [19] just recently pointed to possible postmortem
changes of DNA methylation patterns. They investigated 62
blood samples, which were collected within 5 days after death
and compared the results to those of samples from 59 living
individuals. The authors concluded “that postmortem changes
can occur in the methylation levels” and “postmortem changes
can alter the methylation status among specific loci”.

Clarifying the raised question of postmortem changes in
the DNA methylation pattern is a prerequisite for the applica-
tion of age estimation based on DNAmethylation to postmor-
tem samples. To date, there are no systematic analyses regard-
ing the effects of decomposition on epigenetic age estimation.

This study is intended to contribute to a better understand-
ing of postmortem effects on DNA methylation. It focuses on
whether epigenetic age estimation based on the analysis of
buccal swabs is possible in cases with advanced postmortem
decomposition. Buccal swabs from decedents were taken
postmortem during different stages of decomposition. The
degree of DNA methylation was assessed from 73 corpses
and 142 living individuals for the highly age-associated
CpG-1 site (upstream of cg17861230) of PDE4C in buccal
swab samples.

Material and methods

Sample collection and assessment of decomposition

Buccal swabs were collected from 73 deceased individuals
(age 0–90, mean: 51.2 years; 68.5% male) in different stages
of decomposition and a postmortem interval (precisely known
in 42 of the 73 cases) of 1–42 days. An additional 142 samples
were taken from healthy living individuals (age 0–89 years,
mean: 41.6 years; 41.5% male).

In cases of deceased individuals, macroscopically visible
external changes of decomposition were described and the
cases subsequently classified based on the proposed scorings
by Megyesi et al. [20] (Table 1). Decomposition scores of the
heads were used to group samples into the following catego-
ries with respect to their degree of decomposition: score 1 for
no signs of decomposition (n = 21), score 2–3 for early signs
of decomposition (n = 18), score 4–5 for signs of advanced
decomposition (n = 22) and a score > 6 for severe signs of
decomposition (n = 12).

DNA isolation and pyrosequencing

For genomic DNA isolation, NuceloSpin® Tissue Kit by
Macherey-Nagel was used according to the manufacturer’s
standard protocol for human tissue with overnight lysis.
Extracted genomic DNA was stored at − 20 °C until further
analysis. DNA quantity and quality were measured using the
Investigator Quantiplex Pro Kit (Qiagen) via real-time PCR
(Applied Biosystems™ 7500 Real-Time PCR Systems) fol-
lowing manufacturer’s instructions with default settings. For
bisulfite conversion, the EZ DNA Methylation-Gold™ Kit
(Zymo Research) was used following manufacturer’s instruc-
tions. When possible, the recommended amount of 200–
500 ng of input DNA was applied. In some samples, the input
was lower due to low original DNA amounts (Table 2).
Bisulfite-converted DNA was amplified using the primers de-
scribed by Weidner et al. [4] using the following thermal
cycler conditions: 95 °C, 15 min; 45× cycles (95 °C, 30 s;
52 °C, 30 s; 72 °C, 30 s); 72 °C, 5 min; 4 °C, hold. The length
of the subsequent product was 155 bp.

Subsequently, the converted and amplified DNA was
immobilized to 1 μl Streptavidin Sepharose™ HP beads
(GE Healthcare). For pyrosequencing, the Pyromark Q24
and Pyromark Q24 Advanced Systems (Qiagen) were used.
Sequencing primers were described in Weidner et al. [4]. All
samples were measured at least in duplicate. Single values did
not differ by more than 3% within one sample; this was also
true for comparative measurements using both pyrosequenc-
ing systems (Q24, Q24 Advanced).

Data analysis

The relationship between chronological age and the
methylation status of the highly age-associated CpG-1
site of PDE4C (upstream of cg17861230; see Weidner
et al. [4]) was tested by linear regression and the cor-
responding correlation coefficients were determined. The

Table 1 Scoring sheet for assessment of decomposition (Megyesi et al.
[20])

Score Signs of decomposition

1 Fresh, no discoloration

2 Pink-white appearance with skin slippage, some hair loss

3 Gray to green discoloration of skin

4 Drying of nose, ears and lips

5 Purging of decompositional fluids out of eyes, ears, nose, mouth

6 Muscle tissue brown-black

7 Caving in of facial tissue

8 Bones visible (< 50% of scoring area)

9 Mummification, bones visible > 50% of scoring area
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samples of living individuals were split into two groups.
One group was used as training set (n = 71, ages 0–89,
mean age: 42 years), the other as validation set n = 71,
ages 0–85, mean age: 42 years). Corpses with sufficient
DNA yields (see Table 2) were treated as a second
(postmortem) validation set (n = 52, ages 0–88, mean
age: 49.5 years). The MADs (mean absolute deviations)
of age estimates were calculated as mean of deviations
of estimated from chronological ages.

Cytology of buccal swabs

Buccal swabs were taken from corpses in different
stages of decomposition (scores 1, 5, and 7) and smears
were prepared on specimen slides. The smears were
stained with the Pappenheim method: after drying, the
slides were immersed in undiluted May-Grünwald stain
for 5 min, rinsed with distilled water, immersed in
Giemsa stain diluted with distilled water in a ratio of
1:9 for 15 min before being rinsed again with distilled

water. After staining, images of the smears were taken
with the Nikon C-TEP3 system with a 100-fold
magnification.

Results

DNA yields were unexpectedly high in postmortem
samples—apart from cases with severe decomposi-
tion (score > 6)

DNA quantities varied considerably within both groups (living
and deceased) and ranged between < 1.0 and 303.3 ng/μl
(Table 2). In several postmortem samples, DNA yields were
unexpectedly high, albeit, in the group with severe signs of de-
composition (score > 6), only one sample (L80) contained suffi-
cient amounts of DNA for further analysis. The number of sam-
ples with low DNA amounts increased with increasing decom-
position. Thus, the manufacturer’s recommended input of 200–
500 ng of template DNA for bisulfite conversion was only

Table 2 Postmortem samples: DNA concentrations (ng/μl) and
degradation indices (*: samples with DNA quantities too low for further
application (≤ 3 ng/μl); score 1, no signs of decomposition, n = 21; score

2 + 3, early signs of decomposition, n = 18; scores 4 + 5, advanced
decomposition, n = 22; score > 6, severe signs of decomposition, n = 12)

Score
1

ng/μl
DNA

Degradation
index

Score
2 + 3

ng/μl
DNA

Degradation
index

Score
4 + 5

ng/μl
DNA

Degradation
index

Score > 6 ng/μl
DNA

Degradation index

L05 31.94 1.91 L03 84.62 1.48 L06 79.08 1.43 L01 * 0.00 Not applicable
(degradation)

L08 * 0.03 42.57 L09 12.49 3.11 L15 38.53 6.18 L07 * 0.01 7.43

L12 14.59 1.43 L10 60.82 4.68 L16 60.94 2.31 L14 * 1.12 4.93

L21 * 0.01 6.01 L11 154.96 1.89 L19 102.89 1.22 L33 * 0.01 4.86

L22 27.92 5.32 L13 56.24 1.36 L28 * 0.00 4.34 L64 * 0.19 2.82

L23 * 0.02 12.69 L17 63.28 6.90 L30 70.12 2.13 L65 * 0.01 4.4

L25 12.58 1.32 L18 134.57 1.63 L34 72.12 15.34 L71 * 0.00 4.75

L26 110.62 1.82 L24 12.97 8.14 L36 66.14 8.79 L74 * 0.00 13.02

L27 33.44 1.28 L32 233.64 1.77 L39 45.85 6.64 L76 * 0.00 2.7

L29 66.13 1.63 L35 * 2.00 2.30 L42 3.55 4.28 L79 * 0.01 27.28

L31 16.69 2.30 L40 73.56 1.51 L44 * 1.04 10.54 L80 100.76 3.38

L37 9.65 1.86 L57 303.26 1.59 L45 97.53 1.82 L81 * 0.01 2.56

L43 56.78 1.62 L63 144.22 1.94 L46 33.03 3.58

L47 16.73 4.42 L69 * 0.00 23.26 L49 59.44 1.41

L50 74.78 2.07 L75 10.22 2.06 L51 80.71 5.24

L53 33.71 2.88 L77 93.60 3.62 L56 62.74 3.74

L54 36.53 1.74 L82 20.51 5.04 L58 122.19 2.75

L60 * 0.47 1.52 L83 * 0.00 5.00 L61 70.72 3.37

L70 63.45 2.63 L62 51.11 12.14

L73 90.10 1.65 L67 * 0.17 6.44

L78 134.01 2.67 L68 41.27 2.16

L72 49.28 2.59

Mean 39.53 4.83 81.16 4.29 54.93 4.93 8.51 7.10
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possible for 52 of 73 samples of deceased (Table 2). There was
no relationship between degradation indices and DNA yields or
macroscopically assessed scores of decomposition for samples of
scores below 6 (Table 2). Degradation indices over 10 (indicating
a possible degradation) were seen in only few cases in all score
groups (2 of 21 cases of score 1, 1 of 18 cases of score 2 + 3, 3 of
22 cases of score 4 + 5, and 2 of 11 cases of score > 6). Samples
with high degradation indices neither showed pyrograms of low
quality nor values that do not correspond to the age of the
individuals.

Smear cell preparations from buccal swabs showed a signifi-
cant increase of buccal cells in preparations from corpses with
signs of decomposition up to score 5, as compared to corpses
without signs of decomposition (score 1) (Fig. 1). However, in
corpses with advanced decomposition, nearly no intact buccal
cells could be found (example in Fig. 1: score 7).

Ante- and postmortem samples exhibit a similar and
close correlation between DNA methylation and
chronological age

Statistical analyses of the training set (71 living individuals)
showed a close relationship between age and DNA methyla-
tion (r2 = 0.87), which can be described by the following
equation:

estimated age = (methylation of CpG-1 in PDE4C −
9.5485) / 0.4797

Application of this formula to both validation groups (71
living individuals, 52 corpses) revealed a similar and close
relationship between chronological and estimated age for all
groups (Fig. 2, validation set living: r2 = 0.85, validation set
corpses: r2 = 0.90), the MADs were 7.8 years for the valida-
tion set of living individuals, and 9.1 years for the postmortem
samples.

The state of decomposition does not affect the scattering
of methylation levels in the postmortem samples

To assess the impact of decomposition on methylation-
dependent age estimation, the regression of samples within
each decomposition state was plotted for the chronological
age vs. the degree of PDE4C CpG-1 methylation (Fig. 3).
There is no indication for a relevant influence of the state of
decomposition on the scattering of data. Due to the low num-
ber of cases and differences in distribution of chronological
ages in each group of decomposition state, further statistical
processing was not carried out.

Discussion

The application of epigenetic age estimation to postmortem
cases requires systematic analyses regarding the effects of

decomposition. This study focused on the applicability of epi-
genetic age estimation under different postmortem conditions,
including stages of advanced decomposition using buccal
swabs as the source of DNA [21].

DNA yields of swabs were unexpectedly high in the
postmortem cases with signs of decomposition
(below a score of 6)

In many cases with moderate signs of decomposition, the
amount of DNA isolated from corpses was unexpectedly high.
This may be because the decomposition processes affect the
stability of buccal mucosa. More cells may be available on the
swab in deceased individuals with signs of decomposition
compared to swabs taken from intact buccal mucosa of living
individuals. This hypothesis is supported by the analysis of
smear preparations of buccal swabs from corpses in different
stages of decomposition (Fig. 1).

Degradation indices over 10 (indicating a possible degra-
dation) were seen in only few cases, surprisingly even in the
score groups of advanced decomposition of the bodies. These

sample of score 1

sample of score 5

sample of score 7

Fig. 1 Typical examples for smear cell preparations of buccal swabs,
100× magnification, scale bars represent 100μm
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findings obviously reflect that putrefaction processes differ
greatly from one individual to another, depending on many
ante- and postmortem factors as bacterial colonization, tem-
perature, and blood congestion or hypostasis.

However, DNA yields of swabs from corpses in very se-
vere stages of decomposition (with scores > 6, see Table 1)
were minute in all but one individual. This might not be sur-
prising, as in those stages of decomposition tissues start to dry
out. Later on, buccal mucosa is dried out or even nearly totally
dissolved.

Ante- and postmortem samples exhibit a very similar
and close correlation between DNA methylation and
chronological age and the state of decomposition
does not affect the scattering of methylation levels

Eipel et al. [21] addressed the importance of buccal cell
composition for the precision of epigenetic age estimation,

as it is already known that DNA methylation is tissue- and
cell-type dependent. However, their work described that
the PDE4C marker seems to be rather robust to changes
in cell composition (buccal epithelial cells vs. leukocytes).
On the other hand, one might have assumed that postmor-
tem PDE4C methylation levels may be influenced,
changed, or even be unmeasurable due to post- or
perimortem cellular processes or bacterial activity.
Although only a small number of samples and only one
DNA methylation marker was analysed in the present
study, the collected data do not give any indication of such
influences. Therefore, our data for buccal swabs are in line
with results from blood samples of corpses presented in
other studies, which also did not find differences in epige-
netic age estimations of living vs. deceased [12–15]. By
this, we also proved the robustness of the PDE4C marker
towards changes in cellular composition described by
Eipel et al. [21].
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Conclusion

Our data suggest that epigenetic age estimation based on the
analysis of buccal swabs is applicable even in cases with ad-
vanced decomposition, as long as enough intact DNA can be
extracted.

In this “proof of principle” study, we analysed only one type
of specimen (buccal swabs), a limited number of samples and
only one DNA methylation marker. Hence, systematic postmor-
tem studies including diverse tissues and diverse marker combi-
nations as well as cases with different stages of decomposition
are required to exploit the full potential of epigenetic age estima-
tion for postmortem application. Based on the results of such
studies, epigenetic age estimation will doubtlessly expand the
methodological repertoire for postmortem age estimation. It will
be especially valuable in combination with other methods, as
such combinations are proven to reduce errors [22].
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