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Abstract Carcass mass largely affects pattern and rate of car-
rion decomposition. Supposedly, it is similarly important for
carrion entomofauna; however, most of its likely effects have
not been tested experimentally. Here, simultaneous effects of
carcass mass and clothing are analyzed. A factorial block ex-
periment with four levels of carcass mass (small carcasses 5–
15 kg, medium carcasses 15.1–30 kg, medium/large carcasses
35–50 kg, large carcasses 55–70 kg) and two levels of carcass
clothing (clothed and unclothed) was made in a grassland
habitat of Western Poland. Pig carcasses (N=24) were
grouped into spring, early summer, and late summer blocks.
Insects were sampled manually and with pitfall traps. Results
demonstrate that insect assemblages are more complex, abun-
dant, and long-lasting on larger carcasses, whereas clothing is
of minor importance in this respect. Only large or medium/
large carcasses were colonized by all guilds of carrion insects,
while small or medium carcasses revealed high underrepre-
sentation of late-colonizing insects (e.g., Cleridae or
Nitidulidae). This finding indicates that carcasses weighing
about 23 kg—a standard in forensic decomposition stud-
ies—give an incomplete picture of carrion entomofauna.
Residencies of all forensically relevant insects were distinctly

prolonged on larger carcasses, indicating that cadaver mass is
a factor of great importance in this respect. The pre-
appearance interval of most taxa was found to be unrelated
to mass or clothing of a carcass. Moreover, current results
suggest that rate of larval development is higher on smaller
carcasses. In conclusion, this study demonstrates that carcass
mass is a factor of crucial importance for carrion entomofauna,
whereas the importance of clothing is small.
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Introduction

Carrion insects are useful for minimum postmortem interval
(minimum PMI) estimation [1–3]. In forensic practice, mini-
mum PMI is frequently determined from the age of immature
insects or less frequently from the successional patterns of the
carrion insect assemblages [2, 4]. The age of an insect may be
estimated from the age indicators (e.g., developmental stage or
larval length) by using temperature models for the develop-
ment of particular species and case-specific temperature data
[2, 5, 6]. This approach assumes that developmental rate is
largely dependent on the temperature to which insects have
been exposed, and this temperature largely depends on the
ambient air temperature. Some other factors may be however
also of importance, as for example the presence and size of
larval masses [7–9]. The classical successional method in-
volves analysis of the whole insect assemblage present on a
cadaver, of which one chooses two Bdefinitive taxa^: the one
defining Blower PMI^ and the other defining Bupper PMI^
[10–13]. Lower PMI relies on the pre-appearance interval
(PAI) of the first definitive taxon, which may be estimated in
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many carrion insects from temperature [14–16] or may be
determined by comparison with results of relevant pig carcass
study [10, 11]. Upper PMI depends on the end of residency of
the second definitive taxon (sometimes called Binsect depar-
ture time^) [12, 13]. This moment in most carrion insects is
only slightly related to preceding temperature [16]. Although
seasonality affects to some extent the residency of carrion
insects [17], currently, no single factor may be considered as
a key factor in this respect. Therefore, in casework, the only
way to determine the end of residency is a comparison with
relevant pig carrion study [10, 11].

Several studies revealed a high importance of cadaver mass
for pattern and rate of decomposition [18–23]. It seems that
carcass mass may be similarly important for carrion entomo-
fauna, and as such, it may confound development and
succession-based estimates of minimum PMI. Surprisingly,
its effects have so far only been tested in a single unreplicated
experiment comparing carrion fauna of just two pig carcasses
weighing 8.4 and 15.1 kg [18]. No size-related differences in
composition of carrion fauna and patterns of its succession
were reported, supposedly due to the small range of body
mass included in the study [18]. This negative result should
however not lead to a conclusion that cadaver mass is a factor
of no or of small importance for insect fauna. Carrion ento-
mofauna may be affected by carcass mass in several different
ways. Firstly, body mass may structure composition of carrion
insect assemblage. Carcasses of different mass represent dif-
ferent quantities and kind of resources available for insects.
Larger carcasses have higher volume of muscles and higher
fat content as compared to smaller carcasses [24, 25].
Moreover, active decay in larger carcasses is less efficient
and much more biomass is left after its termination [23].
Insect assemblages on larger carcasses may therefore be
more complex, with more larval taxa particularly of the
late-colonizing species. Secondly, body mass may affect
residency of carrion insects. It was demonstrated that
bloating and active decay lasts longer on larger carcasses
[23]. We hypothesize that residency of carrion insects may
be similarly prolonged on larger carcasses. Thirdly, carcass
mass may influence abundance of insects. Hewadikaram
and Goff [18] observed a greater number of arthropods
attracted to a larger pig. It seems that larger carcasses
are colonized by greater number of larvae as well, which
is suggested by greater number of larval masses on larger
carcasses [23]. Moreover, it is reasonable to assume that
larval masses are of larger volume on larger carcasses.
Because the volume of the mass strongly influences its
inner temperature [26], larvae may develop faster on larger
bodies. Fourthly, carcass mass may affect the PAI of car-
rion insects. Larger carcasses lose heat at a slower rate
[27] which may accelerate development of bacteria shortly
after death and eventually may result in reduction of time
needed for the production of insect attractants.

Carcass clothing is another factor of potential relevance for
carrion entomofauna and entomological methods for mini-
mum PMI estimation. Although its importance for pattern
and rate of pig carrion decomposition is rather minor [23,
28, 29], it is believed that it may be very important for carrion
insects [30]. Clothing affects abiotic conditions of the cadaver,
as for example its humidity, amount of shade, or protection for
inhabiting arthropods [30]. Some results indicate that it may
increase abundance and diversity of carrion insects [30], en-
large dipteran larval masses andmake larvaemore freelymov-
ing [28–30], or prolong the period in which some larval
Diptera are present on a cadaver [23, 29]. These effects were
however not reported in every clothing-oriented study, so the
importance of clothing for carrion entomofauna is still unclear.

In casework, cadavers differ according to their mass as well
as kind and extent of clothing [23]. It is thus of vital impor-
tance for forensic practice to test whether these differences
may confound PMI estimates from insect evidence. In this
article, effects of carcass mass and clothing on entomofauna
of pig carcasses are analyzed. We predict that (1) insect as-
semblages are more diverse and abundant on larger carcasses,
(2) species residencies are longer on larger carcasses, (3) adult
or larval PAIs are shorter on larger carcasses, (4) larval insects
develop faster on large carcasses, (5) insect assemblages are
more diverse on clothed carcasses, and (6) species residencies
are longer on clothed carcasses.

Materials and methods

Experimental design

Experiment followed a complete factorial block design with
carcass mass and carcass clothing as factors of interest. Four
levels for carcass mass were studied (small carcasses 5–15 kg,
medium carcasses 15.1–30 kg, medium/large carcasses 35–
50 kg, and large carcasses 55–70 kg). Carcass clothing was
considered on two levels (clothed and unclothed). Clothing
consisted of trousers (with shortened legs), t-shirt, and a shirt
or a blouse, all made of cotton and in similar colors. The
whole sample (24 carcasses) was split into three blocks, with
all levels of both factors studied in each block. The first block
started in spring, the second in early summer, and the third in
late summer. Carcasses were exposed, respectively, in the 17th
of May, 16th of July, and 27th of August 2012. The average
daily ground level temperatures ranged from 10.5 to 24.9 °C
for the spring block, from 16.5 to 28.3 °C for the early summer
block, and from 9.1 to 22.0 °C for the late summer block.
Temperatures were logged hourly at every carcass by using
HOBO U23 Pro v2 2x External Temperature Data Loggers
(Onset Computer Corporation, MA, USA). The experiment
followed a block design, so seasonal differences in tempera-
ture or insect abundance could have been isolated and treated
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as a separate Bblock^ factor. Its effects on carrion entomofau-
na will not however be reported here, as they are neither novel
nor interesting. A factorial block design was chosen for this
experiment because we wanted to isolate and separate in this
way temperature and seasonal effects on carrion insect fauna.

The study site was a xerothermic grassland situated in the
Biedrusko military range (Western Poland, Europe; 52° 31′N,
16° 55′ E). This is an area covered with grasses and no trees or
large bushes. Eight sites along a roughly straight line were
chosen in each block. Sites were indistinguishable according
to abiotic and biotic conditions. The area was flat, in full
sunlight, without any wind or sun barriers. Adjacent sites were
at least 50 m apart.

Carcasses

In total, 24 domestic pig carcasses (Sus scrofa domestica L.)
were bought from a local commercial pig farm. Because we
bought and used carcasses, there was no need to get the ap-
proval of the Ethics Commission on the Animal Experiments.
Within each block, pigs were killed by a butcher at about
6 a.m. (a blow to the base of the skull) and after 1 to 3 h were
exposed in the field. For the purpose of easy movement, car-
casses were placed on a metal grate. In order to prevent scav-
enging, they were protected with welded wire mesh.
Carcasses were weighed (a hanging scale KERN HCB
99 K50) just after exposure and then at varying intervals.

Sampling and identification of insects

Samples were taken on a day-to-day basis until the 18th–20th
day postmortem depending on the season. Afterwards, exam-
inations were less frequent and intervals between subsequent
samples increased with an increase in PMI. Insects were col-
lected until no forensically relevant taxa were present. In the
case of small or medium carcasses, it was about 50 days for
the spring block, about 40 days for the early summer block,
and about 80 days for the late summer block. In the case of
medium/large and large carcasses, samples were taken until 19
November 2012. Because there was still much biomass on
these carcasses and insects were still present, we decided to
collect samples also in 2013 and 2014. However, sampling
frequency and techniques in 2013 and 2014 were different
compared to 2012. Moreover, only ten carcasses (five
medium/large and five large) were included in this prolonged
study. Accordingly, here we decided to report only results
from 2012, as only samples collected in this year are suitable
for comparing different classes of carcasses. Results from
2013 will be used only in analyses related to the composition
of insect assemblages. Insect sampling was made always by
two examiners and lasted usually 20–30 min per carcass (be-
tween 10 a.m. and 2 p.m.).

Two pitfall traps (plastic containers 16 cm in diameter and
17 cm in height) per carcass were used. Traps were filled with
50 % ethylene glycol solution and were emptied at every
inspection. Manual collections consisted of aerial sweep net
and hand samples and were made at every inspection. A swat-
ting technique was performed twice (just two sweeps down
onto the surface, one on the head, the other on the hind portion
of a carcass) with large aerial sweep net (55 cm in diameter).
Net samples were taken at the beginning of every inspection.
Hand samples were taken using forceps from the carcass sur-
face and from the soil under and near the carcass for about
10 min. Only these insects were sampled by hand which were
unidentifiable in the field, and care was taken to sample only
singular specimens from each taxon. Insects were killed and
preserved in 70 % solution of ethanol. Care was taken to
sample insects with the same intensity on all carcasses, so
the intensity of sampling was not a confounding factor in this
experiment.

Insect determinations were made using keys for identifica-
tion [31–39]. Samples are deposited at the Laboratory of
Criminalistics and Natural History Collections of Adam
Mickiewicz University in Poznań, as well as at the Chair of
Ecology and Biogeography of Nicolaus Copernicus
University in Toruń.

Data analyses

In order to analyze composition of insect assemblages, data
from 2012 and 2013 were included. All the other analyses
were made with data from 2012 only. While counting number
of larval taxa per carcass, every instar from a given species
was treated as a separate taxon regardless of its abundance and
number of days on which it was recorded. When only third
instar larvae of carrion breeding insects were collected or
identified from a given carcass, it was assumed that first and
second instars were also present on that carcass for some time
prior to sampling of third instars.

Abundance was analyzed for most important species of
Coleoptera (Necrodes littoralis, Thanatophilus sinuatus,
Thanatophilus rugosus, Creophilus maxillosus, Saprinus
semistriatus, Saprinus planiusculus, Margarinotus brunneus,
Dermestes frischii, Omosita colon, Nitidula rufipes, Necrobia
violacea, Necrobia rufipes) and Diptera (Lucilia caesar,
Lucilia sericata, Calliphora vomitoria, Phormia regina,
Sarcophaga caerulescens, Stearibia nigriceps, Hydrotaea
ignava, Hydrotaea pilipes, Fannia canicularis, Fannia
leucosticta). Only these species were included which were
abundantly recorded in at least several samples and on at least
several carcasses (Tables 1–2). Pooled pitfall trap and sweep
net samples were included in these analyses. At first, the num-
ber of specimens of a given taxon collected on a given carcass
was transformed into a portion of a total number of individuals
from that taxon collected on all carcasses in a given block.
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Then these portions were averaged across all relevant taxa
found on the carcass (separately in adult or larval Diptera or
Coleoptera) and afterwards such generalized data were used in
analyses.

Residency was defined as an interval from the first until
the last presence of a taxon on a carcass. Residencies for
higher taxa (adult or larval Diptera or Coleoptera) were
calculated through averaging residencies across relevant
lower taxa.

The PAI was defined as an interval from the moment of
death until the first appearance of a given taxon. Analyses
were made separately for adult and larval PAI.

ANOVA for block design was used in all analyses,
with carcass mass, carcass clothing, and blocks as factors,
and interaction between carcass mass and carcass clothing

included. In all analyses, a 5 % level of significance was
accepted. Calculations were made using Statistica 10
(StatSoft, Inc. 1984–2011).

Results

Composition and abundance of insects

Carcass mass had a highly significant effect on the number of
adult or larval taxa in both major carrion insect orders (adult
Diptera, F3,14=20.5, P<0.01; larval Diptera, F3,14=5.3, P=
0.01; adult Coleoptera, F3,14 = 14.5, P<0.01; larval
Coleoptera, F3,14=9.7, P<0.01), with higher number of taxa
on larger carcasses (Fig. 1). In particular, larger carcasses

Table 1 The occurrence of Diptera on different carcasses

Family Species Stage Small carcasses Medium carcasses Medium/large
carcasses

Large carcasses

C (N=3) U (N=3) C (N=3) U (N=3) C (N=3) U (N=3) C (N=3) U (N=3)

Calliphoridae Calliphora vomitoria (Linnaeus, 1758) A 2 1 3 3 2 3 3 3

L3 2 – 2 2 2 2 3 2

Lucilia caesar (Linnaeus, 1758) A 3 3 3 3 3 3 3 3

L3 3 3 3 3 3 3 3 3

Lucilia sericata (Meigen, 1826) A 3 3 3 3 3 3 3 3

L3 3 3 3 3 3 3 3 3

Phormia regina (Meigen, 1826) A 2 2 2 3 3 3 3 3

L3 2 2 2 3 3 3 3 3

Protophormia terraenovae
(Robineau-Desvoidy, 1830)

A – 1 – 1 3 2 2 1

L3 – 1 – 1 2 1 2 1

Fanniidae Fannia canicularis (Linnaeus, 1761) A 2 2 2 2 1 3 3 3

L3 2 2 1 1 – 2 2 2

Fannia leucosticta (Meigen, 1838) A 1 2 3 3 3 3 3 3

L3 1 1 3 3 3 2 2 3

Muscidae Hydrotaea dentipes (Fabricius, 1805) A 1 1 2 2 2 2 3 3

L3 1 1 2 1 2 1 3 1

Hydrotaea ignava (Harris, 1780) A 3 3 3 3 3 3 3 3

L3 3 3 3 3 3 3 3 3

Hydrotaea pilipes Stein, 1903 A 3 3 3 3 3 3 3 3

L3 2 3 3 3 3 2 3 3

Hydrotaea similis Meade, 1887 A – 2 2 2 2 2 1 2

L3 – 2 2 1 1 2 1 2

Piophilidae Stearibia nigriceps (Meigen, 1826) A 3 3 3 3 3 3 3 3

L3 1 1 3 2 3 3 3 3

Sarcophagidae Sarcophaga caerulescens
(Zetterstedt, 1838)

A 2 3 2 3 3 3 2 3

L3 2 3 2 3 3 3 2 3

Sarcophaga similis Meade, 1876 A 3 2 1 2 1 2 3 2

L3 3 2 1 2 1 2 3 1

Small carcasses 5–15 kg, medium carcasses 15.1–30 kg, medium/large carcasses 35–50 kg, large carcasses 55–70 kg

C clothed carcasses, U unclothed carcasses, A adult stage, L3 third instar larvae
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Table 2 The occurrence of Coleoptera on different carcasses

Family Taxon Stage Small carcasses Medium carcasses Medium/large
carcasses

Large carcasses

C (N=3) U (N=3) C (N=3) U (N=3) C (N=3) U (N=3) C (N=3) U (N=3)

Cleridae Necrobia rufipes (DeGeer, 1775) A – – – – 2 2 3 3

L1 – – – – 2 1 3 –

L2 – – – – 2 1 3 –

L3 – – – – 2 1 2 –

Necrobia violacea (Linnaeus, 1758) A – 2 2 1 3 3 3 3

L1 – – 2 – 3 2 3 3

L2 – – 2 – 3 2 3 3

L3 – – 2 – 3 2 3 3

Dermestidae Dermestes frischii Kugelann, 1792 A 2 2 2 2 3 3 3 3

L1 1 2 1 2 3 3 3 3

Lm 1 2 1 1 3 3 3 2

Histeridae Carcinops pumilio (Erichson, 1834) A – – – – 1 – 1 1

Hister unicolor Linnaeus, 1758 A 2 2 1 1 3 2 3 3

Margarinotus brunneus (Fabricius, 1775) A 3 3 3 3 3 3 3 3

Margarinotus carbonarius
(Hoffmann, 1803)

A 1 3 1 2 3 3 3 3

Margarinotus ventralis (Marseul, 1854) A 1 – – 1 2 1 2 3

Margarinotus sp. L1 1 – 1 – 3 3 3 3

L2 1 – 1 – 3 3 3 3

Saprinus planiusculus Motschulsky, 1849 A 3 2 2 2 3 3 3 3

Saprinus semistriatus (Scriba, 1790) A 3 3 3 3 3 3 3 3

Saprinus aeneus (Fabricius, 1775) A 2 1 2 2 2 3 2 3

Saprinus sp. L1 2 2 2 2 2 2 2 1

L2 2 2 2 2 2 2 2 1

Nitidulidae Omosita colon (Linnaeus, 1758) A – 1 2 2 3 3 3 3

L1 – – 1 – 2 3 3 2

L2 – – 1 – 2 2 3 2

L3 – – – – 2 2 3 2

Nitidula rufipes (Linnaeus, 1767) A – – 2 – 2 3 3 3

Nitidula carnaria (Schaller, 1783) A – 1 – 1 3 2 2 1

Nitidula sp. L – – – – 1 2 3 –

Silphidae Necrodes littoralis (Linnaeus, 1758) A 2 3 3 2 3 3 3 3

L1 1 1 2 1 3 3 3 3

L2 1 – 2 1 3 2 3 3

L3 1 – 2 1 3 2 2 3

Thanatophilus rugosus (Linnaeus, 1758) A 3 3 3 3 3 3 3 3

Thanatophilus sinuatus (Fabricius, 1775) A 3 3 3 3 3 3 3 3

Thanatophilus sp. L1 2 2 2 3 3 3 3 3

L2 2 2 2 3 3 3 3 3

L3 2 2 2 2 3 3 3 3

Staphylinidae Creophilus maxillosus (Linnaeus, 1758) A 2 3 3 3 3 3 3 3

L1 2 3 3 3 3 3 3 3

L2 2 3 3 3 3 3 3 3

L3 2 3 3 3 3 3 3 3

Philonthus sp. L1 – – 2 1 3 3 3 3

L2 – – 1 1 3 3 3 3

L3 1 2 3 2 3 3 3 3

Trogidae Trox sabulosus (Linnaeus, 1758) A – 1 – – 3 2 3 3

Small carcasses 5–15 kg, medium carcasses 15.1–30 kg, medium/large carcasses 35–50 kg, large carcasses 55–70 kg

C clothed carcasses, U unclothed carcasses, A adult stage, L larval stage, L1 first instar larvae, L2 second instar larvae, L3 third instar larvae, Lm mature
larvae
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had higher number of late-arriving taxa, as for example
beetles of the families Cleridae or Nitidulidae, which
were collected on almost all medium/large and large
carcasses, but were found on a very few small and
medium pigs (Tables 1–2).

Carcass clothing revealed a significant effect on the num-
ber of taxa of adult or larval Diptera (adult Diptera, F1,14=
13.3, P<0.01; larval Diptera, F1,14=6.9, P=0.02), a close-to-
significant effect on the number of taxa of adult Coleoptera
(F1,14=2.5, P=0.14), and no significant effect on the number
of taxa of larval Coleoptera (F1,14=1.0, P=0.33). Clothed
carcasses had more taxa of larval Diptera (Fig. 1b, Table 1),
more taxa of adult or larval Coleoptera (Fig. 1c, d, Table 2),
but less taxa of adult Diptera (Fig. 1a, Table 1). The interaction
of carcass mass and clothing was significant only in the case
of larval Diptera (F3,14=3.5, P=0.45). Differences between
clothed and unclothed carcasses enlarged with an increase in
carcass mass (Fig. 1b).

Carcass mass showed a highly significant effect on
the abundance of adult or larval Diptera or Coleoptera
(adult Diptera, F3,14=11.8, P<0.01; larval Diptera, F3,

14=4.1, P=0.03; adult Coleoptera, F3,14=26.7, P<0.01;
larval Coleoptera, F3,14=5.7, P<0.01). Taxa from both
orders had higher abundance on larger carcasses
(Fig. 2).

Carcass clothing had a significant effect on the abun-
dance of adult Diptera (F1,14=8.8, P=0.01), which were
more abundant on unclothed carcasses (Fig. 2a). There
was also a close-to-significant effect of clothing on the
abundance of larval Coleoptera (F1,14=2.1, P=0.17;
Fig. 2d) and no significant effect on the abundance of
larval Diptera or adult Coleoptera (larval Diptera, F1,14=
0.01, P=0.92; Fig. 2b; adult Coleoptera, F1,14<0.01,
P=0.96; Fig. 2c). The interaction of carcass mass and
clothing was insignificant in the case of all groups of
taxa (P>0.05).

Fig. 1 Effect of carcass mass and clothing on the number of taxa in adult or larval Diptera (a and b) or Coleoptera (c and d). Carcass mass: small 5–
15 kg, medium 15.1–30 kg, medium/large: 35–50 kg, large: 55–70 kg. The line indicates the mean; the filled and empty circles indicate raw data
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Residency and development of insects

No significant effect of carcass mass or clothing on the
PAI was found in the majority of species (Table 3).
As for the adult PAI, there was a significant effect of
carcass mass just in the case of C. maxillosus and
a near-significant effect in the case of N. violacea
(Table 3). In both species, PAI was shorter on larger
carcasses (Table 4). As for the larval PAI, there was a
significant effect of carcass mass just in the case of
H. ignava and a close-to-significant effect in the case
of L. caesar (Table 3). Interestingly, both species re-
vealed a shorter PAI on smaller carcasses (Table 4).

There was a highly significant effect of carcass mass on the
residency of adult or larval Diptera or Coleoptera (adult
Diptera, F3,14=21.5, P<0.01; larval Diptera, F3,14=5.5, P=
0.01; adult Coleoptera, F3,14 = 30.2, P<0.01; larval

Coleoptera, F3,14=7.1, P<0.01), with distinctly prolonged
residencies on larger carcasses (Fig. 3).

Carcass clothing revealed a close-to-significant effect on
the residency of adult Coleoptera (F1,14=4.1, P=0.06),
with longer residencies on clothed carcasses (Fig. 3c).
Effect of clothing was insignificant in the other groups
of taxa (adult Diptera, F1,14=0.02, P=0.89, Fig. 3a; larval
Diptera, F1,14=0.01, P=0.93, Fig. 3b; larval Coleoptera,
F1,14=0.42, P=0.53; Fig. 3d). The interaction of carcass
mass and clothing was insignificant in the case of all
groups of taxa (P>0.05).

Carcass mass revealed a near-significant effect on the
interval between the appearance of first specimens of first
instar larvae and first specimens of third instar larvae of
L. caesar (F3,9=2.9, P=0.07) and C. maxillosus (F3,9=1.8,
P=0.21). Interestingly, for both species, this interval was
shorter on smaller carcasses (Fig. 4). The effect of

Fig. 2 Effect of carcass mass and clothing on the abundance of insects
averaged across the most important taxa of adult or larval Diptera (a and
b) or Coleoptera (c and d). Number of individuals from a given taxon
collected on a given carcass was expressed as a portion of a total number

of individuals from that taxon collected on all carcasses in a given block.
Carcass mass: small 5–15 kg, medium 15.1–30 kg, medium/large 35–
50 kg, large 55–70 kg. The line indicates the mean; the filled and empty
circles indicate raw data
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clothing and the interaction of factors were not significant
in the case of both species (P>0.5).

Discussion

The results presented here demonstrate that carrion en-
tomofauna is more diverse on larger carcasses. A com-
parison with results of Hewadikaram and Goff [18] in-
dicates that lack of differences in composition of carrion
fauna between 8.4 and 15.1 kg carcasses, as recorded
by these authors, must have resulted from small range
of body masses included in their study. This interpreta-
tion is supported by our results, as differences between
small and medium carcasses in the current experiment
were relatively small.

It is of importance that increase of diversity on
medium/large and large carcasses resulted from the regular
presence of late-colonizing taxa, taxa which were usually
absent on small carcasses or infrequent on medium car-
casses. It is thus suggested that higher diversity of carrion

entomofauna on larger carcasses comes down mainly to
the presence of all guilds of carrion insects (i.e., early,
middle, and late-arriving insects), not the presence of a
higher number of species from each guild. These results
substantiate the conclusion that only large carcasses (at
least 35–50 kg) are colonized by all guilds of carrion
insects. This finding of the current experiment has impor-
tant implications for pig carcass studies in forensic ento-
mology. Pig carcasses of 23 kg have been suggested for
use in such studies [4]. Indeed, most researchers used
carcasses of about 23 kg or smaller, as for example
Perez et al. [40], Bygarski and LeBlanc [41], Prado e
Castro et al. [42], or Benbow et al. [43] of the most
recent, while larger carcasses were used very infrequently
[44–47]. Current results however indicate that carcasses of
23 kg or smaller give an incomplete image of carrion
entomofauna, with high underrepresentation of late-
colonizing insects. Only medium/large or large carcasses
had complete inventories of forensically relevant insects.
Accordingly, based on the current results, we recommend
larger carcasses (at least 35–40 kg) for use in forensically
oriented pig carrion studies, particularly when first inven-
tories or checklists of forensically relevant insects for a
given area are to be made. Moreover, large carcasses
may be necessary to study succession patterns of late-
arriving insects, whereas small or medium carcasses may
be considered as sufficient for studying early or middle-
colonizing insects.

As for the effect of clothing, current results support
the hypothesis that it enhances the diversity of carrion
entomofauna. However, its effects are more subtle and
clearly less uniform as compared to the effect of cadav-
er mass. These results are in line with results of previ-
ous studies [28, 29]. Surprisingly, the current study sug-
gests that there are more taxa of adult Diptera on un-
clothed carcasses. Because adult Diptera were sampled
mainly by means of aerial sweep net, we assume that
this effect resulted from the way in which adult Diptera
were collected. Clothing impedes collecting of flying
insects, as they are often hidden under the clothing
and, consequently, they cannot be sampled with a net.
Moreover, our results suggest that carcass mass and
clothing may interact, resulting in more profound effects
of clothing on insect diversity in the case of larger
carcasses. Such interaction was observed only in the
case of larval Diptera, indicating that this may not be
uniform across insect taxa.

As expected, abundance of insects increased with an
increase of carcass mass, which is in line with results of
Hewadikaram and Goff [18]. All these data support the
hypothesis that carrion insect assemblages are more
abundant on larger cadavers, although it should be not-
ed that this effect results partly from longer residency of

Table 3 Effect of carcass mass and clothing on the pre-appearance
interval (PAI) of the most important adult and larval insects

Family Species Stage Mass effect Clothing
effect

F P F P

Silphidae Necrodes littoralis A 0.14 0.94 0.78 0.40

L1 0.78 0.54 3.26 0.11

Thanatophilus
sinuatus

A 0.60 0.63 0.08 0.79

Staphylinidae Creophilus maxillosus A 4.24 0.03 1.30 0.27

L1 1.17 0.38 0.70 0.42

Cleridae Necrobia violacea A 2.85 0.08 2.47 0.14

Dermestidae Dermestes frischii A 0.28 0.62 0.19 0.90

L1 0.40 0.76 0.01 0.94

Histeridae Margarinotus
brunneus

A 0.95 0.45 0.36 0.56

Saprinus semistriatus A 0.91 0.46 0.02 0.90

Calliphoridae Lucilia caesar A 1.28 0.32 0.81 0.38

L3 2.16 0.14 0.52 0.48

Lucilia sericata A 0.83 0.50 0.27 0.61

Phormia regina A 1.37 0.31 1.01 0.34

Muscidae Hydrotaea ignava A 1.95 0.18 4.00 0.07

L3 8.40 <0.01 0.03 0.88

Hydrotaea pilipes A 0.23 0.87 0.01 0.94

Piophilidae Stearibia nigriceps A 1.44 0.28 0.93 0.35

L3 0.49 0.70 0.06 0.82

A adult stage; L1 first instar larvae; L3 third instar larvae; F the value of F
test (ANOVA); P the probability of F-statistic, assuming that there are no
differences in PAI between different classes of carcasses

228 Int J Legal Med (2016) 130:221–232



insects on larger carcasses and longer periods of insect
sampling. Clothing is clearly less important in this
respect.

Contrary to expectations, the pre-appearance interval
(PAI) was unrelated to carcass mass in most taxa. It is
also demonstrated that carcass clothing and PAI are not
related to each other. These results are particularly im-
portant for forensic entomology, as they indicate that
both factors of the current experiment may be consid-
ered as unimportant while estimating PAI in forensic
practice. It was suggested that PAI of some forensically
important insects may be estimated in a context-free
way by using species-specific temperature models for
PAI and case-specific temperature data [48, 49]. This
view is supported by current results. Moreover, the
present study indicates that temperature models for PAI
may be created in experiments with medium carcasses,
unless late-arriving insects are studied.

In taxa with significant effect of body mass on PAI, two
different patterns were recorded. Some taxa revealed a de-
crease in PAI on larger carcasses, whereas some taxa showed
an increase in PAI on such carcasses. The former pattern
was actually the one which had been expected to be the
case, although present results indicate that it is uncom-
mon and practically unimportant. The latter pattern is
difficult to explain. It was recorded only in the case

of third instar larval PAI of H. ignava and L. caesar,
and not in the case of conspecific adult PAI. Therefore,
earlier appearance of third instar larvae on smaller car-
casses was not a consequence of earlier arrival of con-
specific adult insects, but probably shorter periods of
first and second instar larval development. Perhaps, it
may be explained in terms of higher rate of develop-
ment on smaller carcasses.

Current results demonstrate that carcass mass is a factor of
great importance for residency of carrion insects, whereas car-
cass clothing is rather unimportant in this respect. Residencies
on large carcasses were regularly at least three times longer as
compared to small carcasses. This finding has profound im-
plications for all methods of PMI estimation which are based
on insect residencies, as for example classical succession-
based method [12, 13] or newer succession-based methods
[50]. Current results show that all these methods are
strongly mass-dependent. In particular, when the mass
of a case-cadaver is higher than the mass of reference
carcasses, the upper PMI will be systematically
underestimated with the classical succession-based meth-
od. Because most of the baseline successional data were
collected in experiments with carcasses weighing about
20 kg [17, 51, 52], and most cases involve cadavers of
adults (50–90 kg), a residency-based methods will reg-
ularly underestimate upper PMI in forensic practice.

Table 4 The average pre-appearance interval [days] of the most important adult and larval insects on carcasses of different mass

Family Species Stage Small carcasses Medium carcasses Medium/large carcasses Large carcasses

Silphidae Necrodes littoralis A 6.2 5.9 5.7 5.8

L1 13.2 13.4 12.6 12.4

Thanatophilus sinuatus A 3.6 3.6 3.2 3.1

Staphylinidae Creophilus maxillosus A 6.8 7.2 6.4 4.6

L1 12.6 12.5 15.7 14.7

Cleridae Necrobia violacea A 9.4 9.6 7.4 6.6

Dermestidae Dermestes frischii A 7.8 7.0 8.2 6.8

L1 22.5 15.3 22.2 15.7

Histeridae Margarinotus brunneus A 6.6 6.9 6.2 5.1

Saprinus semistriatus A 5.1 5.3 5.4 4.1

Calliphoridae Lucilia caesar A 0.8 0.4 0.6 0.2

L3 7.7 7.2 9.0 10.4

Lucilia sericata A 3.8 6.2 4.1 3.7

Phormia regina A 7.2 8.0 5.0 5.2

Muscidae Hydrotaea ignava A 5.2 5.7 9.7 7.1

L3 8.1 9.7 12.3 14.1

Hydrotaea pilipes A 7.6 9.6 9.9 9.9

Piophilidae Stearibia nigriceps A 5.5 4.6 4.2 3.9

L3 33.7 30.8 30.2 28.8

Small carcasses 5–15 kg, medium carcasses 15.1–30 kg, medium/large carcasses 35–50 kg, large carcasses 55–70 kg

A adult stage, L1 first instar larvae, L3 third instar larvae
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Fig. 3 Effect of carcass mass and clothing on the residency of insects
averaged across the most important taxa of adult or larval Diptera (a and
b) or Coleoptera (c and d). Residency was defined as a period of a taxon

presence on a carcass. Carcass mass: small 5–15 kg, medium 15.1–30 kg,
medium/large 35–50 kg, large 55–70 kg. The line indicates the mean; the
filled and empty circles indicate raw data

Fig. 4 Effect of carcass mass and clothing on the interval between
appearance of first and third instar larvae of Lucilia caesar (a) or
Creophilus maxillosus (b). Carcass mass: small 5–15 kg, medium 15.1–

30 kg, medium/large 35–50 kg, large 55–70 kg. The line indicates the
mean; the filled and empty circles indicate raw data
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Surprisingly, L. caesar andC. maxillosus revealed decrease
of an interval between the appearance of first and third instar
larvae on smaller carcasses. This effect suggests that develop-
ment time through the first and second larval instar is shorter
on smaller carcasses. Smaller carcasses have smaller number
of larval masses [23], usually one or two covering most of the
body and being more compacted compared to masses on large
carcasses, which are situated usually in separate areas of the
body (Matuszewski S., personal observation). It is thus possi-
ble, that larval masses on smaller carcasses generate greater
amounts of inner heat, resulting in increase of developmental
rate. This pattern not necessarily has to be explained in terms
of temperature effects on development, as recent study indi-
cated that temperature is not the only important factor
governing development in larval masses [9]. As for the
C. maxillosus, it is one of the most forensically significant
species of beetles [49, 53–56]. In the adult or larval stage it
feeds on larval or pupal blowflies, usually resides in the
ground under the body, and may be very abundant, particular-
ly on large carcasses [49, 55, 56]. Although it does not form
conspecific larval masses, its larvae may feed on masses of
blowfly larvae and may eventually be exposed to the blowfly-
generated heat. Moreover, development of larval insects (flies
or beetles) may be accelerated on small carcasses due to short-
age of food resources and resultant increased intra- or inter-
specific competition, as it was demonstrated that competition
leads to an earlier emigration or pupariation of larval blowflies
on carrion [57, 58].

Interestingly, effects of clothing were insignificant or of
minor size in all analyses. These results suggest that impor-
tance of clothing is overrated in forensic entomology. It is
however of importance that we used moderate clothing made
just of cotton. Perhaps, if different types of clothingwere used,
i.e., heavier or made of synthetic fabric, effect of clothing
would be larger.
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