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Abstract
Centromeres are no longer considered to be silent. Both centromeric and pericentric transcription have been discovered, and 
their RNA transcripts have been characterized and probed for functions in numerous monocentric model organisms recently. 
Here, we will discuss the challenges in centromere transcription studies due to the repetitive nature and sequence similarity in 
centromeric and pericentric regions. Various technological breakthroughs have helped to tackle these challenges and reveal 
unique features of the centromeres and pericentromeres. We will briefly introduce these techniques, including third-gener-
ation long-read DNA and RNA sequencing, protein-DNA and RNA–DNA interaction detection methods, and epigenomic 
and nucleosomal mapping techniques. Interestingly, some newly analyzed repeat-based holocentromeres also resemble the 
architecture and the transcription behavior of monocentromeres. We will summarize evidences that support the functions 
of the transcription process and stalling, and those that support the functions of the centromeric and pericentric RNAs. The 
processing of centromeric and pericentric RNAs into multiple variants and their diverse structures may also provide clues 
to their functions. How future studies may address the separation of functions of specific centromeric transcription steps, 
processing pathways, and the transcripts themselves will also be discussed.

Keywords Epigenetics · Centromere · Centromeric and pericentric transcription · Centromeric and pericentric RNAs · 
Chromatin environment · Non-coding RNA

Introduction

Centromere function

Historically, the centromere is often recognized as the con-
stricted region that “holds” the X-shaped sister chromatids 
during cell divisions (Flemming 1880). Functionally, the 
centromere is the chromatin region where the kinetochore 
complex builds on, to connect chromosomes to microtubules 
emanated from the centrosomes. The centromere ensures 
that the sister chromatids and homologous chromosomes are 
separated equally to the daughter cells during mitosis and 

meiosis, respectively. Errors in chromosome segregation can 
cause chromosome breakages, or gains or losses of genetic 
materials (Potapova & Gorbsky 2017). The consequence is 
usually catastrophic for the cell and the whole organism, 
such as infertility, chromosomal abnormality disorders, or 
aberrant proliferation in cancers (Santaguida & Amon 2015; 
Smurova & De Wulf 2018).

Centromere paradox and architectures

The conserved function of the centromere is contradicted 
with the diverse DNA sequences, sizes, and even architec-
tures of the centromere across eukaryotes, and this phenom-
enon is called “centromere paradox” (Henikoff et al. 2001). 
There are two major architecture of centromeres: monocen-
tromeres and holocentromeres (Wong et al. 2020). Monocen-
tromeres, in which a single region of the chromosome is des-
ignated for the centromere function, are the most common 
architecture of centromeres in studied eukaryotes. Monocen-
tromeres can be further subdivided into regional and point 
monocentromeres. The sizes of regional monocentromeres 
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range from kilobases to megabases, and are mostly made 
up of AT-rich DNA (Baker & Rogers 2005; Barbosa et al. 
2022), tandem repeats, called satellites, or transposable 
elements, as observed in many model organisms, includ-
ing fission yeast, Arabidopsis, rice, flies, frogs, chicken, 
mice, tammar wallaby, and human cells (Hartley & O’Neill 
2019; Shannon M McNulty & Sullivan 2018). The core cen-
tromere region of regional monocentromeres is flanked by 
pericentric, heterochromatic regions which are important 
for the cohesion of sister chromatids or homologous chro-
mosomes during mitosis and meiotic reductional division, 
respectively. Meta-polycentromeres are monocentromeres 
that have distinct regions of centromeres believed to func-
tion together, forming an elongated primary constriction, 
as observed in Pisum and Lathyrus species (Schubert et al. 
2020). Point monocentromeres refer to short centromeres 
in budding yeast, such as ~ 125 bp in Saccharomyces cer-
evisiae, which consists of 3 conserved elements (CDEI, II, 
and III), in which CDEII is AT-rich while CDEI and III 
are palindromic but are not repetitive (Clarke & Carbon 
1980). Holocentromeres, in which the centromere is diffused 
along the length of the mitotic chromosomes, are observed 
in some plants, insects, and nematodes. Holocentromeres 
can be formed on the centromere-specific satellite family, 
called Tyba, and the centromeric retrotransposons (CRRh), 
as observed in Rhynchospora pubera (Marques et al. 2015), 
or on non-repetitive sequences, as observed in Caenorhabdi-
tis elegans (Gassmann et al. 2012; Talbert & Henikoff 2020). 
Notably, holocentromeres have evolved multiple times from 
their monocentromere ancestors independently in both ani-
mal and plant lineages (Escudero et al. 2016; Melters et al. 
2012).

Conserved epigenetic regulation of centromeres

Early mutational studies of centromeric DNA (Carbon & Clarke 
1984; Cumberledge & Carbon 1987), centromere inactivation 
(Ishii et al. 2008; Thakur & Sanyal 2013), and the discover-
ies of neocentromeres, which are new centromeres formed on 
non-centromeric DNA sites (Scott & Sullivan 2014; Williams 
et al. 1998), have shown that centromeric DNA is not necessary 
or sufficient for centromere function, leading to the suggestion 
that most centromeres are epigenetically regulated (Allshire 
& Karpen 2008). One exception described is that of the point 
monocentromeres in Saccharomyces cerevisiae, as mutations 
in CDEIII cause centromere and kinetochore malfunction (Car-
bon & Clarke 1984; Ng et al. 1986). Many species, including 
Saccharomyces cerevisiae, contain a centromeric-specific his-
tone H3 variant, CENP-A, that replaces canonical H3 at the 
core centromere, where kinetochore will assemble (Ali-Ahmad 
et al. 2020; Kixmoeller et al. 2020). Although there are excep-
tions, such as in silk moths Bombyx mori (Senaratne et al. 2021) 
and kinetoplastids (Ishii & Akiyoshi 2022), where there are no 

CENP-A, but they have histone-like CENP-T and unconven-
tional KKT proteins, respectively. Understanding of the epi-
genetic regulation of centromeres begin with histone variant 
CENP-A, but later on also include unique centromeric histone 
modification combinations that are distinct from euchromatin 
and heterochromatin, DNA methylation pattern, centromeric 
and pericentric transcription, and centromeric and pericentric 
RNAs (cenRNAs and pericenRNAs) (Arunkumar and Melters 
2020; Bergmann et al. 2012; Chan et al. 2012; Corless et al. 
2020; Perea-Resa & Blower 2018; Saffery et al. 2003; Wong 
et al. 2007).

Centromere is not an inert but an actively 
transcribed region, despite at a low level

The chromosome constriction site at the monocentromere was 
originally taken as a transcriptionally inert site. High level of 
transcription is incompatible with centromere function in bud-
ding yeast (Hill et al. 1987) and human artificial chromosome 
studies (Molina et al. 2016). However, in the last decade, more 
evidence from numerous studies in monocentromeres, even in 
the simplest point centromeres in Saccharomyces cerevisiae 
(Hedouin et al. 2022; Ling & Yuen 2019; Ohkuni & Kitagawa 
2012), have shown that both the core centromere region and 
flanking pericentric regions are transcribed by RNA polymer-
ase II (RNA Pol II) at a relatively low level and in a cell cycle-
dependent manner (reviewed in Duda et al. 2017; Perea-Resa 
& Blower 2018; Smurova & De Wulf 2018). The functions of 
cenRNAs at the centromere, the inner centromere (the region 
between the sister chromatids), and the kinetochore have been 
reviewed thoroughly and recently (Corless et al. 2020). The 
relationship between cenRNA expression and CENP-A load-
ing time in the cell cycle in different organisms has also been 
elaborately discussed (Perea-Resa et al. 2018).

Here, we will focus on the discussion of ongoing chal-
lenges and recent breakthroughs relevant to studying cen-
tromeric transcription, including the repetitive nature of 
centromeric DNA sequences, the difficulty to distinguish 
centromeric and pericentric sequences and their correspond-
ing transcription in some species, and the difficulty in sepa-
rating the function of the centromeric transcription process 
versus the centromeric RNA transcripts.

Challenges

DNA and thus RNA repetitiveness in many regional 
monocentromeres

The repetitive problem has been discussed in details (Cor-
less et al. 2020). Mapping of RNAs to unique locations 
will rely on a complete, reliable genomic DNA reference. 
Recent studies, based on third-generation long-read DNA 
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sequencing, such as Nanopore and PacBio Single-Molecule 
Real-Time (SMRT) sequencing, has assembled and polished 
individual human chromosomes Y and X from telomere-to-
telomere using a bacterial artificial chromosome (BAC) vec-
tor or a complete hydatidiform mole (CHM)-derived haploid 
cell line, respectively (Jain et al. 2018; Miga et al. 2020; 
Nurk et al. 2022). Based on these frameworks, Miga’s group 
has also revealed the organization and evolutionary patterns 
of centromeric satellite arrays (Altemose et al. 2022a). Cen-
tromeric and pericentric satellites in human megabase-sized 
centromeres constitute 6% of the genome (Altemose et al. 
2022a). Besides the major component, alpha-satellites, 
which comprised 171-bp monomers, other satellites (e.g., 
HSat2, HSat3, HSat1, beta-satellites) were also ordered. 
Different monomer subtypes (e.g., a, b, and c) are linked 
and repeated to form a higher order repeat (HOR) unit (e.g., 
abc). Identical HOR units then make up a large, homogenous 
HOR array (e.g., abc-abc-abc…) with thousands of HOR 
units. Centromeres from different chromosomes (e.g., Chr1, 
5, 19) that are confounded previously can now be resolved 
based on distinct HOR arrays and chromosome-specific 
sequence variants, and verified by flow cytometry-sorted 
chromosomes. This pioneered work, together with direct 
RNA long-read sequencing (Jiang et al. 2019), opens up 
new avenues that will allow more precise mapping of long 
non-coding cenRNAs to the centromere.

In a detailed biochemical study by combining CUT&RUN 
(cleavage under targets and release using nuclease) of 
CENP-A/B/C and salt fractionation, Henikoff’s group has 
observed drastic CENP-A/B/C configuration differences on 
alpha-satellite dimers belonging to the same alpha-satellite 
subfamily that contain only 4–12% differences in sequence 
(Thakur et al. 2018). The configurations include a symmetric 
complex with equal CENP-A/B/C binding on both mono-
mers of the dimer, or an asymmetric complex preferentially 
occupying only one monomer of the dimer (Thakur et al. 
2018). This result suggests that even slight alpha-satellite 
sequence differences affect the binding behavior of the asso-
ciated centromeric complex (Thakur et al. 2018). Their work 
may help us to correlate the CENP-A occupancy or chroma-
tin states with the cenRNAs based on their sequences.

Alternatively, works from centromeres with unique 
sequences have circumvented the repetitive problem and 
provided evidence for centromere transcription. For exam-
ple, some chicken and potato chromosomes contain repeti-
tive centromere sequences while some do not (Gong et al. 
2012; Shang et al. 2010). Interestingly, in chicken meiosis 
II prophase, centromeric transcription is only observed on 
the non-repetitive centromeres (Krasikova et al. 2012). In 
pathogenic yeast Candida albicans, each centromere has a 
unique central core (Sanyal et al. 2004). The non-heterochro-
matic pericentric regions of C. albicans contain either long 
terminal repeats (LTR), inverted repeats, or non-repetitive 

sequences (Freire-Benéitez et al. 2016). Such chromosome-
specific centromere sequences and organization may facili-
tate the identification of cenRNA in the future. In S. cer-
evisiae, centromeric transcripts corresponding to each of 
the 16 chromosomes have been detected, but they are more 
highly expressed in S phase (Hedouin et al. 2022; Ling & 
Yuen 2019; Ohkuni & Kitagawa 2012). A targeted RNA 
isoform long-read sequencing (Iso-seq) by PacBio SMRT 
with probe-based enrichment has enabled the identification 
of many centromeric (and pericentric) RNA variants with 
strand-specificity and co- or post-transcriptional processing 
information, such as poly-adenylated tails (Hedouin et al. 
2022). While the level of centromeric transcripts from each 
chromosome varies (Hedouin et al. 2022; Ling & Yuen 
2019), conversion of all chromosomes’ centromeres to the 
same centromeric DNA sequence has suggested that the 
level of centromeric transcripts roughly correlates to the 
copy number of that specific centromeric DNA sequence 
in the genome, and they may function in trans, potentially 
in proximity to the centromere cluster (Jin et al. 1998; Ling 
& Yuen 2019).

Distinguishing centromeric versus pericentric 
sequences

In humans, alpha-satellite sequences make up both the core 
centromeric and most of the flanking pericentric regions. It 
has long been difficult to differentiate between transcripts 
derived from these two regions due to their similarity. 
Analyses of long-read DNA sequencing and existing native 
(uncrosslinked) chromatin immunoprecipitation followed 
by DNA sequencing (N-ChIP-seq) and CUT&RUN data-
sets show that only a subset of human alpha-satellite HOR 
units bind CENP-A and assemble kinetochore proteins, and 
are known as the “active” array (340 kb to 4.8 Mb) (Alte-
mose et al. 2022a). Flanking pericentric “inactive” arrays 
comprised more diverged alpha-satellites, other repeat fami-
lies, and transposable elements. There is evidence of layered 
expansion, where new, distinct alpha-satellite repeat emerges 
and expands within the array to become the site of kine-
tochore assembly (the active array), whereas older repeats 
are displaced sideways symmetrically to become the inac-
tive pericentric “layers.” However, there are also individual 
variations in terms of CENP-A localization on the newer or 
older repeats, suggesting epigenetic plasticity.

Identification of large structural rearrangements, trans-
posable elements, or gene interspersion within the pericen-
tric regions also help to distinguish among chromosomes 
(Altemose et al. 2022a), and may assist the annotation of 
transcribed cenRNAs or pericenRNAs. In the future, tech-
niques that allow analyses of protein-DNA interactions with 
long-read information, such as DiMeLo-seq, will be useful 
to decipher the relationship between kinetochore function 
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and underlying DNA sequences, individual variations, and 
evolutionary trends (Altemose et al. 2022b), and compare 
to the long RNA reads.

Besides the newly identified alpha-satellite HOR differ-
ences between human centromeric and pericentric regions, 
researchers have elucidated that the chromatin environ-
ment in these two regions vary significantly mostly by 
microscopy approaches. For instance, the chromatin at 
the core centromere typically contains histone modifica-
tion marks associated with open chromatin or permissive 
transcription (Bergmann et al. 2012; Bergmann et al. 2011; 
Gopalakrishnan et al. 2009; Sullivan et al. 2004). CENP-A 
nucleosomes within the core centromere are interspersed 
with canonical histone H3 nucleosomes where H3 tails 
are modified with H3K4me1, H3K4me2, H3K36me2, and 
H3K36me3 (Table 1). These modifications are essential for 
CENP-A chaperone, HJURP, targeting, and CENP-A assem-
bly (Bergmann et al. 2011; Duda et al. 2017). H3K4me2 is a 
modification associated with open but not active euchroma-
tin (Sullivan et al. 2004; Soares et al. 2017). H3K36me2 is 
enriched downstream of transcription start sites (Weinberg 
et al. 2019) and can recruit histone deacetylases (HDAC) 
enzymes (Li et al. 2009). The core centromere also has 
reduced CpG methylation, called centromere dip region 
(CDR), consistent with its open chromatin (Altemose et al. 
2022a).

On human artificial chromosomes (HACs), core cen-
tromere transcription can promote H3K9ac accumulation, 
which in turn can prevent heterochromatin formation at this 
region (Molina et al. 2016). Yet, on the same site, H3K9me3, 
typically thought to be associated with transcriptional repres-
sion, has also been shown to be compatible with the cen-
tromeric nucleosomes (Bergmann et al. 2012; Ribeiro et al. 
2010). However, in general, the core centromere lacks clear 
marks for heterochromatin, such as H3K9me2 (Sullivan et al. 
2004). A balance between euchromatin and heterochroma-
tin characteristics at the core centromeric region is required 
for maintaining a low level of centromere transcription, 
maintaining the centromere identity and forming an active 
kinetochore (Sullivan et al. 2004). On the other hand, the 
surrounding pericentric regions are marked by histone modi-
fications typically associated with transcriptional silencing, 
such as H3K9me2, H3K9me3, H3K27me2, and H3K27me3 
(Table 1) (Gopalakrishnan et al. 2009; Kundaje et al. 2015).

At the core centromere, histone H4 tails are also modi-
fied. In chicken cells, H4K5ac and H4K12ac, which cor-
relate with transcribed chromatin, are found to be enriched 
at the core centromere CENP-A pre-nucleosomes and 
are essential for CENP-A deposition (Shang et al. 2016). 
H4K20me, which is associated with transcriptional activa-
tion, is found in chicken and human CENP-A nucleosomes 
and is a prerequisite for kinetochore assembly (Bergmann 
et al. 2011; Hori et al. 2014; Sullivan et al. 2004).

For organisms in which the centromeric and pericentric 
DNA sequences can be differentiated, the transcripts levels 
and functions can be separately analyzed. For example, in 
S. pombe, the core centromere CENP-A/Cnp1-containing 
region consists of the non-repetitive central core (cnt) and 
flanking innermost repeats (imr). The core centromere is 
separated from the pericentric outer repeats (otr) by tRNA 
arrays (Dawe 2003). There is evidence of cnt, imr, and otr 
expressions by RNA Pol II at different lengths, levels, and 
functions. The tRNA genes at the barrier are also expressed 
by RNA Pol III. The pericentric RNAs are processed into 
small interfering RNAs (siRNAs) importantly for hetero-
chromatin establishment, which is in turn required for de 
novo CENP-A establishment on introduced centromere-con-
taining plasmid (Folco et al. 2008). Interestingly, tethering 
of histone H3 lysine 9 methyltransferase Clr4 to generate 
synthetic heterochromatin can bypass the need of RNA 
interference (RNAi) and the presence of outer repeats for 
centromere establishment (Chan & Wong 2012; Kagansky 
et al. 2009).

S. cerevisiae does not have heterochromatic pericentric 
regions, but the pericentric regions are characterized by 
H2A.Z-containing nucleosomes, in which this H2A vari-
ant is known to regulate sister chromatid cohesion and gene 
expression (Giaimo et al. 2019; Sharma et al. 2013). Indeed, 
centromeric transcription is mainly readthrough of peri-
centromeric regions with highly heterogeneous transcrip-
tional start sites (TSS) but rarely span the entire centromere 
(Hedouin et al. 2022), consistent with RNA Pol II stalling 
in CDEI and CDEIII (Candelli et al. 2018).

In Drosophila, previous ChIP-seq revealed that CENP-A 
associates with simple satellites (Talbert et al. 2018). Yet, 
recent chromatin fibers, long-read DNA sequencing, and 
CENP-A/CID ChIP-seq that mapped to a heterochromatin-
enriched genome assembly have revealed that CENP-A chro-
matin is formed on retroelement G2/Jockey-3, which is the 
only element shared among all chromosomes’ centromeres 
(Chang et al. 2019). This core centromere is then flanked 
by large arrays of satellite repeats (Chang et al. 2019). Low 
levels of G2/Jockey-3 transcription has been detected from 
some chromosomes’ centromeres but not all (Chang et al. 
2019). Satellite RNA has also been shown to bind CENP-C 
and help to localize CENP-C to the centromere (Rošić et al. 
2014). The refined centromere and pericentromere organi-
zation will facilitate the separation of transcription in these 
two regions.

Analyses of an evolutionary neocentromere (ENC), 
which is formed on non-centromeric DNA sequences and 
has been propagated across multiple generations in humans, 
show that the new CENP-A-defined core neocentromere 
becomes enriched in active epigenetic marks, RNA Pol II, 
and negatively supercoiled DNA, consistent with active 
transcription. In contrast, there is a spreading of repressive 
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epigenetic marks, e.g., H3K27me3, to the surrounding 
regions (Naughton et al. 2022). The authors suggested that 
transcription disrupts chromatin to provide a foundation for 
kinetochore formation, while compact pericentric hetero-
chromatin generates mechanical rigidity (Naughton et al. 
2022).

Besides centromere and pericentric sequence and epi-
genetic differences, a recent study has investigated the 
nucleosomal patterns in different satellite sequences by a 
newly developed method called single-molecule adenine 
methylated oligonucleosome sequencing assay (SAMOSA), 
which combines non-specific adenine (m6dA) methyltrans-
ferase footprinting and single-molecule, real-time PacBio 
DNA sequencing to natively and non-destructively measure 
nucleosome positions, regularity, and nucleosome repeat 
lengths (NRLs) on individual chromatin fibers (500 b–2 kb) 
(Abdulhay et al. 2020). Interestingly, in human K562 cells, 
H3K9me3-decorated alpha- and beta-satellite sequences are 
enriched for both the expected regular and the unexpected 
irregular fibers (Abdulhay et al. 2020). The results show 
that heterochromatic nucleosome conformations can be both 
irregular and heterogenous. On the other hand, H3K9me3-
free gamma-satellite is only enriched for chromatin fibers 
with regular long NRLs (Abdulhay et al. 2020). NRLs may 
specify the ability of heterochromatic nucleosomal arrays to 
phase separate (Gibson et al. 2019). With future optimiza-
tion of digestion conditions, SAMOSA could be applicable 
to longer arrays, enabling kilobase-domain-scale study of 
single-molecule oligonucleosome patterning. In addition, 
multiple biochemical or epigenetic signals may be detected 
on the same single molecules, providing a “multi-omic” 
third-generation sequencing platform (Abdulhay et al. 2020).

Does centromere transcription occur 
in holocentromeres?

A missing piece in the centromere transcription field is 
whether it also happens in meta-polycentromeres and holo-
centromeres. For repeat-based holocentromeres, recent 
PacBio HiFi long-read sequencing, ChIP-seq, and high‐
throughput chromosome conformation capture (Hi-C) on 
three holocentric sedge Rhynchospora species and their 
closest monocentric relative, the rush Juncus effusus, have 
enabled us to compare their centromere and epigenome 
organization and 3D genome architecture (Hofstatter et al. 
2022). CENP-A/centromeric histone H3 (CenH3) has the 
highest enrichment in Tyba repeats and a lower enrichment 
in CRRh throughout the entire R. pubera and Rhynchospora 
breviuscula genomes (Hofstatter et al. 2022). The density 
of the Tyba arrays decreases with chromosome size, and 
there is a high frequency of dyad symmetries in the Tyba 
consensus sequences (Hofstatter et al. 2022). In R. pubera, 
the CENP-A-binding Tyba satellites are transcriptionally Ta
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active in all tissues, and these Tyba satellites and CRRh are 
inserted into transcriptionally active gene-containing chro-
matin regions as genome-wide interspersed arrays (Marques 
et al. 2015). Holocentric sedges have more intrachromo-
somal interactions than its monocentric relative due to the 
lack of centromere clustering (Hofstatter et al. 2022). These 
newly characterized repeat-based holocentromeres seem to 
have similarities with many regional centromeres. There is 
a slight enrichment of H3K9me2 flanking CENP-A domains 
relative to the core CENP-A region, mimicking the pericen-
tromeric chromatin composition in monocentromeres (Hof-
statter et al. 2022). Further studies will elucidate whether 
the Tyba and CRRh transcripts behave like cenRNA and 
pericenRNA, respectively.

However, in non-repeat-based holocentromeres, there is 
so far no concrete evidence of holocentromeric transcrip-
tion. In nematode C. elegans (Gassmann et al. 2012) and 
lepidopteran Bombyx mori (Senaratne et al. 2021), CENP-
A/HCP-3 or CENP-T localization has an anti-correlation 
with active transcribed regions. In moth tissue culture cells, 
hormone induction of transcription results in CENP-T loss 
in the regions, suggesting that transcription can exclude 
holocentromere locations (Senaratne et al. 2021). CENP-
A in C. elegans embryos is also anti-correlated with not 
only actively transcribed genes in embryos, but also some 
germline-transcribed regions (Gassmann et al. 2012). His-
tone H3K36 methyltransferase met-1 mutant causes ectopic 
H3K36me3 localization and exclusion of CENP-A, but not 
necessary an increase in active RNA Pol II localization at 
those sites (Gassmann et al. 2012). Argonaute CSR-1 is 
involved in a small RNA pathway that regulates germline 
gene expression (Claycomb et al. 2009). The germline target 
gene loci of CSR-1 anti-correlates with CENP-A localiza-
tion (Gassmann et al. 2012). Disruption of CSR-1 pathway 
increases the level of CENP-A on chromatin (Wong & Yuen 
2022). These results suggest that active or past gene tran-
scription, histone modification, and 22G-sRNA may restrict 
CENP-A localization, which is consistent with the incompat-
ibility of high gene expression with CENP-A in C. albicans 
and S. cerevisiae (Hill et al. 1987; Ketel et al. 2009).

On a C. elegans artificial chromosome (AC) with almost 
no genes, the CENP-A domain intervals and average domain 
size reduce, suggesting that more non-expressed regions are 
permissible holocentromere regions for CENP-A to locate 
(Lin et al. 2021). By imaging of artificial chromosomes, 
we found that inhibition of RNA Pol II-mediated transcrip-
tion causes delayed de novo centromere establishment on 
newly formed ACs in holocentric C. elegans early embryos 
(Zhu et al. 2018a). However, we did not explore whether 
cenRNAs exist, or distinguish between the role of the act 
of transcription versus the cenRNA products during cen-
tromere establishment. So far, existing transcriptome analy-
ses have detected many lowly abundant, long non-coding 

transcripts (Akay et al. 2019; Nam & Bartel 2012), but not 
directly related to holocentromeres. It will be interesting 
to learn whether holocentric transcription and cenRNAs 
exist, and their relationships with the centromere function, 
respectively.

Differentiating the function of the act 
of transcription versus transcripts

RNA Pol II is responsible for centromere transcription in 
many species analyzed, as shown by the effects of using 
specific drugs that differentially inhibit RNA polymerase I, 
II, or III’s activity (Chan et al. 2012). Recently, immunofluo-
rescence experiments have shown that RNA Pol II Serine 2 
phosphorylation of the C-terminal domain (CTD), which 
correlates with the active transcription elongation, is present 
at fly, frog, and human centromeres during mitosis (Blower 
2016; Chan et al. 2012; Molina et al. 2016; Rošić et al. 
2014). The passage of RNA Pol II in centromere transcrip-
tion will bring two effects: it can trigger a chromatin remod-
eling event and produce a centromeric RNA. So, although 
the loading of CENP-A at centromeres has been associated 
extensively with the transcription process in different organ-
isms (Choi et al. 2011; Grenfell et al. 2016; Quénet & Dalal 
2014), the underlying molecular mechanism is only begin-
ning to be unveiled, which may assist us to separate the two 
effects of transcription.

Function of centromeric transcription

Several previous studies have identified RNA Pol II-associ-
ated proteins and transcription-associated chromatin remod-
eling factors at the centromere. In eukaryotes, Facilitates 
Chromatin Transcription (FACT), a two-subunit complex 
containing SSRP1 and SUPT16H, is one of the major regu-
lators of RNA Pol II transcriptional activity. FACT can be 
retained on DNA while RNA Pol II traverses pass FACT 
(Belotserkovskaya et al. 2003). FACT can promote RNA Pol 
II elongation by destabilizing or later stimulating formation 
of nucleosomes (Formosa 2012). Interestingly, both subu-
nits of FACT interact with the CENP-A in different organ-
isms (Barth et al. 2014; Foltz et al. 2006) and collaborate in 
transcription-coupled loading of CENP-A at the core cen-
tromere domain (Fig. 1A), by interacting with Chromosome 
Alignment Defect 1 (CAL1), the CENP-A/CID chaperone, 
in Drosophila (Chen et al. 2015). At ectopic centromeres 
in Drosophila, CAL1 also recruits FACT and RNA Pol II, 
which are essential for de novo CENP-A deposition (Chen 
et al. 2015). Immunostaining of FACT’s two subunits was 
the strongest at the kinetochore on mitotic chromosomes, at 
the same time that CENP-A normally loads in Drosophila 
tissue culture cells (Mellone et al. 2011). A more recent 
study using Drosophila tissue culture cells further proposed 
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a two-step model for the recruitment and chromatin loading 
of CENP-A: at the beginning, CAL1-interacting CENP-A 
is recruited to the centromere domain in a manner that is 
independent of transcription and CENP-A is kept loosely 
associated with centromeric chromatin, then RNA Pol II pas-
sage facilitates the exchange of H3 nucleosomes to stably 

incorporate CENP-A into nucleosomes at the centromere 
(Bobkov et al. 2018). However, another recent study in 
Drosophila early embryogenesis has shown that RNA Pol 
II-mediated transcription is not necessary for the recruitment 
of CENP-A loading on the centromere (Ghosh & Lehner 
2022). These contrasting results imply heterogeneity in the 

A

Centromere

RNA Pol IIHAT
CHD1

Transcription

RNA Pol II

FACT

HAT

cenRNA

Mis18HJURP

CHD1

CAL1

CTD
Ser2
Ser5

P

P

?

FACT

SUPT16H
SSRP1

B

Centromere

Transcription stalling

RNA Pol IIHAT
Nascent 
stalled 
RNA

CTD
Ser2
Ser5

PSTOP

TFIIS

?

Ubp3

RNA Pol IIHAT

Fig. 1  A schematic diagram outlining how centromeric transcrip-
tion and stalling can regulate centromere CENP-A loading. A The 
chromatin environment changes and the “transcription bubble” gen-
erated by RNA Pol II passage favors the incorporation of CENP-A 
nucleosomes at centromere regions. Transcription-associated chro-
matin remodeling factors, including FACT complex and CHD1, and 
CENP-A chaperone such as CAL1 or HJURP together with MIS18 
have been shown to be important for CENP-A deposition during the 
centromeric transcription. RNA Pol II phosphorylated at Ser2 of the 
C-terminal domain (CTD) is present at centromeres, indicating active 
transcription elongation through the action of RNA Pol II. The nucle-
osome destabilization activity of FACT complex, which consists of 
SSRP1 and SUPT16H subunits, could promote RNA Pol II elonga-
tion through the compact chromatin, while RNA Pol II transcription 
could drive further loosening at the centromere domain. FACT has 
been shown to interact with the CENP-A protein by interacting with 
CAL1, the CENP-A loading factor in Drosophila. FACT destabilizes 
H3 nucleosomes in order to promote CENP-A loading. RNA Pol II 
transcription could also recruit HAT complexes to the kinetochore to 
generate an acetylated chromatin environment, which has been shown 
to be favorable for CENP-A loading. Unknown factors involved in 
transcription elongation may also facilitate CENP-A deposition. B 

RNA Pol II stalling allows de novo establishment of CENP-A chro-
matin. Serine 2 in the CTD heptad repeat of RNA Pol II is phos-
phorylated in elongating RNA Pol II, and this RNA Pol II becomes 
ubiquitylated upon stalling. In S. pombe, newly introduced plasmid 
with the core centromere region will lead to transient stalling of RNA 
Pol II, but it can be efficiently cleared with the aid of factors such 
as TFIIS and Ubp3 (Kulish et al. 2001; Kvint et al. 2008; Martinez-
Rucobo & Cramer 2013). TFIIS promotes transcriptional elongation 
by cleaving nascent transcripts in the context of stalled RNA Pol II. 
Mutants that lack Ubp3 or TFIIS compromise the restarting process 
of stalled RNA Pol II, resulting in the accumulation of stalled RNA 
Pol II complexes, prolonged stalling, and leading to recruitment of 
unknown factors that promote CENP-A deposition. The RNA Pol II 
stalling environment causes H3 nucleosomes to be efficiently evicted. 
CENP-A N-terminal tail lacks the conserved lysine residues of H3 
(e.g., K9), and thus does not have H3K9ac-like modification that aids 
transcription. Therefore, CENP-A nucleosomes are likely to present 
a greater barrier to transcription than H3 nucleosomes. Thus, once 
CENP-A nucleosomes are loaded, it might exacerbate the transcrip-
tional stalling, creating conditions permissive for recruitment of more 
CENP-A in a self-perpetuating way
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requirement of centromere transcription, which may depend 
on developmental stages or cell types.

A synthetic biology approach tethers different histone 
modifiers to the  alphoidtetO centromere on a human artificial 
chromosome (HAC) to manipulate histone modifications, 
and thus transcription, at the centromere (Molina et al. 
2016). H3K9ac-associated but not H4K12ac-associated 
transcription rescues the loss of H3K4me2 and centro-
meric transcription (Molina et al. 2016). Thus, the authors 
proposed that both mitotic centromeric transcription and 
H3K9ac can generate an appropriate epigenetic landscape 
to destabilize H3 nucleosomes and promote CENP-A load-
ing (Molina et al. 2016). In chicken B cell line DT-40, 
FACT localizes to the centromere in a CENP-H-dependent 
manner and associates with chromatin remodeler CHD1 to 
facilitate CENP-A loading (Okada et al. 2009), raising the 
possibility that CENP-A chaperone HJURP may act through 
a FACT-dependent mechanism similarly to CAL1 in Dros-
ophila. On the other hand, in budding yeast S. cerevisiae, 
FACT functions in correcting ectopic CENP-A loading by 
binding with a E3-ubiquitin ligase and triggering the pro-
teasome-mediated degradation of ectopic CENP-A (Deyter 
et al. 2014).

Besides transcription elongation, transcriptional stall-
ing within the core centromere region has been suggested 
to promote de novo establishment of CENP-A chromatin 
in fission yeast (Fig. 1B) (Catania et al. 2015). The central 
core domain (cnt) of S. pombe contains numerous promot-
ers and transcriptional start sites (Catania et al. 2015). The 
abilities of different parts of the cnt to assemble CENP-A 
chromatin were not equivalent. Surprisingly, the parts with 
lower transcriptional activity (high RNA Pol II level but low 
transcript levels) were more effective in recruiting CENP-A 
than those with higher activity. Mutants that are defective in 
restarting stalled RNA Pol II indeed increase CENP-A load-
ing, suggesting that persistent RNA Pol II stalling creates a 
favorable chromatin environment for CENP-A loading, per-
haps through dislodging H3 nucleosomes without eviction 
of CENP-A or providing a longer time for CENP-A recruit-
ment (Catania et al. 2015). An in vitro experiment has also 
shown that CENP-A nucleosomes present a greater barrier to 
transcription than H3 nucleosomes (Shandilya et al. 2014), 
and CENP-A-induced stalling may potentially promote their 
own recruitment in a positive-feedback loop.

To further decipher which step during transcription 
may be important to facilitate CENP-A and kinetochore 
assembly, Heald’s group has used different drug treat-
ments to inhibit specific stages of transcription in Xeno-
pus. When transcription initiation is inhibited by triptolide 
or when RNA splicing process is inhibited by ISGN, a 
reduced level of CENP-A and kinetochore protein NDC-
80 is observed (Grenfell et al. 2016). Yet when transcrip-
tion elongation is inhibited by α-amanitin, no CENP-A 

incorporation effect is observed (Grenfell et al. 2016). 
These results may indicate that some transcription initia-
tion or splicing factors are specifically involved in CENP-
A recruitment.

From all these studies, the act of centromeric transcrip-
tion and stalling, accompanied by the transcription-asso-
ciated chromatin remodeling, play important roles in the 
establishment and maintenance of centromeric chromatin, 
particularly the stable incorporation of CENP-A into chro-
matin. However, to definitely conclude that the function 
solely comes from the transcription process and not from 
the cenRNAs will need more evidence to distinguish the 
two effects.

Structures and functions of cenRNA

In general, non-coding RNA can function as a guide to 
recruit proteins to DNA or chromatin, a scaffold to assem-
ble ribonucleoprotein complexes, a decoy which bind and 
sequester proteins thereby inhibiting their normal functions, 
or an inter-cellular signaling molecule (Corless et al. 2020; 
Hezroni et al. 2015). There appears to be relatively more 
studies on manipulating the levels of cenRNAs than stud-
ies on the centromere transcription process. Centromere-
derived RNAs have been proposed to play a critical role 
in proper centromere formation and function. Specifically, 
overexpression or knockdown of cenRNAs reduces CENP-A 
and CENP-C levels at the centromere (Ling & Yuen 2019; 
Liu et al. 2015; Rošić et al. 2014). Yet, the lack of cenRNA 
sequence conservation prompts us to speculate if cenR-
NAs have any conserved secondary and tertiary structures, 
which may enable them to recruit centromeric protein to the 
centromere.

Centromeric transcription often occurs in both sense and 
anti-sense strands (Ferri et al. 2009; Ling & Yuen 2019; 
Topp et al. 2004). Both long (> 200 nt) and short non-coding 
cenRNA and pericenRNA have been catalogued in previous 
reviews (Arunkumar and Melters 2020; Chan et al. 2012; 
Chan & Wong 2012). cenRNA structure has been proposed 
to be double-stranded (ds) RNA, single-stranded (ss) RNA, 
or a DNA-RNA hybrid with the complementary DNA 
sequence at the centromere (R-loops). Here, we describe 
evidence supporting different types of cenRNA structures 
(Table 2).

Different structures of cenRNAs

Double‑stranded (ds) cenRNA

Mouse minor satellites from the core centromere are 
transcribed and the transcripts are sensitive to RNase 
III, which cleaves dsRNA (Bouzinba-Segard et al. 2006). 
Tammar Wallaby’s Kangaroo Endogenous Retrovirus 
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(KERV-1) exists as both dsRNA and ssRNA, which 
are important for CENP-B localization and pericentric 
heterochromatin maintenance (Carone et al. 2009). In 
Schizosaccharomyces pombe, ribonuclease Dicer, which 
cleaves pericentric otr dsRNA to 21–25-nt small inter-
fering RNA (siRNA), and the RNA-induced initiation 
of transcriptional gene silencing (RITS) complex are 
important for CENP-A/Cnp1 establishment (Folco et al. 
2008).

Single‑stranded (ss) cenRNA

In maize, centromere retrotransponsons (CRM) and satellite 
repeats (CentC) are actively transcribed in both strands, and 
cenRNAs (40–250 nt) interact with CENP-A (Topp et al. 
2004). However, there is no detection of centromere-derived 
small interfering RNAs (siRNAs) processed by the RNAi 
pathway. These cenRNAs are also sensitive to RNase A, 
suggesting that they maintain single-stranded organization 

Table 2  Different structures of cenRNAs in different species

Structure Species Cell cycle Functions and interacting 
proteins

Reference

Single-stranded RNA Maize Throughout cell cycle Transcripts from centromeric 
retrotransposons and satel-
lite repeats are bound to 
CENPA/CenH3

CENP-C binding to the 
centromeric DNA requires 
single-stranded centromeric 
transcripts

Du et al. (2010) and Topp et al. 
(2004)

Human HeLa cells Metaphase Alpha-satellite derived RNAs 
play crucial role in CENP-
C1, INCENP, and Survivin 
assembly to the centromere 
during metaphase

Wong et al. (2007)

Double-stranded RNA Mouse Mitosis Accumulation of minor 
satellite transcripts leads 
to defective localization 
of centromeric proteins 
including Aurora-B and 
HP1

Ferri et al. (2009)

R-loops Maize Interphase Circular RNAs at the 
centromeric regions forms 
R-loops and promotes the 
formation of chromatin 
loops. CENP-A/CenH3 
localization is defective 
with decreased level of cir-
cular RNAs and chromatin 
loops

Liu et al. (2021) and Liu et al. 
(2020)

Mouse G1 phase DNA-RNA hybrid facilitates 
homologous recombination 
repair and promote centro-
meric integrity

Yilmaz et al. (2021)

Schizosaccharomyces pombe S phase DNA-RNA hybrids formed 
from heterochromatin-
derived ncRNAs play 
significant role in RNAi-
directed heterochromatin 
assembly

Nakama et al. (2012)

R-loops (negative effects) Saccharomyces cerevisiae S phase R-loop accumulation at cen-
tromere leads to defective 
kinetochore biorientation 
and chromosome instability

Mishra et al. (2021)

Human Interphase R-loop accumulation at 
centromeric alpha-satellite 
leads to mislocalization of 
CENP-A

Racca et al. (2021)
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(Topp et al. 2004). Single-stranded RNAs are highly unsta-
ble compared to double-stranded RNA (Zhang et al. 2021). 
However, RNA–protein interaction may stabilize the ss cen-
RNA. Further in vitro study has demonstrated that single-
stranded maize cenRNA (44 nt) is essential for CENP-C 
exon duplication region to maintain DNA binding, and such 
cenRNA-CENP-C interaction is required for proper CENP-C 
centromere localization (Topp et al. 2004). In human HeLa 
cell line, alpha-satellite cenRNA, CENP-C1, and INCENP 
localize to the nucleolus in interphase in an RNA polymer-
ase I-dependent manner, and this localization is also sen-
sitive to RNase A (Wong et al. 2007). This suggests that 
human cenRNA also interacts as single-stranded structure 
with kinetochore or inner centromere protein.

In the case of transcription in the point centromere of 
Saccharomyces cerevisiae, after the introduction of RNAi 
machinery (but without adding the hairpin RNA against 
cenRNA), the level of cenRNAs is not affected, suggesting 
that endogenous cenRNAs probably do not exist as dsRNA 
(Ling & Yuen 2019). However, there is no direct evidence 
of ssRNA in budding yeast so far.

R‑loop

Since cenRNAs are highly complementary with the template 
centromeric DNA, cenRNAs can potentially bind and form 
a R-loop structure consisting of a three-stranded DNA-RNA 
hybrid, with one strand of RNA bound to a single DNA 
strand, and a displaced single-stranded DNA. According 
to different studies, R-loops have been reported to be asso-
ciated with gene transcription (Fang et al. 2019; Ling & 
Yuen 2019), DNA replication initiation (Yu et al. 2003), 
DNA damage response (Hamperl et al. 2017), DNA repair 
(Lu et al. 2018), and genome instability (Chedin & Ben-
ham 2020). The formation of DNA-RNA hybrids is also an 
important way to target the RNA to the local chromatin in a 
sequence-specific manner (Maldonado et al. 2019).

Generally, R-loops are formed with G-rich clusters during 
transcription (Allison & Wang 2019). However, the centro-
meric regions are often enriched with AT (Altemose et al. 
2022a; Baker & Rogers 2005), which is not favorable for 
elongation and the formation of the R-loops. Additionally, 
negative supercoiling facilitates R-loop formation (Stolz 
et al. 2019). In S. cerevisiae, CENP-A/CSE4 induces posi-
tive supercoiling at the centromere (Furuyama & Henikoff 
2009), which is unfavorable for R-loop formation. Yet, dur-
ing transcription, while RNA polymerase acts on the DNA 
template, there exists a region upstream of the RNA poly-
merase with hyper-negative supercoiling where R-loop for-
mation can potentially occur (Dorman 2019).

Centromeric R-loops have been identified in different 
species, including fission yeast, maize, rice, Arabidopsis, 
and human (Fang et al. 2019; Kabeche et al. 2018; Xu et al. 

2017). In particular, a genome-wide R-loop map of maize 
leaf has been generated by single-strand DNA ligation-based 
library construction from DNA-RNA hybrid immunoprecip-
itation by S9.6 antibody, followed by sequencing (ssDRIP-
seq). R-loops are enriched in centromeric regions, especially 
in the binding regions of CENP-A/CenH3, and pericentric 
regions (Yang Liu et al. 2021).

In S. pombe pericentromeric outer repeats (otr), in addi-
tion to dsRNA (Folco et al. 2008), about half of the non-
coding RNAs (ncRNAs) are associated with chromatin that 
shows sensitivity towards RNase H, which cleaves DNA-
RNA hybrids (Nakama et al. 2012). These ncRNAs form 
DNA-RNA hybrids, bind to the RNA-induced transcrip-
tional silencing (RITS) complex, and result in RNAi-driven 
platform for heterochromatin assembly (Nakama et al. 2012).

Some evidence also shows that R-loop accumulation 
can in fact help the maintenance of centromeric integrity. 
In human cells, R-loops have been detected at centromeres 
specifically during mitosis, and such presence of R-loop 
drives ATR signaling pathway activation, which is impor-
tant for faithful chromosome segregation and genome 
stability (Kabeche et al. 2018). A recent study shows that 
inducing centromeric double-stranded breaks (DSBs) in G1 
phase leads to an increase in centromeric H3K4me2 and 
transcription of human and mouse cenRNAs. CENP-A and 
HJURP interact with the deubiquitinase USP11, enabling 
formation of the RAD51–BRCA1–BRCA2 complex. This 
further facilitates the homologous recombination (HR) of 
DNA and RNA, despite the absence of a sister chromatid, 
forming DNA-RNA hybrids and causing DNA-end resection 
to facilitate the repair of DSBs (Yilmaz et al. 2021).

On the contrary, R-loop accumulation at centromere chro-
matin has been found to be detrimental for proper chromo-
some segregation and genomic stability (Allison & Wang 
2019). In Saccharomyces cerevisiae, HPR1, which interacts 
with CENP-A/CSE4, prevents the accumulation of R-loop 
in the centromeric region. In hpr1∆ mutant, a reduced level 
of CENP-A chaperone, SCM3, and a defective increased 
localization of histone H3 at the centromere have been 
observed (Mishra et al. 2021). Centromeric alpha-satellite 
array R-loops have been detected in human cancer cell lines. 
The presence of R-loop recruits BRCA1, which counteracts 
the accumulation of R-loops at the centromere, prevents cen-
tromere breakage, limits hyper-recombination, and ensures 
proper localization of CENP-A (Racca et al. 2021). Over-
expression of pericenetric major satellite RNA transcrip-
tion in mice sequesters BRCA1-associated network, caus-
ing destabilization of DNA replication forks, accumulation 
of R-loops, DNA damage, and induction of breast cancers 
(Zhu et al. 2018a, b). While the co-presence of centromeric 
R-loops and BRCA1 are evident in these studies (Yilmaz 
et al. 2021; Racca et al. 2021; Zhu et al. 2018a, b), the con-
sequences appear to be different dependent on the situations. 
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The above findings suggest that centromeric R-loops may 
have both positive and negative impacts on the centromere 
function and genome stability (Crossley et al. 2019). Fur-
ther mechanistic understanding on how centromeric R-loop 
structure affects centromere function in different species or 
conditions will be useful to unveil its dynamic roles.

Centromeric circRNA

Circular RNAs (circRNAs) are formed by fusing the 
upstream 5′-splice site and the downstream 3′-splice site 
of a pre-messenger RNA (mRNA) through the process of 
back splicing (Li et al. 2018). CircRNAs are single-stranded, 
covalently closed RNA molecules, and are involved in 
RNA–protein complex formation and gene expression reg-
ulation (Li et al. 2018). CircRNAs have been explored in 
fly, worm, mouse, human, and plants, such as Oryza sativa, 
Arabidopsis thaliana, maize, and wheat (Memczak et al. 
2013; Salzman et al. 2012; Westholm et al. 2014; Ye et al. 
2015; Chen et al. 2018; Ye et al. 2015). However, due to the 
repetitive nature of centromeric DNA and the limitation of 
bioinformatics analysis tools to identify circRNAs, it has 
been difficult to identify centromeric circRNAs.

The first identified centromeric circRNAs are derived 
from centromeric retrotransposons in maize. These centro-
meric circRNAs bind to the centromere through R-loops (Liu 
et al. 2020). When using RNA interference to target against 
the sites of back-splicing in the circular cenRNAs, the level 
of circRNA, R-loops, and R-loop-induced chromatin loops 
decrease, and consequently, the level of CENP-A/CenH3 at 
centromere localization drops, indicating the significance of 
centromeric circRNA-derived R-loop in centromere integrity 
(Liu et al. 2020). The function and features of these centro-
meric circRNAs are just beginning to be understood.

Functions of cenRNAs and pericenRNAs

Function of cenRNAs as a scaffold

Non-coding RNA may work as a scaffold that spatially 
organizes proteins. This kind of RNA–protein or RNA-
RNA bindings can be part of the components of a soluble 
or chromatin-associated protein complex (Hentze et  al. 
2018). RNAs may play a role in soluble complex forma-
tion (Quénet & Dalal 2014). To identify RNA-dependent 
soluble complexes, a newly developed tool based on den-
sity gradient ultracentrifugation, called R-DeeP, has been 
used. The CENP-A chaperone, HJURP, has shown an RNA-
dependent shift in size (Caudron-Herger et al. 2019). The 
HJURP complex shows an increase in the size of the pro-
tein complex upon RNase (RNase A, RNase I, RNase T1, 
RNase H, and RNase III) treatment. The authors attribute 
this increase of size to a gain in interaction partners due 

to the increased availability of binding sites when RNA is 
degraded (Caudron-Herger et al. 2019). Future research can 
determine whether it is the cenRNAs that play a role in such 
complex formation, and this will help to establish a more 
complete picture of the role of cenRNAs in soluble protein 
complex formation.

In addition to soluble protein complexes, transcribed 
RNAs can associate with proximal chromatin as evidenced 
by RNA–DNA proximity ligation approaches (Bell et al. 
2018; Sridhar et al. 2017). In fact, well-known chromatin 
binding factors, such as Polycomb complex (Zhang et al. 
2019) and CCCTC-binding factor (CTCF) (Hansen et al. 
2019), not only bind to distinct DNA motifs but are also 
functionally associated with RNA. Polycomb complex 
(Davidovich et al. 2013) and CTCF (Hansen et al. 2019; 
Saldaña-Meyer et al. 2019) are abundant at the pericentric 
heterochromatin and interact with a RNA component that is 
critical to their functions.

Function of centromeric RNAs in inner centromere 
signaling

Inner centromere is the region in between the centromeric 
regions of the sister chromatids (Trivedi & Stukenberg 
2016). The chromosomal passenger complex (CPC) accu-
mulates at the inner centromere region (Trivedi & Stuke-
nberg 2016). The CPC contains the mitotic kinase Aurora 
B, INCENP, survivin, and borealin (Trivedi & Stukenberg 
2016), and can sense and respond to the pulling forces 
generated at the kinetochores (Bloom 2014). In some ver-
tebrates, CPC components have been shown to pull down 
cenRNAs. For example, in Xenopus, Aurora B has been 
shown to bound to cenRNA, which regulates both Aurora 
B’s localization and its activation (Blower 2016). Shugoshin 
(SGO1), which protects centromeric cohesion from cleavage 
during prophase (McGuinness et al. 2005), has also been 
shown to associate with cenRNA in vitro (Liu et al. 2015). 
Potentially, this cenRNA-SGO1 interaction allows SGO1 to 
reach cohesin embedded in centromeric chromatin (Liu et al. 
2015). However, how exactly cenRNAs affect the recruit-
ment of SGO1 and CPC to facilitate mitotic progression are 
still not clear.

Functions of pericentric transcription and pericenRNAs 
in heterochromatin formation

As discussed in the above sections a1 and 3, the fission 
yeast otr pericenRNA transcripts are processed by the RNA 
interference pathway and are important for heterochroma-
tin establishment (Folco et al. 2008). In mouse cells, H3K9 
methyltransferases SUV39H1 and SUV39H2 associate with 
major satellite RNAs derived from pericentric regions (but 
not with minor satellite RNAs from the centromeric regions) 
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(Camacho et al. 2017; Johnson et al. 2017). The protein-
RNA interaction stabilizes their chromatin localization and 
facilitates H3K9 histone methylation and heterochromatin 
formation (Camacho et al. 2017; Johnson et al. 2017). In 
a chicken-human hybrid DT-40 cell line, in which the cen-
tromeres also contain unique DNA sequences (Krasikova 
et al. 2012), conditional knockout of Dicer has different 
effects on the pericentric regions and the core centromere 
(Fukagawa et al. 2004). RNAi-deficient cells cause defec-
tive localization of heterochromatin proteins, cohesin protein 
Rad21, and checkpoint protein BubR1, while the localiza-
tion of centromere proteins, including CENP-A and CENP-
C, are normal (Corless et al. 2020; Fukagawa et al. 2004; 
Johnson et al. 2017). Such result indicates the differences in 
the requirement of the RNA interference or Dicer pathway 
between these two regions (Fukagawa et al. 2004; Hall et al. 
2002; Provost et al. 2002; Volpe et al. 2002).

Implications from centromeric and pericentric RNA 
misregulation and diseases

The association and consequences of cenRNA and peri-
cenRNA upregulation with stresses, cancers, and diseases 
have been investigated and extensively reviewed (Arunku-
mar and Melters 2020; Hernández-Saavedra et al. 2017; 
Smurova & De Wulf 2018). Pericentric HSAT II are over-
expressed in some cancers, which indicates its potential 
application in cancer diagnosis (Hall et al. 2017). Over-
expression of pericentric satellite RNA can even induce 
breast cancer (Zhu et al. 2018b). In general, high levels of 
cenRNAs promote chromosomal instability (CIN), which 
correlates with tumor metastasis (Chan et al. 2017; Zhu 
et al. 2011). Understanding how different organisms fine 
tune the expression of cenRNAs and pericenRNAs and 
determining the relationship between cenRNA regula-
tion in stressed and disease conditions will help to apply 
cenRNAs and pericenRNA as biomarkers for diagnosis or 
prognosis in cancers and other diseases (Arunkumar and 
Melters 2020; Smurova & De Wulf 2018). Modulation of 
cenRNA or pericenRNA levels could also be important for 
cancer prevention or treatment.

Causes and functions of cenRNA transcript variants

Different start and end sites, and different cell cycle timings

The timing of centromeric transcription vary among organ-
isms, but appears to correlate with the timing of CENP-A 
loading, as discussed briefly in b1 above and more exten-
sively reviewed previously (Arunkumar and Melters 2020; 
Perea-Resa et al. 2018). Yet, within the same organism, cen-
RNA variants may be observed from different stages of the 

cell cycle, as evidenced by isoform RNA sequencing using 
long-read sequencing techniques in G1 and S phase in S. cer-
evisiae (Hedouin et al. 2022). The most abundant transcrip-
tion isoform of each chromosome can be identified and clas-
sified based on the TSS: they can be initiated at nearby gene 
promoter or terminator sites, from anti-sense initiation of a 
neighboring gene, transcription readthrough from a neigh-
boring gene, or initiation in an intergenic region (Fig. 2A) 
(Hedouin et al. 2022). However, they usually end upstream 
of the centromere in G1 (Hedouin et al. 2022; Ling & Yuen 
2019). Only in S phase, the transcription leakage through 
into CDEI or CDEIII, due to centromere DNA replication 
and removal of CBF1 from CDEI, leading to the generation 
of cenRNAs (Hedouin et al. 2022). Even so, most identified 
cenRNAs do not encompass the full centromere (all three 
CDEs) (Hedouin et al. 2022). By 5′ and 3′ rapid amplifica-
tion of cDNA ends (RACE), multiple S. cerevisiae centro-
meric transcript variants with different lengths (462–1754 
nt) derived from both sense and anti-sense strands from three 
chromosomes have been characterized (Ling & Yuen 2019), 
consistent with the isoform RNA sequencing (Hedouin et al. 
2022).

Different stabilities

In human cells, cenRNAs derived from different alpha-sat-
ellite arrays show different stability (Arunkumar and Melt-
ers 2020). CenRNA alpha-satellite generated within “active 
centromere” arrays (e.g., DXZ1 or D17Z1) associate with 
CENP-A and CENP-C, and are more stable compared to the 
transcripts from “inactive pericentric” arrays (e.g., D17Z1-
B), which associate with CENP-B (McNulty et al. 2017).

Processing into shorter cenRNAs

Only a few studies have unveiled the details about cenRNA 
processing, possibly because it is difficult to trace all cen-
RNA variants, which may be short-lived or unstable. In 
mouse cells, while the core centromere precursor transcripts 
are about 2–4 kb, 120 nt of minor satellite transcripts are 
also identified (Bouzinba-Segard et al. 2006; Ferri et al. 
2009). These data indicate that after being transcribed as a 
RNA precursor, cenRNA might be processed, by alternative 
splicing and post-transcriptional modifications (Wilkinson 
et al. 2020). In rice, > 3-kb transcripts derived from cen-
tromere retrotransposon (CRR) arrays have been found to be 
processed into small RNA (sRNA) of about 24 nt in length, 
which plays critical roles in the RNAi pathway to maintain 
heterochromatin (Neumann et al. 2007). In addition, splicing 
of intron-like elements in pericentric RNAs in fission yeast 
has been observed. Mutation of a splicing factor, PRP16, 
leads to pericentric heterochromatin defects (Vijayakumari 
et al. 2019).
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m6A methylation and splicing

Recently, researchers have explored the impact of peri-
cenRNA levels on mRNA splicing (Ninomiya et al. 2021; 
Vourc’h et al. 2022). Many target mRNAs contain N(6)-
methyladenosine (m6A). m6A modification recruits a m6A 
reader, YTHDC1, to promote splicing (Xiao et al. 2016). 
Upon thermal stress, HSATIII RNAs, which are gener-
ated from pericentromeric regions, are highly expressed in 
HeLa cells. This might sequester the m6A writer complex 

and YTHDC1 in nuclear stress bodies (nSB) (Fig. 2B). This 
process will diminish m6A methylation and YTHDC1 bind-
ing to the target mRNAs, which in turn repress the splicing 
of target mRNAs (Ninomiya et al. 2021).

Polyadenylation

Telomeric repeat-containing RNA (TERRA) is a lncRNA 
generated from telomere DNA. About 7% of human TERRA 
is polyadenylated, whereas most of the yeast TERRA is 

Fig. 2  Mechanisms that contribute to cenRNA and pericenRNA vari-
ants and their potential functions. A RNA transcription could be initi-
ated and terminated at different sites. CenRNA isoforms cover part 
or all of the core centromere regions, while pericenRNA isoforms 
are proximal to but do not cover the centromere regions. Pericen-
tric RNAs may cover part of nearby genes, as observed in budding 
yeast (Hedouin et  al. 2022). B CenRNAs and pericenRNAs could 

be processed by splicing (Neumann et  al. 2007), m6A methylation 
(Xiao et al. 2016), 5′-capping (Choi et al. 2011), and polyadenylation 
(Arunkumar and Melters 2020; Choi et al. 2011; Ling & Yuen 2019; 
Neumann et al. 2007). The biological functions of these cenRNA pro-
cessing processes and products are less certain, but could resemble 
those of mRNAs or sRNAs
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polyadenylated (Feuerhahn et al. 2010). CenRNA poly-
adenylation has also been found in different organisms, 
including budding and fission yeast, rice, mice, and humans 
(Arunkumar and Melters 2020; Choi et al. 2011; Ling & 
Yuen 2019; Neumann et al. 2007). In budding yeast, cen-
tromeric transcripts with polyadenylated tails have been 
detected by 3′ RACE with the oligo (dT) primer (Ling & 
Yuen 2019). Similarly, various poly (A) tails with differ-
ent termination sites were identified in rice by 3′ RACE 
(Fig. 2B) (Neumann et al. 2007). However, it is possible 
that not all cenRNA and pericenRNAs are polyadenylated. 
Similarly, 5′ capping of cenRNAs or pericenRNAs has also 
been reported in fission yeast (Arunkumar and Melters 2020; 
Choi et al. 2011). However, the percentage of 5′ capping 
or 3′ polyadenylated cenRNA and pericenRNAs might also 
vary among different species, and whether polyadenylation 
of RNA Pol II-derived centromeric transcripts contributes 
only to their stability or has additional functions needs fur-
ther exploration.

In summary, many cenRNA and pericenRNA variants 
are generated due to multiple processes during and after 
transcription, including different transcription start and 
termination sites, alternative splicing, and modifications. 
Whether the cells need to have a repertoire of cenRNA 
variants in different abundancies remains unclear. Some 
cenRNAs could be more highly expressed only because of 
the leaky nearby gene expression. Studying different tran-
scriptional variants will be useful to determine whether 
cenRNAs function interchangeably, potentially in trans, or 
whether individual cenRNA variants have unique functions, 
possibly in cis.

Future perspectives

Many previous studies analyzed centromere transcription 
and cenRNAs used population-based assays, including 
reverse transcription-quantitative polymerase chain reac-
tion (RT-qPCR) and RNA short-read sequencing (RNA-
seq). The average behaviors of cenRNAs across a cell 
population may not allow accurate characterization of the 
nature, number, and variants of cenRNAs in individual 
cells, especially many cenRNAs are lowly expressed and 
induced only in specific cell cycle timing (Biscotti et al. 
2015; Blower 2016; Fachinetti et al. 2013; McNulty et al. 
2017; Quénet & Dalal 2014). Knowledge on centromeric 
RNA has been increasing very quickly with the advanc-
ing single-molecule long-read and modification sequenc-
ing techniques. Microscopy approaches to visualize cen-
RNA transcripts in individual cells may help to resolve 
this averaging effect problem. These single-cell tech-
niques may include detecting cenRNAs by LNA probes 
in mitotic chromosome spreads, RNA-f luorescence 

in-situ hybridization combined with immunofluorescence 
(RNA-FISH-IF) (Kochan et  al. 2015, aptamer-tagged 
non-coding RNA (Autour et al. 2018), and single-mol-
ecule fluorescence in-situ hybridization (smFISH) (Raj 
et al. 2008; Rošić et al. 2014), a strategy that has been 
used to detect unique mRNAs and long non-coding RNAs 
(lncRNAs).

Experiments that affect the transcription process will 
unavoidably affect the corresponding transcript level as 
well. Directly comparing the centromere, CIN or cell cycle 
phenotypes by manipulating centromeric transcription and 
just the cenRNA level can further elucidate the function of 
each component. The additional phenotypes changes from 
manipulating transcription could be attributed to the func-
tion of the act of transcription, but of course perturbation 
of transcription has pleiotropic effects that have to be taken 
into account. Alternatively, manipulation of a particular 
transcription stage or RNA processing event may unveil the 
importance of each step. Exploring the characteristics and 
mechanism of cenRNA in more diverse model organisms 
will also provide a wider perspective for a potential con-
served function.
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