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Abstract The Smc5/6 complex, along with cohesin and
condensin, is a member of the structural maintenance of chro-
mosome (SMC) family, large ring-like protein complexes that
are essential for chromatin structure and function. Thanks to
numerous studies of the mitotic cell cycle, Smc5/6 has been
implicated to have roles in homologous recombination, restart
of stalled replication forks, maintenance of ribosomal DNA
(rDNA) and heterochromatin, telomerase-independent telo-
mere elongation, and regulation of chromosome topology.
The nature of these functions implies that the Smc5/6 complex
also contributes to the profound chromatin changes, including
meiotic recombination, that characterize meiosis. Only recent-
ly, studies in diverse model organisms have focused on the
potential meiotic roles of the Smc5/6 complex. Indeed, Smc5/
6 appears to be essential for meiotic recombination. However,
due to both the complexity of the process of meiosis and the
versatility of the Smc5/6 complex, many additional meiotic
functions have been described. In this review, we provide a
clear overview of the multiple functions found so far for the
Smc5/6 complex in meiosis. Additionally, we compare these
meiotic functions with the known mitotic functions in an

attempt to find a common denominator and thereby create
clarity in the field of Smc5/6 research.
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Smc5/6 complex structure

The Smc5/6 complex is a member of the structural mainte-
nance of chromosome (SMC) family, along with cohesin and
condensin. The Smc5/6 complex is proposed to have the char-
acteristic ring-like structure of the SMC family in which each
SMC complex is comprised of two SMC proteins forming a
heterodimer and multiple non-SMC elements (reviewed in
(Jeppsson et al. 2014b)). The Smc5/6 complex is comprised
of Smc5, Smc6, and several non-SMC elements of which
Nse1-4 are conserved from yeast (Duan et al. 2009; Hazbun
et al. 2003; Pebernard et al. 2006; Zhao and Blobel 2005)
(Fig. 1a, b) to mammals (De Piccoli et al. 2009; Taylor et al.
2008) (Fig. 1c). When referring to the Smc5/6 complex genes
or proteins in general, we will use yeast nomenclature. When
referring to a specific organism, or data obtained using a spe-
cific organism, we will use the specific nomenclature of that
organism, e.g., NSMCE1 for the mammalian ortholog of
Nse1. The SMC proteins have an extensive coiled-coil do-
main interrupted by a hinge domain that folds each SMC back
on itself. The two globular C and N terminal ends are juxta-
posed to form an ATP-binding and ATP-hydrolysis site
(Fig. 1d). To form a closed-ring structure, the ATPase domains
are bridged together by non-SMC elements, while the SMC
proteins associate tightly through their hinge regions
(reviewed in (Jeppsson et al. 2014b)).

In vitro assays using purified fission yeast proteins have
shown that Nse1 binds to Nse3, and both Nse1 and Nse3 bind
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to Nse4 (Palecek et al. 2006; Pebernard et al. 2008). Nse1
contains a RING-finger domain, common to ubiquitin E3 li-
gases (Fujioka et al. 2002; McDonald et al. 2003; Potts 2009),
and Nse3 contains a MAGE (melanoma-associated antigen
gene) domain (Pebernard et al. 2004). It has been shown that
human NSMCE3 enhances the E3 ubiquitin ligase of NSMC
E1 in vitro (Doyle et al. 2010). Nse2 (also referred to as
Mms21) is bound to Smc5, contains a SP-RING domain
(McDonald et al. 2003; Pebernard et al. 2004), and functions
as an E3 small ubiquitin-related modifier (SUMO) ligase
(Andrews et al. 2005; Potts and Yu 2007; Zhao and Blobel
2005). Nse4 is a α-kleisin subunit which bridges the ATPase
head domains of Smc5 and Smc6 (Palecek et al. 2006). Nse5
and Nse6 are also Smc5/6 components in budding and fission
yeast, although homologs in other organisms have not been
elucidated. In budding yeast, Nse5 and Nse6 associate with
the hinge region (Fig. 1a) (Duan et al. 2009). In fission yeast,
Nse5 and Nse6 associate with the head domains (Fig. 1b),
which may enhance the stability of the complex (Pebernard
et al. 2006).

Smc5/6 in mitotic cells

In somatic cells, the Smc5/6 complex is involved in several
processes required to maintain genomic stability.
Mechanistically, these processes involve regulation of specific

factors required for homologous recombination (HR) path-
ways. All these processes, including DNA replication, HR-
mediated DNA double strand break (DSB) repair, correct
chromosome topology and, eventually, proper metaphase con-
formation, are also essential for successful meiosis.

Smc5/6 and stalled replication forks

Smc5/6 is required for maintaining replication fork stability
and the restart of stalled replication. In budding yeast, the
absence of Nse2 SUMO ligase activity results in Rad51-
dependent X-shaped HR intermediates or aberrant joint mol-
ecules (JMs) accumulating at stalled replication forks
(Bermudez-Lopez et al. 2010; Branzei et al. 2006). The
Smc5/6 complex functions with Sgs1, a homolog of the
Bloom syndrome helicase (BLM), to inhibit the accumulation
of these abnormal intermediates. It is possible that this func-
tion is conserved in humans, as hypomorphic mutations that
lead to the loss of the NSMCE2 SP-RING domain result in
delayed recovery from replication stress and a reduction in
BLM foci (Payne et al. 2014). These defects result in chromo-
some bridges and missegregation during the metaphase to
anaphase transition. In budding yeast, Smc5/6 has been shown
to interact and restrain the replication regression activity of
Mph1 helicase, an ortholog of human FANCM, which is re-
quired for replication fork repair but can also lead to accumu-
lation of JMs (Xue et al. 2014).
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Fig. 1 Structure and composition
of Smc5/6 complex. Conserved
from yeast to humans, Smc5 and
Smc6 fold and interact at their
central hinge domains. Through
the coiled-coil stretch, the N- and
C-termini are brought in close
proximity creating an ATPase
domain. The ring-like structure is
closed by several non-SMC
elements (Nse1, Nse3, and Nse4).
In addition, the SUMO ligase
Nse2 is bound to the coiled-coil
region of Smc5. Nse5 and Nse6
are located at the hinge domain in
budding yeast (a), at the ATPase
domain in fission yeast (b), but
homologs have not been
identified in mammals (c). d
Smc5 and Smc6 each contain an
extensive coiled-coil domain that
folds back on itself at a central
hinge domain, juxtaposing the
terminal head domains to form an
ATP-binding and ATP-hydrolysis
site
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In fission yeast, similar JMs accumulate at the col-
lapsed replication forks in smc6 mutants, correlating with
chromosome missegregation (Ampatzidou et al. 2006).
Smc5/6 is required for the loading of Rpa and Rad52 onto
stalled replication forks in order for the fork to maintain a
recombination-competent conformation (Irmisch et al.
2009). Overexpression of Brc1, a BRCA C-terminal
(BRCT) motif protein, rescues the replication-arresting
defect of a Smc6 hypomorphic mutant (Lee et al. 2007;
Sheedy et al. 2005; Verkade et al. 1999). Because this
rescue is dependent on Brc1-mediated promotion of a
post-replicative repair pathway and the function of
structure-specific endonucleases Slx1/4 and Mus81/Eme1
that resolve the accumulated JMs, Smc5/6 complex may
be required to prevent the formation of replication stress-
induced JMs and/or assist in their resolution.

Facilitating homologous recombination

Numerous studies using mammalian, plant, budding yeast,
and fission yeast cells have indicated that Smc5/6 functions
in the homologous recombination pathway (Ampatzidou et al.
2006; Cost and Cozzarelli 2006; Lehmann et al. 1995;
McDonald et al. 2003; Mengiste et al. 1999; Pebernard et al.
2006; Stephan et al. 2011; Torres-Rosell et al. 2005a, b;
Watanabe et al. 2009).

In budding yeast and human cells, Smc5/6 and cohesin
are recruited to DSBs to promote repair via sister chroma-
tid recombination (De Piccoli et al. 2006; Lindroos et al.
2006; Potts et al. 2006; Strom et al. 2004; Unal et al.
2004; Wu and Yu 2012). Although Smc5/6 and cohesin
complexes are recruited to DSBs independently, Nse2-
mediated sumoylation of the α-kleisin subunit of cohesin,
Scc1, is required to ensure proficient sister chromatid re-
combination (McAleenan et al. 2012; Wu and Yu 2012).
In turn, sumoylation of Scc1 was shown to counteract the
action of Wapl, a negative regulator of cohesin loading
(Wu and Yu 2012).

ChIP experiments in mouse B cells showed that SMC5
co-localizes with RPA, the single-strand binding protein
involved in DNA replication and repair, and BRCA1, a
protein involved in DSB repair, at early replication fragile
sites (Barlow et al. 2013). These findings suggest that the
SMC5/6 complex binds to single-stranded DNA (ssDNA)
substrates created during HR and/or DNA replication.

Regulation of homologous recombination in repetitive
sequences

In budding yeast, the ribosomal genes are organized into a
single array of 100–200 identical repeats on chromosome
XII that is compartmentalized into the chromatin region
called nucleolus (Oakes et al. 2006). Due to the repetitive

nature of the ribosomal DNA (rDNA) locus, HR-mediated
DNA damage repair in this region can lead to illegitimate
recombination events that result in JMs and unequal sister
chromatid exchange (Eckert-Boulet and Lisby 2009). In
order to prevent such deleterious recombination events,
DSBs occurring within rDNA are thought to be moved
outside the nucleolus by a Smc5/6-dependent mechanism
in order to be repaired (Torres-Rosell et al. 2005a, 2007).
However, the visible presence of DSBs in the nucleolus of
Smc5/6 mutants could also be due to less efficient repair
of these breaks without functional Smc5/6.

Similarly, in Drosophila, Smc5/6 is thought to be involved
in the translocation of the damaged DNA within heterochro-
matin regions to adjacent euchromatic regions where recom-
bination can occur proficiently (Chiolo et al. 2011). Moreover,
in heterochromatin, Smc5/6 suppresses HR until translocation
of the DSB has occurred (Chiolo et al. 2011).

Mitotic metaphase

Smc6 location in mitotic metaphase cells has been studied
multiple times, with varying outcomes. Some studies in
mouse and human show that SMC6 is translocated away from
the chromosomes duringmitotic divisions (Gallego-Paez et al.
2014; Taylor et al. 2001; Verver et al. 2013, 2014), while other
studies in budding yeast and mouse report Smc6 to be located
at the centromeres of mitotic cells (Gomez et al. 2013;
Lindroos et al. 2006; Yong-Gonzales et al. 2012).

The SMC5/6 complex is required for regulating topo-
isomerase IIα and condensin localization on replicated
chromatids in human cells during mitosis, thereby ensuring
correct chromosome morphology and segregation
(Gallego-Paez et al. 2014). Topoisomerase II (TopoII) re-
solves DNA topological constraints by introducing tran-
sient DSBs that are needed to decatenate double-stranded
DNA to alleviate supercoiling (Nitiss 2009). TopoII initi-
ates the passage of an unbroken DNA strand through the
DSB and then reseals the break (Nitiss 2009). In budding
yeast, Smc5/6 has recently been implicated in managing
replication-induced topological stress (Carter and Sjogren
2012; Jeppsson et al. 2014a) and induction of topological
stress by TopoII inactivation correlates with increased fre-
quency of Smc5/6 chromosomal association sites
(Jeppsson et al. 2014a; Kegel et al. 2011). In fission yeast,
TopoII and Smc5/6 are required for the timely removal of
cohesins from the chromosome arms before metaphase
(Tapia-Alveal et al. 2010). Retention of these cohesins
would otherwise cause chromosome missegregation and
subsequent mitotic catastrophe. This was further supported
when overexpression of separase, a protein that cleaves
cohesin, was shown to rescue the lethality of TopoII and
Smc5/6 mutants in fission yeast (Outwin et al. 2009).
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Meiosis

Meiosis is a specialized cell division during which one
round of DNA replication is followed by two successive
rounds of chromosome segregation. First, the homologous
chromosomes, each consisting of one pair of sister chro-
matids held together by cohesin complexes, move to op-
posite poles (meiosis I). Second, the sister chromatids are
segregated, resulting in the formation of four haploid cells
(meiosis II). During prophase I, the homologous chromo-
somes align and, in most organisms, chromosome synap-
sis is achieved by formation of the synaptonemal complex
(SC). Correct synapsis of the homologous chromosomes
is required to facilitate meiotic recombination and the
subsequent formation of meiotic crossovers. These meiot-
ic crossovers, or chiasmata, introduce genetic variation
among the resulting gametes. Additionally, together with
proper sister chromatid cohesion, they also ensure correct
chromosome orientation and segregation during meiosis I
(reviewed in (Petronczki et al. 2003)).

The molecular pathways required for DSB repair dur-
ing meiosis have been studied in most detail in budding
yeast (De Muyt et al. 2012; Zakharyevich et al. 2012).
However, evidence indicates that these pathways are con-
served (Berchowitz et al. 2007; Higgins et al. 2008;
Holloway et al. 2008). The following paragraphs briefly
summarize meiotic recombination, using budding yeast as
an example (Fig. 2). Meiotic recombination is initiated by
Spo11-induced DSB formation, a 5-3′ exonuclease that
produces a 3′ single-stranded DNA overhang at every
break (Keeney et al. 1997). This 3′ overhang is then coat-
ed by the Rad51/Dmc1 strand exchange proteins and in-
vades the complementary sequence of the homologous
chromosome (Fig. 2a). DNA synthesis then starts from
the invading end and proceeds beyond the DSB. This
single-end invasion (SEI) is the precursor of all recombi-
nation pathways during meiosis (De Muyt et al. 2012;
Zakharyevich et al. 2012).

Following SEI, most recombination events are proc-
essed via synthesis-dependent single-strand annealing
(SDSA) (Fig. 2b). During SDSA, the invading strand is
thought to be displaced by the RecQ helicase BLM/Sgs1
(Bennett et al. 1998; De Muyt et al. 2012; Jessop and
Lichten 2008; Jessop et al. 2006; Oh et al. 2008). The
displaced strand is then used as a synthesis template for
the other damaged ssDNA end, and ligation results in the
formation of a non-crossover.

The DSB repair mechanism in budding yeast that ensures
reciprocal crossover formation is known as the ZMM (Zip1-4,
Mlh1/3, Msh4/5) pathway. The ZMM pathway requires both
SC components (Zip1-4 and Spo16) and the conserved mis-
match repair heterodimers MutSγ (Msh4-5) and MutLγ
(Mlh1-3) (Borner et al. 2004; Lynn et al. 2007). At a ZMM

designated recombination site, the SEI is stabilized and the
second end of the DSB is captured to form a double
Holliday junction (dHJ). Interestingly, Sgs1 is required to sta-
bilize the ZMM designated dHJs, which are resolved asym-
metrically by Exo1-MutLγ to form COs, and eventually lead
to chiasmata (Zakharyevich et al. 2012) (Fig. 2c).

Timely organization of the different steps of meiotic DSB
repair depends on tight regulation of the meiotic prophase I,
which can be subdivided in four stages: leptonema,
zygonema, pachynema, and diplonema. During leptonema,
the chromatin condenses and formation of axial elements be-
tween sister chromatids begin to form. Simultaneously, DSBs
are induced by the endonuclease SPO11, triggering the mei-
otic DNA damage response. During zygonema, homologous
chromosomes begin to synapse, characterized by the forma-
tion of the SC, a proteinaceous structure which comprises
axial proteins (now termed lateral elements) linked by central
components. Single-strand invasion occurs, followed by re-
section and DNA synthesis, resulting in recombination inter-
mediates. Recombination events are neither randomly nor
equally distributed throughout the genome but are preferen-
tially located at hotspots at which DSBs are more frequently
formed (reviewed in (Keeney et al. 2014)). At pachynema, the
homologous chromosomes are fully synapsed along their en-
tire length. DSB repair via HR continues by the resolution of
recombination intermediates into either a non-crossover or a
crossover event. Only a minority of recombination intermedi-
ates are resolved as crossovers, but there are processes which
ensure that at least one crossover is formed per homolog pair
(reviewed in (Youds and Boulton 2011)). Finally, in
diplonema, the synaptonemal complex gradually dissociates
and most recombination intermediates are completely re-
solved. Importantly, crossovers remain as chiasmata in order
to keep homologous chromosomes locally tethered and, to-
gether with proper chromosome cohesion, ensure bi-
orientation and accurate segregation during meiosis I
(reviewed in (Petronczki et al. 2003)).

During the first meiotic division, homologous chromo-
somes, each containing two sister chromatids held together
by cohesins, segregate to opposite poles. Bi-orientation of
homologous chromosomes is crucial for their accurate segre-
gation, and misalignment may result in aneuploidy. The spin-
dle assembly checkpoint (SAC) controls this bi-orientation by
monitoring the tension that is generated when the homologous
chromosomes are pulled to opposite directions and only al-
lows subsequent chromosome segregation when all chromo-
somes are correctly orientated. The physical linkage that chi-
asmata provide achieves bi-orientation and inter-homolog ten-
sion. Failure to generate the chiasmata, e.g., due to absence of
DSB induction, inadequate repair, and lack of CO events, will
lead to either a SAC induced metaphase I arrest and apoptosis
or aberrant chromosome segregation and aneuploidy in the
resulting gametes.
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Localization of Smc5/6 in meiosis

Budding yeast

Using immunofluorescence microscopy, Smc6 was observed
to localize to the nucleolus in budding yeast at the entry into
meiosis (Farmer et al. 2011; Lilienthal et al. 2013). During
meiotic progression, chromosome axes are formed and DSB
repair is initiated. At this time, Smc5 and Smc6 localize as
distinct foci along the chromosome axes (Copsey et al. 2013;

Farmer et al. 2011; Lilienthal et al. 2013; Xaver et al. 2013).
Smc6 also frequently co-localizes side by side with Rad51
recombinase, indicating a potential function in the strand in-
vasion step in HR repair (Copsey et al. 2013; Xaver et al.
2013). The Smc6 localization along the axes becomes more
abundant as synapsis occurs (Copsey et al. 2013; Lilienthal
et al. 2013; Xaver et al. 2013). The formation of this punctate
distribution does not depend on meiotic DSBs (Copsey et al.
2013; Farmer et al. 2011). Contrasting data has been reported
for the effect of cohesin mutation on Smc5/6 axis loading. It
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Fig. 2 DNA double strand break repair by homologous recombination. a
When a DNA double strand break (DSB) occurs, the DNA around the 5′
end is resected, creating a 3′ single-stranded DNA (ssDNA) overhang.
This 3′ ssDNA overhang invades a homologous sequence, creating a D-
loop. DNA is synthesized at the invading end using the undamaged
template DNA strand. After this, further repair can be executed by
synthesis-dependent strand annealing (SDSA) or double strand break
repair (DSBR). b SDSA: The second DSB end will be annealed up to

the ssDNA on the other break end, followed by gap-filling DNA synthe-
sis and ligation. This will lead to a non-crossover event. c DSBR: The
second DSB end can be captured to form a double Holliday Junction
(HJ). The resulting recombination intermediate must be resolved by
nicking the HJs. Depending on the nick sites, either parallel (black
arrows) or anti-parallel (green arrows), this will produce a non-
crossover or a crossover event, respectively
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was observed by Lillienthal et al. that Smc6 binding to chro-
mosomes is dependent on meiosis-specific cohesin subunit
Rec8. Therefore, the Smc5/6 complex may be influenced by
meiotic axis structure and/or the presence of sister chromatid
cohesion. In contrast, however, the localization of Smc5 was
not affected by the absence of Rec8 (Copsey et al. 2013).
Although surprising, it is possible that Smc5 and Smc6 load-
ing to chromosome axes is independent of one another, and
Smc6 but not Smc5 requires cohesin. An alternative explana-
tion is that differences in chromatin spreading techniques re-
sulted in the contrasting observations. The localization of
Smc5/6 during late prophase is still inconclusive. After late
prophase, some studies reported that Smc5 and Smc6 locali-
zation become more diffuse and are absent prior to metaphase
I (Copsey et al. 2013; Lilienthal et al. 2013), while another
study reported that Smc6 localized to the chromatin during
both meiotic divisions, displaying dense clusters at the bound-
ary between segregating chromatin masses (Xaver et al.
2013). These discrepancies may be due to sensitivity differ-
ences in chromatin spreading technique and epitope
accessibility.

To assess chromatin localization of Smc5/6 in greater de-
tail, genome-wide ChIP-on-chip localization studies were
used (Copsey et al. 2013; Xaver et al. 2013). These studies
showed that Smc5 and Smc6 bind to many of the same chro-
mosomal axis-associated sites as Rec8, including centro-
meres. In addition, Smc5/6 is enriched at DSB hotspots.
However, this localization occurs independently of DSB for-
mation, which supports the immunofluorescence microscopy
data (Copsey et al. 2013; Xaver et al. 2013). Finally, as ob-
served in mitotic cells, Smc5/6 also binds to the rDNA, which
remains unsynapsed during meiotic prophase I (Farmer et al.
2011; Lilienthal et al. 2013; Xaver et al. 2013).

Caenorhabditis elegans

InC. elegans, SMC-6 localizes to the condensed chromatin of
germ cells throughout meiosis (Bickel et al. 2010). SMC-6
becomes enriched on chromosomes during pachytene, which
coincides with occurrence of DSB repair, complementing the
localization pattern in budding yeast. SMC-6 remains on chro-
mosome axes during diplotene and diakinesis in worms
(Bickel et al. 2010).

Mouse, human

The first indications of a possible role for SMC5/6 in mam-
malian meiotic progression were elevated levels of both
SMC5 and SMC6 in the testis and localization in spermato-
cytes (Taylor et al. 2001). It then took over 12 years before the
role of SMC5/6 in mammalian meiosis was investigated in
more depth revealing involvement at several crucial and di-
verse steps during rodent and human spermatogenesis

(Gomez et al. 2013; Verver et al. 2013, 2014). First, in mouse
spermatocytes, SMC5, SMC6, and NSMCE1 were found to
be located at pericentromeric heterochromatin (or so-called
chromocenters): condensed repetitive sequences surrounding
the centromeres (Gomez et al. 2013; Verver et al. 2013). This
localization already starts in differentiating spermatogonia,
remains throughout all meiotic stages, including metaphase I
and II, and disappears when the haploid spermatids start to
elongate (Gomez et al. 2013; Verver et al. 2013). Moreover,
SMC5 and SMC6 were detected at the SC of synapsed ho-
mologous chromosomes from early zygonema until late
diplonema in mouse spermatocytes (Gomez et al. 2013).
This latter localization pattern was also reported for both
SMC5 and SMC6 in human spermatocytes (Verver et al.
2014). Finally, detection of SMC5, SMC6, and NSMCE1 at
the XY body during pachynema was observed in both mouse
(Gomez et al. 2013; Taylor et al. 2001) and human spermato-
cytes (Verver et al. 2014). However, it must be noted that in
mouse spermatocytes, SMC5, SMC6, and NSMCE1 localize
to the chromatin of the XY body (Gomez et al. 2013), whereas
in human spermatocytes, the localization of SMC6 was limit-
ed to distinct foci located at the axial elements of the
unsynapsed X and Y chromosomes (Verver et al. 2014).

Functions of Smc5/6 in meiosis

Meiotic recombination

When meiotic recombination intermediates are not prop-
erly resolved to form either a non-crossover or crossover,
aberrant joint molecules (JMs) can emerge. These JMs
have the potential to block chromosome segregation if
unresolved (Copsey et al. 2013; Jessop and Lichten
2008; Xaver et al. 2013). Sgs1 limits the formation of
these JM structures (Chen et al. 2010; De Muyt et al.
2012; Fabre et al. 2002; Jessop and Lichten 2008;
Sugawara et al. 2004). Several structure-selective nucle-
ases, Mus81-Mms4, Slx1-Slx4, and Yen1, are involved in
the resolution in these JMs (De Muyt et al. 2012; Matos
et al. 2011; Zakharyevich et al. 2012). In budding yeast,
the Smc5/6 complex antagonizes the formation of JMs via
two mechanisms: (i) prevention of JMs by destabilizing
SEI intermediates (Xaver et al. 2013) and (ii) facilitating
JM resolution (Copsey et al. 2013; Lilienthal et al. 2013;
Xaver et al. 2013). Like previously reported for the
helicase BLM/Sgs1, the SUMO E3 ligase function of
Nse2/Mms21 subunit is required to destabilize SEI inter-
mediates (Xaver et al. 2013). This inhibition is needed to
prevent the formation of inappropriate recombination in-
termediates. In the absence of Smc5/6, these inappropriate
recombination intermediates develop into JMs that require
the structure-selective resolvases Mus81-Mms4, Slx1-
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Slx4, and Yen1 to be processed (Zakharyevich et al.
2012). Of these resolvases, at least the ability of Mus81
to associate with, or be stabilized on, the meiotic chromo-
somes efficiently is dependent on Smc5/6 (Copsey et al.
2013). Interestingly, while required to limit SEI stabili-
zation, the SUMO E3 ligase function of Nse2/Mms21 is
not required for Smc5/6 directed JM resolution (Xaver
et al. 2013).

In fission yeast, meiotic recombination generates single
Holliday junction (HJ) intermediates (Cromie et al. 2006;
Davis and Smith 2003; Hyppa and Smith 2010; Keeney
et al. 1997), which are eventually resolved by the Mus81-
Eme1 complex (Boddy et al. 2001; Cromie et al. 2006;
Osman et al. 2003). Based on genetic experiments, the
Smc5/6 complex subunits Nse5-Nse6 have a regulatory role
in Mus81-Eme1 dependent HJ resolution (Wehrkamp-Richter
et al. 2012).

In C. elegans, the SMC-5/6 complex is not required for
chiasmata formation. However, mutation of smc-5 or smc-6
did result in chromosome fragmentation during meiosis I and
an increased number of RAD-51 foci in the nucleus (Bickel
et al. 2010). Interestingly, mus-81, him-6 (a BLM ortholog),
andmus-81, xpf-1 double mutants display a similar phenotype
to the smc-5 or smc-6 mutants (O’Neil et al. 2013). Because
these genes are involved in two redundant HJ resolution path-
ways in C. elegans (Agostinho et al. 2013), the SMC-5/6
complex is likely to be involved in HJ resolution. Hence, the
C. elegans SMC-5/6 complex may be playing similar JM
antagonistic roles observed in budding yeast by hindering
JM formation early and assisting JM resolution. However,
C. elegans chromosomes are holocentric, and subsequent
roles of SMC-5/6 in chromosome segregation may differ from
other model organisms.

Preventing HR in heterochromatin

In budding yeast, Smc5/6 also binds to the rDNA, which
remains unsynapsed during meiotic prophase I (Farmer et al.
2011; Lilienthal et al. 2013; Xaver et al. 2013). Smc5/6 has
been shown to have an anti-recombinogenic role at this repet-
itive DNA locus during vegetative growth (Torres-Rosell et al.
2007). Additionally, budding yeast Smc6 is strongly enriched
in the pericentromeric regions during the mitotic G2 phase
(Lindroos et al. 2006). Smc5/6 is essential for the timely sep-
aration of chromatids and the prevention of branched and
entangled chromosome structures and subsequent mitotic ar-
rest (Lindroos et al. 2006). It is conceivable that Smc5/6 plays
similar roles at the rDNA locus and pericentromeric regions
during meiosis.

In mouse spermatocytes, SMC5, SMC6, and NSMCE1
localize at pericentromeric heterochromatin (Gomez et al.
2013; Verver et al. 2013). As with rDNA, these regions are
at high risk of aberrant recombination events when HR is

enabled, leading to genomic instability (Goodarzi and Jeggo
2012). An additional challenge specific to meiotic cells is the
endogenous induction of DSBs that are repaired by HR.
Pericentromeric heterochromatin consists of densely packed
repetitive sequences and is therefore vulnerable to aberrant
events such as the formation of intra-chromosomal recombi-
nation structures. As a result, meiotic recombination is gener-
ally suppressed around the centromeres (Lynn et al. 2004), via
a mechanism yet to be elucidated. The role of Smc6 in
preventing HR in these high-risk regions has already been
established for yeast and Drosophila mitotic cells (Chiolo
et al. 2011; Torres-Rosell et al. 2007). In line with these stud-
ies, pericentromeric heterochromatin of mouse prophase sper-
matocytes is simultaneously marked with SMC5, SMC6, and
NSMCE1 (Gomez et al. 2013; Verver et al. 2013) and de-
prived of recombination sites marked by RAD51 (Verver
et al. 2013). These findings suggest that also in mammalian
germ cells, SMC5/6 might be responsible for preventing ab-
errant HR events in repetitive sequences. Interestingly, even
though prevention of HR in heterochromatin might be a con-
served function of SMC5/6, a similar localization was not
found in human prophase spermatocytes (Verver et al. 2014).

Centromere cohesion

During budding yeast meiosis, Smc5/6 regulates sister chro-
matid cohesion at centromeres and is required for the timely
removal of cohesin from chromosomal arms (Copsey et al.
2013).

SMC6 is proximal to the centromeres during both meiotic
metaphases in mouse (Gomez et al. 2013; Verver et al. 2013)
and human (Verver et al. 2014). As well as during prophase I
stages, SMC6 co-localizes at the centromeres with Topo IIα
during metaphase I and II (Gomez et al. 2013). More specif-
ically, in metaphase I and anaphase I, SMC6 was present as
two foci proximal to the sister kinetochores, and only one
signal near the kinetochores at metaphase II and anaphase II
(Gomez et al. 2013). Additionally, in metaphase II spermato-
cytes, in which the centromeres are subjected to tension from
opposite poles, SMC6 appeared as a strand connecting the
sister kinetochores (Gomez et al. 2013). The finding that
SMC6 co-localizes with Topo IIα, together with the fact that
the strand of SMC6 joining sister kinetochores persists even
after redistribution of Aurora-B, suggests that the SMC5/6
complex may regulate sister chromatid centromere cohesion
and dissolution of DNA catenates that form after DNA repli-
cation (Gomez et al. 2013). This role for SMC5/6 was further
appointed when Topo IIα was inhibited by etoposide, induc-
ing lagging chromosomes during the second meiotic division.
Both SMC6 and Topo IIα co-localized at stretched strands
connecting these lagging chromatids at the site of the kineto-
chores (Gomez et al. 2013). Complementary data was ac-
quired using budding yeast, where localization of Smc5

Chromosoma (2016) 125:15–27 21



depends on meiotic DNA replication, and in the absence of
TopoII, Smc5 localization is aberrant (Copsey et al. 2013).

SC assembly/stability, homologous chromosome synapsis

Both in mouse and human spermatocytes, SMC5 and SMC6
were found to be located at the SC (Gomez et al. 2013; Verver
et al. 2014). Co-localization of mouse SMC6 with the SC
central region proteins SYCP1 and TEX12 showed that
SMC6 is restricted to synapsed chromosomes, leaving the
un- or desynapsed axes including X and Y, unmarked
(Gomez et al. 2013). Mammalian synapsis is characterized
by the presence of a central region that, besides SYCP1
(equivalent to Zip1 in budding yeast), also contains the central
element proteins SYCE1-3 and TEX12 (Bolcun-Filas et al.
2007, 2009; Hamer et al. 2006, 2008; Schramm et al. 2011).
However, although dependent on SYCP1, loading of SMC6
to the mouse SC occurs independent of these central element
proteins (Gomez et al. 2013). Additionally, mouse SMC5/6
localization is not dependent on meiosis-specific cohesin sub-
units REC8 and SMC1β (Gomez et al. 2013). The longitudi-
nal localization pattern along the mammalian synapsed SC
axes could suggest that localization of SMC5/6 is dictated
by chromosome structure, as has been suggested in mitotic
cells (Jeppsson et al. 2014b), or that the complex either facil-
itates SC assembly, chromosome synapsis, or recruitment of
other SC-associated proteins.

The XY body and unsynapsed chromosomes in pachytene
spermatocytes

In males, due to a lack of homology, the X and Y chromo-
somes remain largely unsynapsed during the meiotic prophase
I. During meiotic prophase, unsynapsed chromosomal regions
are transcriptionally silenced by a process called meiotic si-
lencing of unsynapsed chromosomes (MSUC) (Ichijima et al.
2012). In the case of the X and Y chromosome, this silencing
is called meiotic sex chromosome inactivation (MSCI), and is
achieved by the formation of a so-called XY body (or sex
body), marked by the presence of several DNA damage re-
sponse proteins such as BRCA1, γ-H2AX, and ATR (Ichijima
et al. 2012). In male meiotic cells with extensive autosomal
asynapsis, MSUC competes with MSCI for these proteins.
The sex chromosomes will then be inadequately silenced,
which will result in a pachytene arrest (Burgoyne et al.
2009). In mouse spermatocytes, SMC5, SMC6, and NSMC
E1 were found to cover the XY body (Gomez et al. 2013).
Because the XY staining resembles that of γ-H2AX, it is
proposed that the SMC5/6 complex might be facilitating
MSCI at this site.

In human spermatocytes, SMC6 is present on the
unsynapsed XY chromosomes in a more foci-like pattern
(Verver et al. 2014), suggesting a function in DSB repair.

Interestingly, it has been recently found that in the absence
of synapsis, including the unsynapsed regions of the sex chro-
mosomes, SPO11 will continue to make DSBs (Kauppi et al.
2013). In this light, the presence of SMC5/6 on the
unsynapsed sex chromosomes might be required to repair the-
se continuously induced DSBs. In addition to this observation,
unsynapsed autosomes display both RAD51 and SMC6 foci
(Verver et al. 2014). Hence, it seems likely that human SMC5/
6 plays a role in the repair of the continuously induced DSBs
on unsynapsed meiotic chromosomes.

Discussion/concluding remarks

In recent years, assessment of Smc5/6 localization and analy-
sis of Smc5/6 mutant phenotypes during meiosis has resulted
in an abundance of data implying a number of meiotic func-
tions (Table 1). In all models, and in line with its described
functions during mitosis, Smc5/6 is involved in HR-mediated
repair and chromosome segregation, as depicted in Fig. 3.
However, despite this common denominator, the meiotic func-
tions of Smc5/6 seem astonishingly diverse.

Several studies in mammalian models have shown varying
results when using antibodies against different epitopes of
SMC6 simultaneously (Gomez et al. 2013; Verver et al.
2013, 2014). Since the technical variation within experiments
was negligible, differences in localization pattern are most
likely a reflection of varying conformations of the SMC6 pro-
tein or SMC5/6 complex as a whole, resulting in differing
accessibility of these epitopes. Indeed, a study using budding
yeast demonstrates that the Smc5/6 complex is physically
remodeled in an ATP-dependent manner (Bermudez-Lopez
et al. 2015). Even though future studies might unravel the role
of conformation herein, another possibility is that Smc6 and/
or Smc5 can act independently from the Smc5/6 complex,
thereby showing differential localization patterns. When bud-
ding yeast proteins were purified separately, Smc5 and Smc6
were found to have some binding activity to ssDNA, indepen-
dently of the presence of the other subunits (Roy and
D’Amours 2011; Roy et al. 2011). However, even though
some studies support the complex-independent function of
Smc5 and Smc6 (Laflamme et al. 2014; Roy et al. 2011;
Vignard et al. 2011), most studies show that hypomorphic
alleles and RNAi knockdown of Smc5 and Smc6 yield com-
plementary phenotypes (e.g., (Gallego-Paez et al. 2014;
Torres-Rosell et al. 2005b)). Moreover, fractionation experi-
ments indicate that the majority of Smc5/6 components are in
complex, and only a small fraction is present as isolated
monomers (Torres-Rosell and Losada 2011).

The diversity of mitotic and meiotic functions of Smc5/6
illustrates the versatility of this protein complex. Yet, the re-
gions where Smc5/6 has been found to act are not random and
its roles on rDNA, telomeres, DSBs, replication sites, and
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collapsed replication forks all support the strong preference of
Smc5 and Smc6 to capture ssDNA (Roy and D’Amours 2011;
Roy et al. 2011). The consequences of Smc5/6 binding to
DNA seem to vary between the specific processes it is re-
quired for. During meiosis, the Smc5/6 complex can either

link homologous chromosomes or may recruit other proteins
to its site of action. Either way, both the fission and budding
yeast Smc5/6 complex have been found to be crucial to re-
solve meiotic recombination intermediates (Copsey et al.
2013; Lilienthal et al. 2013; Xaver et al. 2013). Despite its

A

B

1. Synaptonemal Complex 
assembly / Synapsis

2. Heterochromatin 
maintenance

3. XY body silencing

4. DNA repair unsynapsed 
chromosomes

5. Resolving meiotic 
recombination 
intermediates

6. Centromere cohesion

IH

IS

Meiosis I

With Smc5/6

Resolution of joint molecules 
Accurate chromosome segregation

Without Smc5/6

Accumulation and inability to 
resolve joint molecules including 
Inter-homolog (IH), Inter-sister (IS) 
and multi-chromatid joint molecules

Failure to segregate chromosomes

1

2

3

4

5

6

Fig. 3 Proposed functions of
Smc5/6 in meiosis. a In budding
and fission yeast, Smc5/6 is
required for the resolution of
meiotically induced joint
molecules and correct segregation
of homologous chromosomes.
Without functional Smc5/6
recombination intermediates
cannot be efficiently resolved,
leading to the accumulation of
inter-homolog, inter-sister, and
multi-chromatid joint molecules
and failure to segregate
chromosomes properly. Black
spot=centromere. b During
mouse and human meiosis,
SMC5/6 functions in a variety of
processes. It is proposed to be
involved in synaptonemal
complex formation and/or
stability, heterochromatin
maintenance, and XY body
silencing. Moreover, it may be
required for repair of DSBs due to
lack of synapsis and resolving
meiotic recombination
intermediates. Finally, SMC5/6 is
involved in centromere cohesion
during M-phase. Purple=SMC5/
6 complex localization. Gray
filaments=lateral elements of the
synaptonemal complex. Gray
spot=centromere. Note: depicted
chromosomes represent
(telocentric) mouse chromosomes
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seemingly diverse roles during different processes, resolving
complex chromosome structures, which would otherwise
cause cell cycle arrest or prevent chromosomes from being
segregated, appears a major meiotic function of Smc5/6.
However, how Smc5/6 is molecularly regulated during differ-
ent meiotic processes, such as pre-meiotic S-phase, meiotic
recombination, and the meiotic M-phases, still needs further
research. Creation and assessment of mammalian mutant
models, together with the development of a comprehensive
meiosis interactome for the SMC5/6 complex will further
our comprehension of SMC5/6 functions. More knowledge
on the meiotic functions of Smc5/6 may give insight in one
of the biggest questions in biology: how are germ cells capa-
ble to passage their genome through essentially endless gen-
erations while maintaining sufficient genomic integrity.
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