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Abstract Brain tumors are the most common solid tumors in
children. Pediatric high-grade glioma (HGG) accounts for ~8—
12 % of these brain tumors and is a devastating disease as 70—
90 % of patients die within 2 years of diagnosis. The failure to
advance therapy for these children over the last 30 years is
largely due to limited knowledge of the molecular basis for
these tumors and a lack of disease models. Recently, sequenc-
ing of tumor cells revealed that histone H3 is frequently mu-
tated in pediatric HGG, with up to 78 % of diffuse intrinsic
pontine gliomas (DIPGs) carrying K27M and 36 % of non-
brainstem gliomas carrying either K27M or G34R/V muta-
tions. Although mutations in many chromatin modifiers have
been identified in cancer, this was the first demonstration that
histone mutations may be drivers of disease. Subsequent stud-
ies have identified high-frequency mutation of histone H3 to
K36M in chondroblastomas and to G34W/L in giant cell tu-
mors of bone, which are diseases of adolescents and young
adults. Interestingly, the G34 mutations, the K36M mutations,
and the majority of K27M mutations occur in genes encoding
the replacement histone H3.3. Here, we review the peculiar
characteristics of histone H3.3 and use this information as a
backdrop to highlight current thinking about how the identi-
fied mutations may contribute to disease development.

Introduction

Chromatin is made up of nucleosomes comprising histone
octamers with a stable tetrameric core of histones H3 and

Satish Kallappagoudar, Rajesh K. Yadav, and Brandon R. Lowe are joint
authors.

S. Kallappagoudar * R. K. Yadav * B. R. Lowe - J. F. Partridge (<)
Department of Pathology, St. Jude Children’s Research Hospital, 262
Danny Thomas Place, Memphis, TN 38105, USA

e-mail: Janet.partridge@stjude.org

H4, flanked by two more labile dimers of histone, H2A and
H2B. Each histone octamer is wrapped by 147 bp DNA,
which facilitates the compaction of genomic DNA and regu-
lates access to regulatory factors (Workman and Kingston
1998). Chromatin is critical for the regulation of genome sta-
bility and for transcriptional control and its importance in dis-
ease has been highlighted by the frequent identification of
mutations in chromatin-modifying enzymes in cancer ge-
nomes (Plass et al. 2013; Huether et al. 2014). Intriguingly,
sequencing of pediatric high-grade gliomas identified high-
frequency mutations in a core histone subunit, H3
(Schwartzentruber et al. 2012; Wu et al. 2012), and subse-
quent studies have identified histone H3 to be mutated in
virtually all cases of chondroblastoma and giant cell tumors
of bone (Behjati et al. 2013), diseases of adolescents and
young adults. The majority of the mutations have been iden-
tified in genes encoding histone H3.3, which serves as a re-
placement histone as its deposition is not coupled to DNA
synthesis. Here, we review the specific characteristics of his-
tone H3.3, the spectrum of mutations identified in tumors, and
recent work directed at understanding how mutation of this
protein contributes to disease.

Histone H3.3—a variant of a core nucleosomal protein

Several flavors of histone H3 are expressed in higher eukary-
otes—including histone H3.1, H3.2, H3.3, and a centromere-
specific H3 variant protein, CENP-A. Histones H3.1 and 3.2
are synthesized during S phase (Osley 1991), are incorporated
de novo into newly replicated chromatin as well as during
DNA repair, and are thus termed “DNA synthesis-coupled.”
In contrast, the “replacement histone” H3.3 is expressed
throughout the cell cycle, as well as in quiescent cells (Wu
et al. 1982), and is largely deposited in a DNA synthesis-
independent fashion by a distinct set of chaperones, proteins
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which associate with soluble histones and control the assem-
bly (or disassembly) of nucleosomes from histones and DNA.
Histone H3.1 differs from H3.2 by a single amino acid (Ser”®
in H3.2), and H3.3 is distinguished by an additional four ami-
no acid substitutions (Ser’', Ala®’, Ile®®, Gly”®) (Franklin and
Zweidler 1977) (Fig. 1a). These clustered amino acids that
differ between H3.1 and H3.3 have been linked to the differ-
ential binding of chaperones (Tagami et al. 2004; Drane et al.
2010; Lewis et al. 2010; Wong et al. 2010), with specifically
G90 of H3.3 promoting binding to DAXX (death-domain
associated protein) (Elsasser et al. 2012).

The DNA synthesis-coupled histones are encoded by un-
usual transcripts that lack introns and polyadenylation signals:
histone H3.2 is encoded by three genes (HIST2H3A4,
HIST2H3C, and HIST2H3D), whereas H3.1 is encoded by
ten genes clustered on chromosome 6. The DNA synthesis-
independent H3.3 is expressed from only two genes, H3F3A4
on chromosome 1 and H3F3B on chromosome 17. These
genes produce identical proteins even though they have dis-
tinct regulatory sequences and yield distinct polyadenylated
transcripts with unusually long 5’ and 3'UTRs (Wells and
Kedes 1985; Wells et al. 1987).

The relative levels of H3.1 and H3.3 have been measured
in several cell types and range from ~20-50 % H3.3 and ~20—
70 % H3.1 in actively dividing cells (Hake et al. 2006). How-
ever, given the cell cycle dependence of synthesis of H3.1 and
H3.2, the relative abundance of H3 variants differs substan-
tially between tissues and during development (Gabrielli et al.
1984; Frank et al. 2003). Accordingly, post mitotic cells, such

as cerebral cortical neurons, accumulate high levels of nucle-
osomal H3.3 (87 % of nucleosomal H3 content) as DNA
synthesis-independent H3.3 deposition is ongoing while
replication-coupled 3.1 and 3.2 deposition stops during gesta-
tion (Pina and Suau 1987).

The DNA synthesis-coupled and DNA synthesis-
independent H3s show distinct localization patterns across
the genome. H3.1 is incorporated universally in the S phase
by CAF1 (chromatin assembly factor) (Gaillard et al. 1996;
Tagami et al. 2004; Ray-Gallet et al. 2011) which is recruited
to newly replicated DNA by PCNA (proliferating cell nuclear
antigen) (Shibahara and Stillman 1999). DNA synthesis-
independent H3.3 deposition occurs on DNA sequences that
are transiently nucleosome-free, for example, during tran-
scription and DNA repair, and to replace nucleosomes evicted
by chromatin remodelers (Filipescu et al. 2013). H3.3 is also
enriched in heterochromatic subtelomeric and pericentromeric
regions. This seemingly contradictory pattern of H3.3 locali-
zation is due to the different chaperones that bind H3.3
(Fig. 1b). Deposition of H3.3 into heterochromatic loci is
targeted by DAXX (Lewis et al. 2010; Drane et al. 2010) in
complex with the SNF2-like remodeler ATRX («-thalassae-
mia/mental retardation syndrome X-linked) whereas the
HIRA chaperone inserts H3.3 into genic loci (Goldberg
et al. 2010). H3.3 accrues at actively transcribed regions
(Ahmad and Henikoff 2002; Schwartz and Ahmad 2005;
Chow et al. 2005; Jin and Felsenfeld 2006) and can serve as
a marker of regions of high transcriptional activity because it
is preferentially deposited (over H3.1 and H3.2) in transcribed

Fig. 1 Histone H3.3 shows Q 43,3 MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTVALREIRRYQKSTE 60
amino acid differences with H3.1 H3.2 MARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKPHRYRPGTVALREIRRYQKSTE 60
that promote binding to distinct H3.1 MARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKPHRYRPGTVALREIRRYQKSTE 60
Chaperones. a sequence hhkkhkhkhkkhkkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkkhkkhkkhkkkhkkk :****************************
alignment of human H3.3, H3.2, H3.3 LLIRKLPFQRLVREIAQDFKTDLRFQSAAIGALQEASEAYLVGLFEDTNLCAIHAKRVTI 120
and H3.1, with sequence H3.2 LLIRKLPFQRLVREIAQDFKTDLRFQSSAVMALQEASEAYLVGLFEDTNLCAIHAKRVTI 120
differences in H3.3 marked in red. H3.1 LLIRKLPFQRLVREIAQDFKTDLRFQSSAVMALQEACEAYLVGLFEDTNLCAIHAKRVTI 120
bCarto()nofchromosome ***************************:*: *****'***********************
depicting regions of H3.3 H3.3 MPKDIQLARRIRGERA 136

incorporation into chromatin and H3.2 MPKDIQLARRIRGERA 135

the chaperones responsible

H3.1 MPKDIQLARRIRGERA 136

Khkkkhkhkhkkkhkkk*kk

@ Springer

I:I Heterochomatin
D Euchromatin

Promoters,
D Regulatory Elements,
Nucleosome Devoid Regions

DAXX/ATRX



Chromosoma (2015) 124:177-189

179

regions, and its histone tail is highly enriched for covalent
modifications or “marks” associated with transcriptionally ac-
tive chromatin, such as tri-methylation of lysine 4 (K4me3)
(McKittrick et al. 2004; Hake et al. 2006; Loyola et al. 2006).

There is also conjecture over whether H3.3 is not just a
marker for active regions, but whether it contributes to the
transcriptional activity of loci enriched for this histone (Huang
and Zhu 2014). This is in part due to its enrichment at regu-
latory regions such as promoters and enhancers, where it is
thought to contribute to chromatin plasticity, or the openness
of chromatin with enrichment for modifications associated
with active chromatin and evidence of enhanced rates of nu-
cleosome turnover and dynamic association of chromatin-
associated proteins in these domains. Importantly, H3.3 is in-
corporated into Polycomb response elements (PREs) in
Drosophila (Mito et al. 2007), regions of the genome that play
critical roles in controlling gene expression during de-
velopment, and is similarly enriched at promoter regions
of developmentally regulated genes in embryonic stem
cells (ESCs) by HIRA (Goldberg et al. 2010; Kraushaar
et al. 2013; Huang et al. 2013). Cells depleted for H3.3
show decreased levels of nucleosome turnover at sites
of H3.3 incorporation (Kraushaar et al. 2013; Huang
et al. 2013; Banaszynski et al. 2013), correlating with
defective expression of developmentally regulated genes
on ESC differentiation (Banaszynski et al. 2013).

H3.3 plays important roles in many developmental con-
texts (reviewed in Filipescu et al. 2013). H3.3 plays critical
roles in stem cells, during fertilization and reproduction and
during reprogramming of genomes following fertilization or
somatic cell nuclear transfer (van der Heijden et al. 2005;
Loppin et al. 2005; Torres-Padilla et al. 2006; Hodl and Basler
2009; Sakai et al. 2009; Santenard et al. 2010; Banaszynski
etal. 2013; Wen et al. 2014a; Wen et al. 2014b). H3.3 is also
preferentially cleaved at residue 21 during senescence to lock
in the senescent cell fate, presumably by removal of “active”
K4me3 marks (Duarte et al. 2014).

Cells in which H3.3 has been knocked down are also sus-
ceptible to DNA damage. This can be explained by the re-
quirement for H3.3 in a “gap-filling” mechanism to ensure
nucleosome replacement in transcriptionally active areas
(Ray-Gallet et al. 2011). H3.3 is incorporated at sites of UV
damage, it protects against sensitivity to UV light and is re-
quired to maintain replication fork progression after UV dam-
age (Frey et al. 2014). H3.3 may also be important for the
restart of transcription following DNA damage since knock-
down of the H3.3 chaperone HIRA resulted in an impaired
recovery of RNA synthesis after UVC damage (Adam et al.
2013). Thus, H3.3 plays many diverse roles in chromatin reg-
ulation and is the subject of active study. Interest in H3.3 has
increased even more with the surprising finding that the core
histone H3 protein, and in particular, H3.3, is affected by
specific mutations in several tumors.

Mutational spectrum of histone mutant tumors

Histone H3 has recently been found to be mutated at high
frequency in several specific cancer types including pediatric
high-grade glioblastoma (HGG), chondroblastoma, and giant
cell tumors of the bone (Fig. 2). The identified missense mu-
tations affect only three specific amino acids in the N-terminal
tail of histone H3, a region of extensive posttranslational mod-
ification, and were found predominantly in the genes
encoding H3.3, H3F34, and H3F3B, and to a lesser extent
in H3.1 genes, HISTIH3B and HISTIH3C. Such specificity
and frequency of mutation allow these mutations to be defined
as “Driver mutations” for tumorigenesis (Vogelstein et al.
2013). The specific mutations of H3.1 and H3.3 were found
to vary by tumor type, patient age, and location, with each
tumor containing a single mutant H3 allele (Khuong-Quang
et al. 2012; Sturm et al. 2012; Schwartzentruber et al. 2012;
Wu et al. 2012; Gielen et al. 2013).

Sequencing of pediatric HGG tumors identified a recurring
somatic mutation of H3 lysine 27 to methionine (K27M) in
~30 % pediatric HGG tumors (Wu et al. 2012;
Schwartzentruber et al. 2012), mainly in tumors of the midline
such as the thalamus, basal ganglia, and spinal cord (Sturm
et al. 2012). Evidence for the mutation being somatic derives
from sequencing of matched normal DNA from patients car-
rying histone mutant tumors, which in every case (39 patients)
demonstrated the somatic nature of the mutation (Wu et al.
2012). The K27M mutation is most often found in H3F34
(>70 %) with a few occurrences in HISTIH3B (~20 %) and
HISTIH3C mainly in younger patients with a median age of
1011 years (Wu et al. 2012; Schwartzentruber et al. 2012;
Sturm et al. 2012; Khuong-Quang et al. 2012; Wu et al. 2014;
Fontebasso et al. 2014; Buczkowicz et al. 2014). Analysis of
the DNA sequences for H3F3A4 and H3F3B illuminates why
the K27M mutation is restricted to H3F34, as K27 is coded by
AAG in H3F34 and by AAA in H3F3B, requiring a single
mutation in H3F3A4 to generate ATG to code for methionine
(Fig. 3). Why the mutation has only been found in HIST/H3B
and C is less clear since six of the H3.1 genes have AAG
coding for K27. This selection may be explained by differ-
ences in expression patterns of the different H3.1 encoding
genes. Data from several groups indicate that diffuse intrinsic
pontine glioma (DIPG), a tumor of the pons, has an even
higher incidence of K27M, with >70 % of tumors sequenced
containing the mutation as compared to less than 25 % of non-
brainstem gliomas (Khuong-Quang et al. 2012;
Schwartzentruber et al. 2012; Sturm et al. 2012; Wu et al.
2012; Gielen et al. 2013). DIPG tumors are particularly dead-
ly, with a median age of onset of 8 years and survival rates of
~10 % at 2 years post-diagnosis (Khuong-Quang et al. 2012).
Whether this poor outcome is linked to the preponderance of
the K27M mutation or to the inability to surgically resect these
tumors can now be assessed using immunohistochemical
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Giant Cell Tumors of Bone

Chondroblastoma H3F3A G34W/L

H3F3B K36M
Fig.2 Specific histone H3 mutants arise in distinct regions of the brain or
in different skeletal tissues and show variable age of presentation. a The
amino acids that substitute glycine at amino acid 34 or lysine at amino
acids 27 and 36 of histone H3, their properties, and possible
posttranslational modifications. b Cartoon depicting the different
anatomical location of brain tumors bearing K27M mutant H3.1 or
H3.3 and G34R or G34V mutant H3.3. K27M mutants are
predominantly found in midline structures (including the thalamus,

staining of all HGG tissue samples with newly developed
diagnostic anti-H3K27M antibodies (Venneti et al. 2014;
Bechet et al. 2014).
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pons, and brainstem), whereas the G34 mutant tumors are most
commonly located in the cerebral hemispheres (Sturm et al. 2012;
Bjerke et al. 2013). ¢ Cartoon illustrating the distribution of different
histone H3 mutants in chondroblastomas and giant cell tumors of bone
(Behjati et al. 2013). d Graphical representation of span of age of
presentation for histone H3 mutant tumors (Schwartzentruber et al.
2012; Sturm et al. 2012; Behyjati et al. 2013)

Around 30 % of non-brainstem pediatric glioblastoma tu-
mors bear histone H3 mutations, including thalamic K27M
mutations. In cortical HGGs, ~15 % bear a distinct mutation
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K27 K36 G34
H3.3 H3F3A | AAG AAG GGG

H3F3B | AAA AAG GGG

H3.1 AAG (6/10) | AAG (8/10) GGC (8/10)
AAA (4/10) | AAA (2/10) GCT (2/10)

Mutation Met ATG ATG GTG
Val GTC
GTT

CGG
CGA
CGT
CGC

Trp TGG

TTG
TTA
CTT
CTC
CTA
CTG

Arg

Leu

Fig.3 Codon usage in histone H3.3 and H3.1 genes at the sites of histone
mutation. Orange-shaded boxes mark the genes in which mutations are
prevalent for the different amino acid substitutions

in histone H3.3, of glycine 34 to arginine (G34R) or, much
less frequently, to valine (G34V). G34R/V containing tumors
tend to be located in the cerebral hemisphere of the brain with
nearly all G34R/V mutations found in H3F34. G34 is coded
by identical sequences in H3F34 and H3F3B, and R and V
substitutions can be achieved with single point mutations.
Similarly, G34R or V substitutions could be achieved by a
single point mutation of any of the H3.1 genes, so other factors
must determine the prevalence of H3F3A4 mutations in the
tumors. G34 mutation is associated with global DNA hypo-
methylation, which is particularly pronounced in telomeric
regions (Sturm et al. 2012). No G34R/V mutations were found
in DIPG tumors, and the median age of G34 mutant tumor
occurrence was older than for K27M mutant tumors
(Schwartzentruber et al. 2012; Wu et al. 2012; Gielen et al.
2013).

Additional sequence analysis of DIPG tumors has
highlighted the complexity of the genomic landscape, with
identification of additional driver mutations that overlap or
are excluded from tumors bearing mutant histones. In nearly
30 % of glioblastoma tumors, the H3F34 K27M mutation was
observed in concert with mutations in ATRX or less common-
ly in DAXX (Khuong-Quang et al. 2012; Schwartzentruber
et al. 2012), proteins involved in the deposition of H3.3 at
regions of heterochromatin. Other studies show only a minor
overlap between ATRX mutation and K27M (Fontebasso
et al. 2014; Wu et al. 2014) or no mutations in ATRX in
K27M tumors (Taylor et al. 2014a). Also, K27M tumors often
contain mutations in the tumor suppressor protein p53, with
nearly 60 % harboring the mutation (Khuong-Quang et al.
2012; Schwartzentruber et al. 2012). G34R H3F3A showed
a significant overlap with mutations in ATRX/DAXX and p53
with nearly 100 % of the tumors containing both mutations
(Schwartzentruber et al. 2012). Other somatic mutations that

appear linked to H3K27M mutation are activating mutations
in ACVRI (activin receptor type 1) that enhance BMP (bone
morphogenetic protein) signaling (Fontebasso et al. 2014; Wu
et al. 2014; Buczkowicz et al. 2014; Taylor et al. 2014a).
Interestingly, mutation of ACVRI (which occurs in ~24 %
DIPGs) was linked to the presence of HIST/H3B mutation
(H3.1 K27M) (Buczkowicz et al. 2014; Wu et al. 2014,
Fontebasso et al. 2014; Taylor et al. 2014a) and was associated
with a younger age of onset of disease (Wu et al. 2014). These
findings may point to a developmentally distinct cell of origin
for ACVRI-associated tumors (Taylor et al. 2014b). Interest-
ingly, while ACVRI mutations suffice to increase proliferation
of immortalized normal human astrocytes (Buczkowicz et al.
2014), mutations in the identical amino acids are found in the
germline of individuals with the autosomal dominant congen-
ital childhood disorder FOP (fibrodysplasia ossificans
progressiva), who have no evidence of cancer predisposition
(Jones and Baker 2014; Taylor et al. 2014b). Thus, ACVRI
mutation likely provides a selective advantage in the
presence of other critical mutations, but cannot initiate
tumorigenesis, as supported by the failure of p53 null
mouse astrocytes that express ACVRI1 mutants to initi-
ate tumorigenesis when implanted in the brain (Wu
et al. 2014). IDHI mutations which are common in
glioblastoma of young adults showed no overlap with
H3F3A mutations (Sturm et al. 2012). Inactivating mu-
tations were also identified in the histone H3 K36
trimethyltransferase, SETD2, in ~15 % of pediatric
HGG. SETD2 mutations were initially thought to be
restricted to cerebral hemisphere tumors and to show
no overlap with H3F3A4 mutations (Fontebasso et al.
2013), but SETD2 has been found to be mutated in a
DIPG bearing a H3.1 K27M mutation (Wu et al. 2014).

Mutations in H3.3 have also been found in several types of
bone tumors, with the greatest incidence in chrondroblastoma
and giant cell tumors of the bone (Behjati et al. 2013).
Chondroblastoma arises in children and in young adults in
the cartilage of the growth plates of the long bones and is most
typically benign. Sequencing of H3F34 and H3F3B in more
than 70 chrondroblastomas revealed nearly 95 % of the tu-
mors contained lysine 36 to methionine (K36M) substitutions,
which mutate the target site for SETD2 and other K36 meth-
yltransferases. Unlike the K27M mutation of glioblastoma,
nearly all of the K36M mutations were found in H3F3B
(~90 %) rather than in H3F3A4, which cannot be explained
by differences in codon usage between H3F34 and H3F3B.
Giant cell tumors of the bone also have a high frequency of
H3.3 mutations, with greater than 90 % of tumors sequenced
containing substitutions of G34 to either tryptophan (G34W)
or, in rare cases, leucine (G34L). These frequencies can be
explained by differences in gene sequence. A single base sub-
stitution suffices to mutate H3.3 G34 to W, whereas two or
three mutations would be required to convert H3.1 G34 to W,
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and two mutations are required in any of the genes to generate
a codon for leucine at position 34. In contrast to the relative
genetic complexity of the pediatric high-grade gliomas,
the genome of these skeletal tumors is relatively stable,
with cells being diploid and wild-type for p53 (Behjati
et al. 2013). This suggests that these H3.3 mutations
may not only be defined as oncogenic drivers because
of their high frequency of occurrence but may also be
important drivers for effecting tumorigenesis in these
tumors. Mutations of H3.3 were also observed at low frequen-
cy in osteosarcoma (2 % containing G34R in H3F3A4 or
H3F3B), conventional chondrosarcoma (1 % containing
K36M in H3F34), and clear cell chondrosarcoma (7 % con-
taining K36M in H3F3B) (Behjati et al. 2013). Interestingly,
although highly prevalent in pediatric glioblastoma, to date,
no K27M mutations have been observed in bone or cartilage
tumors, and the K36M mutant has not been found in
glioblastoma.

Fig. 4 K27M mutants a
dominantly block PRC2

methyltransferase activity on

H3K27, whereas G34R/V

me3 me3
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epigenetically regulate transcriptional states by modulating
the H3K27Me3 and H2AK119Ub1 histone marks. In
Drosophila, PcG proteins interact with PREs to establish cel-
lular memory modules and are involved in developmental
determination of body plan by repressing homeotic genes
(reviewed in (Di and Helin 2013; Grossniklaus and Paro
2014)). While PRE-like elements in mammals have been re-
ported (Sing et al. 2009; Woo et al. 2010; Cuddapah et al.
2012; Bengani et al. 2013; Woo et al. 2013), their nature and
functional relevance are subject to debate. H3K27 is an im-
portant target of PRC2 (Polycomb repressive complex 2)
complexes that contain EZH2 or EZH1 histone methy] trans-
ferases. Indeed in Drosophila, K27 has been demonstrated to
be a critical target for PRC2 since replacement of the histone
H3 cluster with an H3K27R transgene mimicked the pheno-
type of loss of PRC2 activity (Pengelly et al. 2013), even in
the context of a wild-type H3.3 genetic background.
Detection of high-frequency K27M mutations in pediatric
DIPG directed examination of the obvious link between
H3K27- and PRC2-mediated epigenetic modifications.
K27M mutation is predominantly found in H3.3, while
~20 % of K27M mutations are found in H3.1 (Wu et al.
2012; Saratsis et al. 2014). Most intriguingly, many studies
have shown a dominant effect of the K27M mutation, irre-
spective of whether found in H3.1 or H3.3, with a pronounced
reduction in total H3K27 Me2 and Me3 in cells expressing
one H3K27M mutant allele among 30 alleles encoding H3
isoforms (Lewis et al. 2013; Chan et al. 2013; Bender et al.
2013; Venneti et al. 2013). In vitro, a H3K27M peptide suf-
fices to block PRC2 activity (Lewis et al. 2013; Brown et al.
2014). The most likely explanation is that K27M “poisons”
PRC2, by stabilizing binding of the enzyme to K27M and thus
prevents deposition of methyl marks on other H3 proteins
(Lewis et al. 2013; Lewis and Allis 2013) (Fig. 4b). In support
of this view, K4M mutants in H3 were previously used to
mimic H3K4me2 and to stabilize binding of LSD2 to H3 for
crystallization studies (Zhang et al. 2013). The level of inhi-
bition of PRC2 activity by K27M is similar to a known chem-
ical EZH2 inhibitor, GSK343 (Bender et al. 2013). Immuno-
precipitation of K27M co-purified EZH2 (Chan et al. 2013)
and the use of a photoreactive K27M containing peptide to
identify binding partners cross-linked primarily the EZH2
subunit of the PRC2 complex (Lewis et al. 2013). Substitution
of K27 with methionine and to a lesser extent isoleucine
seems sufficient to block the SET catalytic domain of EZH2
by affecting substrate binding and turnover. A similar reduc-
tion in SET domain activity was seen for K9M and K36M, but
interestingly, not K4M mutants, where lysines are targeted by
distinct SET domain containing methyltransferases (Lewis
etal. 2013; Herz et al. 2014). An interesting question is wheth-
er the stabilized binding of EZH2 to K27M can occur on
soluble histone H3 prior to its incorporation into nucleosomes,
as suggested by in vitro binding studies to peptides (Brown

et al. 2014). If so, only EZH2 function would be blocked,
whereas if EZH2 is bound to mutant chromatin, the activity
of other nucleosome modifiers or chromatin remodelers may
also be affected.

Mis-regulation of PRC2 target genes and mutations pre-
dicted to increase or reduce the activity of PRC2 components
have been reported in many cancers (Hock 2012), but PRC2
component mutations per se have not been found in glioblas-
toma. Mutation of p53 in conjunction with expression of
H3K27M in nestin expressing progenitor cells of the neonatal
brainstem was not sufficient to induce glioma but did induce
ectopic cell clusters in the majority of mice that stained posi-
tive for Ki-67, which marks proliferating cells (Lewis et al.
2013). The apparent induction of proliferation by expression
of K27M appears to be very cell type and developmental
stage-specific as K27M did not induce proliferation in undif-
ferentiated human ES cells or in primary human astrocytes
(Funato et al. 2014) and indeed suppressed the proliferation
of immortalized normal human astrocytes (Buczkowicz et al.
2014), suggesting that there is no driver effect on tumorigen-
esis of the K27M mutation alone in this cell type. Sequencing
of pediatric glioblastomas has revealed the presence of several
other coexisting driver mutations in signaling pathway com-
ponents and in other chromatin regulators in distinct classes of
pediatric high-grade gliomas (reviewed in (Jones and Baker
2014)). Generation of mouse models will allow dissection of
the interplay and contributions of histone H3 mutants and
other mutations for gliomagenesis.

At sites of high transcriptional activity, incorporation of
H3.3 is increased relative to H3.1 and H3.2, so in cells ex-
pressing H3.3 K27M, this may contribute to enhanced enrich-
ment of the mutant protein in transcriptionally active domains.
This may lead to a more potent effect of mutant H3.3 com-
pared to mutant H3.1 in transcriptional dysregulation and con-
tribute to tumorigenesis. In spite of the pronounced reduction
in K27 methylation in gliomas expressing low levels of
K27M, ChIP-SEQ experiments have revealed that some ge-
nomic loci escape this effect and can accumulate high levels of
K27me2/3 marks (Chan et al. 2013; Bender et al. 2013). This
enrichment for K27 methylation is associated with gene si-
lencing, and genes in this group include cancer-associated
genes such as p/6INK4A and CDK6. Genes that were reduced
for H3K27me3 marks and were transcriptionally upregulated
include the glioma-promoting candidate neural restricted tran-
scription factor OLIG2 (Chan et al. 2013), which may pro-
mote collapse of p53 signaling (Mehta et al. 2011). Additional
modifications like reduction in DNA methylation on oncogen-
ic regions of the genome (Bender et al. 2013) may help stabi-
lize the tumor phenotype. How these islands of PRC2 activity
are maintained is clearly an interesting question and may be
linked to disparate modes of PRC2 recruitment to different
loci or to the use of alternate methyltransferases since to date
there is no direct demonstration that EZH1 activity is similarly
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blocked by K27M. Loss of H3K27me3 in K27M expressing
cells may also allow for an increase in H3K27Ac (Lewis et al.
2013). The presence of H3K27Ac distinguishes active en-
hancers (Calo and Wysocka 2013; Vermunt et al. 2014); thus,
an aberrant transcriptional program may be elicited through
turning on of normally silent enhancers in K27M expressing
cells, contributing to tumorigenesis.

Therapeutic attempts by targeting methylation pathways
have yielded encouraging results. GSKJ4, a pharmacological
JMID3 (a H3K27me3 demethylase) inhibitor, leads to resto-
ration of H3K27me3, leading to tumor cell lethality in vitro
and a significant improvement in the survival of mice that
carry tumors (Hashizume et al. 2014). A study by Brown
et al. calls for alternative approaches by targeting different
histone modification pathways to alter other posttranslational
modifications on histones such as H3S28 phosphorylation
which can minimize the dominant negative effect of
H3K27M (Brown et al. 2014). Hitherto, a suitable model to
study the disease was a limiting factor. Recently it was found
that co-expression of K27M in the presence of other “driver”
mutations (a constitutively active form of platelet-derived
growth factor A and loss of p53) in neural progenitor cells
derived from human embryonic stem cells promotes neoplas-
tic transformation and induction of low-grade DIPG (Funato
et al. 2014). Chemical screens on these induced DIPG cells
have identified the menin inhibitor MI2 as a potential drug
candidate (Funato et al. 2014). It is interesting to note that
menin is a member of the trithorax histone methyltransferase
complex and is involved in transcription regulation. There-
fore, independent studies across models seem to point toward
epigenetic pathways as potential therapeutic targets in treat-
ment of pediatric HGGs. However, the complexity of the ge-
nomic landscape of these tumors argues for the importance of
performing biopsies to allow for better classification of indi-
vidual tumors, and that targeting multiple driver mutations
may be necessary to achieve therapeutic benefit.

Disruption of the Set2/K36me3 axis

Lys 36 of histone H3 can undergo mono-, di-, and tri-
methylation as well as antagonistic acetylation at the same
residue. Posttranslational modification of H3K36 is associated
with active transcription, alternative splicing, dosage compen-
sation, DNA replication, and DNA damage repair (Wagner
and Carpenter 2012). In yeast, SET domain-containing 2
(Set2) writes all three methylation states at H3K36 whereas
in mammals, each state of methylation is laid down by distinct
enzymes suggesting extensive regulation of K36 methylation
and its importance throughout evolution (Morris et al. 2005;
Wagner and Carpenter 2012). Enzymes that modify K36 have
been associated with various cancers. For example, SETD2
(the only enzyme that performs K36me?2 to me3 modification)
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is mutated in renal carcinoma and breast cancer (Duns et al.
2010; Newbold and Mokbel 2010), and NSD2, which gener-
ates K36me2, has been shown to be a tumor suppressor (Kuo
et al. 2011). Recently, missense or truncating mutations in
SETD?2 have been reported in pediatric high-grade gliomas
of the cerebral hemispheres that do not harbor H3.3 mutations
(Fontebasso et al. 2013). It is presently unclear exactly how
SETD2 functions as a tumor suppressor, but loss of function
may result in an impaired chromatin template for processes
such as transcription and DNA repair.

Other tumors mimic loss of SETD2 function by mutation
of K36 of H3.3 (to K36M) or by introduction of a mutation in
a residue close to K36 (at G34) that may influence binding of
writer or reader proteins at K36 (Schwartzentruber et al. 2012;
Behjati et al. 2013; Lewis et al. 2013; Chan et al. 2013). Why
G34 is targeted, but not other neighboring residues of K36
remains a mystery. It is conceivable that the introduction of a
charged (R) or a bulky residue (W) in place of G34 might
impact the accessibility or activity of enzymes that target K36
or alter the conformation of the tail leading to changes in nu-
cleosomal packaging that affect the binding of histone readers
to H3K36me3. Accordingly, nucleosomes harboring either a
G34R or G34V mutant H3.3 exhibit reduced H3K36me2/
me3 levels on the same tail, but have no dominant effect on
total cellular H3K36me2/me3 levels (in contrast to the reduced
K27me3 in H3K27M mutants) (Bjerke et al. 2013; Lewis et al.
2013). It is intriguing that K36 to M and G34W/L mutations
have been identified in H3.3 in chondroblastoma and giant cell
tumors of bone (Behjati et al. 2013), raising the important ques-
tion of why the K36 methylation axis is targeted in cancers
arising in developmentally distinct tissues. Also, it is important
to note that the mutations impacting K36 methylation (K36M
and G34 mutants) are only in H3.3, with little rationale for this
selection based on codon usage. The selection for these muta-
tions in H3.3 may be explained by the enhanced deposition of
H3.3 over H3.1 in transcriptionally active domains and regula-
tory regions. Deposition of mutant H3.3 would profoundly im-
pact the transcriptional program since loss of K36 methylation
negatively impacts transcriptional elongation (Yoh et al. 2008;
Carvalho et al. 2013).

The most extensive analysis of the role of G34 mutants has
been performed in a cell line generated from a pediatric glio-
blastoma harboring a G34V mutation in H3F34. The G34V
mutation was linked to an altered transcriptional status of the
cells, with quite widespread changes in RNA polymerase 11
association and levels of K36 methylation when compared
with a glioma cell line wild-type for H3.3. One locus that
was particularly induced was MYCN, an oncogene implicated
in pediatric glioblastoma (Swartling et al. 2012). Transduction
of G34V mutant H3.3 into normal human astrocytes or into
transformed human fetal glial cells was sufficient to induce N-
MYC expression two- to threefold over cells transduced with
WT H3.3 (Bjerke et al. 2013). Such reprogramming of
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transcription of oncogenes may be critical for tumorigenesis in
G34 mutant tumors.

Although global levels of K36 methylation appear unaf-
fected, this mark is reduced on nucleosomes bearing
G34R/V mutations, and there clearly are widespread changes
in K36 methylation profile of the G34V glioma cell line ana-
lyzed (Bjerke et al. 2013) (which may be indirectly caused by
the altered transcriptional program of these cells). One possi-
bility is that an altered local H3K36 methylation state may
modulate the function of proteins that normally “read” the
mark. One interesting example is ZMYNDI11, a tumor sup-
pressor protein which specifically reads H3K36me3 on the
replacement histone H3.3 (Guo et al. 2014; Wen et al.
2014c). G34V/R mutations compromise ZMYNDI11 binding
to the H3.3K36me3 peptide (Wen et al. 2014c); however, a
role for ZMYND11 has not been shown to date in any of the
pediatric glioblastoma models or in chondroblastoma or giant
cell tumors of bone. It is likely that ZMYNDI11 will be
delocalized in chondroblastoma bearing H3.3 K36M muta-
tion, and its localization will be altered in other G34 mutant-
expressing tumors where K36 methylation is locally reduced.
It will be interesting to determine whether mutation of
ZMYNDI1 or SETD2 occurs in these tumor types and if
knockdown of these factors in the appropriate cell types reca-
pitulates features of the diseases.

A second possibility is based on the role of H3K36 in
genome stability. Pediatric HGG is characterized by abundant
somatic coding mutations, suggestive of defects in DNA dam-
age repair (Jones and Baker 2014). Indeed, microsatellite in-
stability (MSI) is very high in pediatric HGG (Viana-Pereira
etal. 2011). H3.3 histones have been shown to be deposited in
UVC-damaged regions to restore transcription (Adam et al.
2013), and chicken bursal lymphoma DT40 cells either de-
pleted for histone H3.3 or harboring H3.3 with G34R/V mu-
tation are sensitive to UV (Frey et al. 2014). This is not sur-
prising since H3K36 methylation and SETD2 are involved in
DNA damage repair (Carvalho et al. 2014; Jha and Strahl
2014; Pai et al. 2014; Pfister et al. 2014). H3K36me3 may
promote DNA repair pathways such as mismatch repair since
H3K36me3 recruits the mismatch recognition complex
hMutS«x onto chromatin through association of the hMSH6
PWWP (Pro-Trp-Trp-Pro) domain with H3K36me3 (Li et al.
2013). H3K36 modification (methylation or acetylation) may
also impact the choice of DNA repair pathway between non-
homologous end-joining (NHEJ) and homologous recombi-
nation (HR) (Pai et al. 2014), and H3K36 methylation status
has also been implicated in determining the timing of origin
activity during DNA replication (Pryde et al. 2009). It is in-
teresting that H3.3 is the predominant H3 used for chromatin
repair in many cell types (Adam et al. 2014), and that G34 and
K36 mutations are exclusively in H3.3. Further exploration of
DNA damage pathways in pediatric HGG, chondroblastoma,
and giant cell tumors of bone should prove fruitful.

Conclusions and future work

The identification of high-frequency histone mutations in pe-
diatric high-grade gliomas has given us an inroad to better
understand and to treat these deadly tumors. Of particular
interest is to determine how K27M mutation in a single copy
of histone H3 can have a dominant effect on global H3K27
methylation and, in particular, how some genes escape these
effects and accumulate K27me3. Is the mechanism of
H3K27M blockage of EZH2 activity restricted to EZH2 or
does it impact EZH1 also? What about for K36M mutants in
chondroblastoma—are SETD2 or other K36 methyltransfer-
ases similarly dominantly blocked for function? It is also crit-
ical to determine the mechanism by which G34 mutations
influence SETD2 function and how they and the K36M mu-
tation contribute to tumorigenesis.

Why are the mutations found in these tumors so predomi-
nant in H3.3? Is it linked to the nature of the replacement
histone that can be incorporated into actively transcribed and
regulatory regions in nonproliferating cells? Or is it through
H3.3 incorporation into repetitive heterochromatic regions
and linked to disruption of the genomic stability normally
contributed by these specialized domains? Intriguingly, pedi-
atric HGG mutant tumors are sometimes also mutated for
ATRX and or DAXX (Khuong-Quang et al. 2012;
Schwartzentruber et al. 2012), which incorporate H3.3 into
telomeres (Drane et al. 2010; Goldberg et al. 2010). Loss of
ATRX/DAXX has been linked to lengthening of telomeres by
a telomerase-independent process termed ALT for alternate
lengthening of telomeres (Heaphy et al. 2011). ALT is associ-
ated with extensive genome rearrangements and defects in
double-strand break repair (Lovejoy et al. 2012), reviewed in
(O’Sullivan and Almouzni 2014). Pediatric HGG bearing
ATRX or DAXX mutations and mutant for H3.3 are charac-
terized by ALT (Schwartzentruber et al. 2012). It will be in-
teresting to determine whether ALT is a feature of histone
mutant tumors that are wild-type for ATRX/DAXX, and
whether skeletal tumors bearing distinct H3 mutations simi-
larly display association with mutant ATRX/DAXX and ALT.

H3.3 is frequently associated with regions of transcription-
al activity. In vitro, there is little difference in stability of
nucleosomes bearing H3.3 in place of H3.1, but in vivo,
H3.3 is frequently incorporated along with another histone
variant, H2AZ, and these nucleosomes are inherently unstable
(Jin and Felsenfeld 2007; Chen et al. 2013), which may ac-
centuate transcriptional output of H3.3 domains. H3.3 has
been documented to be important for determining chromatin
plasticity of developmentally regulated genes in pluripotent
mouse embryonic stem cells (Banaszynski et al. 2013). The
histone mutant tumors are likely caused by a defect in differ-
entiation during development, and the presence of mutant
H3.3 or aberrantly modified H3 proteins (due to dominant
effects of K27M or local effects of G34 mutant H3.3) at key
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regulatory elements may be critical to alteration of transcrip-
tional programs leading to tumor initiation or progression.
H3.3 is incorporated into promoters of developmentally regu-
lated genes, and these loci bear both H3K27me3 and
H3K4me3 marks, marking these promoters as “bivalent
domains” poised for transcriptional induction (Bernstein
et al. 2006; Goldberg et al. 2010; Banaszynski et al. 2013).
H3.3 is required for establishment of the H3K27me3 mark in
these domains (Banaszynski et al. 2013), and it is easy to
envisage that a switch to K27Ac or possibly K36me3 may
tip the balance to activation of aberrant developmental
programs contributing to tumorigenesis.

Much progress has been made in our understanding of
these histone mutants since their discovery, but there remains
much to be done to develop therapies for pediatric HGG and
for the skeletal and bone tumors. We anticipate that the devel-
opment of additional model systems to interrogate the func-
tion of mutant H3 proteins together with insight from analysis
of tumors will fuel the collaborative synergy between experts
in cancer biology, chromatin biologists, and chemical biolo-
gists to develop effective therapies for patients and to improve
our understanding of the fascinating biology of histone H3.
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