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Abstract Estrogen receptor (ER) is a hormone-regulated
transcription factor that controls cell division and differen-
tiation in the ovary, breast, and uterus. The expression of ER
is a common feature of the majority of breast cancers, which
is used as a therapeutic target. Recent genetic studies have
shown that ER binding occurs in regions distant to the
promoters of estrogen target genes. These studies have also
demonstrated that ER binding is accompanied with the
binding of other transcription factors, which regulate the
function of ER and response to anti-estrogen therapies. In
this review, we explain how these factors influence the
interaction of ER to chromatin and their cooperation for
ER transcriptional activity. Moreover, we describe how the
expression of these factors dictates the response to anti-
estrogen therapies. Finally, we discuss how cytoplasmatic
signaling pathways may modulate the function of ER and its
cooperating transcription factors.

Introduction

The steroid hormone estrogen and the estrogen receptor
alpha (ER) are necessary for the physiology of the female
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reproductive system (Musgrove and Sutherland 2009).
These factors play an essential role in the breast, ovaries,
and uterus, where they control cell division and differ-
entiation, and the deregulation of ER transcriptional
activity may result in an increased proliferation and eventu-
ally in cancer onset.

Breast cancer is a heterogeneous disease with a different
subgroup of patients showing distinct molecular profiles (Perou
et al. 2000; Sorlie et al. 2001; Curtis et al. 2012; Gray and
Druker 2012). However, the most widespread type is the lumi-
nal group of tumors, and they share the common feature of
being positive for the expression of ER (Dowsett 2001; Prat
and Baselga 2008). ER is a transcription factor that mediates
the response to estrogens and to anticancer therapies, including
the selective estrogen receptor modulator (SERM) tamoxifen
(Katzenellenbogen and Frasor 2004; Hurtado et al. 2011). Our
knowledge of how ER elicits transcription has increased sig-
nificantly during the last years. The incorporation of new
technologies such as high-throughput sequencing has been
crucial for a deep understanding of ER function. Chromatin
immunoprecipitation (ChIP) combined with sequencing stud-
ies in breast cancer cell lines and human tissue shows a dis-
persed occupancy pattern of ER binding sites bearing
heterogeneous recognition motifs (Carroll et al. 2006; Lin et
al. 2007; Ross-Innes et al. 2012). Estrogen and tamoxifen can
affect the gene expression profile by inducing thousands of ER
binding events (Frasor et al. 2006; Hurtado et al. 2011).
Moreover, ER binds to chromatin with a multitude of transcrip-
tion factors (ER-cooperating factors) that influence transcrip-
tional activity of ER and ultimately affect the outcome of
anti-estrogen therapies (Carroll et al. 2005; Laganiere et al.
2005a, b; Cheng et al. 2006; Hurtado et al. 2011; Kong et al.
2011).

A second group of breast cancer patients is characterized
by an amplification of chromosome region 17q12-21, leading
to the overexpression of the epidermal growth factor receptor
2, ERBB2/HER2/neu (Wolff et al. 2007). Moreover, about half
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of HER2-positive patients are also positive for ER (Dowsett
2001), and the activation of other signaling pathways such as
the PI3K pathway is critical for ER/HER-2-positive tumor
development (Berns et al. 2007). Yet, the molecular mecha-
nism by which these signaling pathways modulate ER and
ER-cooperating factors is not completely understood. In this
review, we describe how cooperating factors influence the
transcriptional activity of ER, and we speculate how these
signaling pathways may modulate the function of ER and ER-
cooperating factors.

Pioneer transcription factors mediate ER binding

ER is a ligand-regulated transcription factor that recognizes a
consensus sequence of nucleotides, establishing the binding to
DNA, and thereby triggering the recruitment of the transcrip-
tion machinery. However, most of the genomic regions where
ER interacts are in a heterochromatic state (Hurtado et al.
2011), which hinders the interaction of ER with DNA.
Pioneer transcription factors interact with chromatin and ex-
pose DNA for subsequent transcription factor binding and
initiation of transcription (Liu et al. 1991; Monaghan et al.
1993). Genomic analyses of ER binding maps have shown
that its union is accompanied with the binding of various
transcription factors, which includes Forkhead box A
(FOXA) (Carroll et al. 2005; Laganiere et al. 2005a, b;
Eeckhoute et al. 2006, 2007), GATA (Krum et al. 2008;
Miranda-Carboni et al. 2011), AP2y (Tan et al. 2011), and
PBX1 (Magnani et al. 2011). In this section of the manuscript,
we describe their role as pioneer factors (Fig. 1).

FOXA proteins are the most studied pioneer transcription
factors that bind to chromatin and enable gene activity.
FOXAT1 (also known as HNF3 ) recruitment to chromatin
is mediated by the epigenetic signature consisting of mono-
and dimethylated histone H3 on lysine 4 (H3K4mel/me2)
(Lupien et al. 2008). The pioneering properties of FOXA1
reside on its protein structure, which contains a winged helix

R

H3K4m1,2

Fig. 1 Role of pioneering factors in regulation of ER chromatin
interactions. In the absence of pioneering factors, chromatin regions
are tightly packed and are not accessible for ER binding. FOXAI, in
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domain that can structurally mimic histone HI and HS, and
thus permits its stable interaction with histone H3 and H4 with
high affinity (Cirillo et al. 1998; Kaestner et al. 2000). The high
chromatin affinity of FOXAI is a unique feature that allows its
binding to the specific DNA sequences on the nucleosome
core and displaces the linker histones, leading to de-
compaction of chromatin and facilitation of the binding of
other transcription factors. In breast hormone-sensitive and
resistant cancer cell lines, almost all ER—chromatin interactions
and gene expression changes are dependent on the expression
of FOXA1 (Hurtado et al. 2011). Moreover, FOXA1 influen-
ces genome-wide chromatin accessibility of ER (Hurtado et al.
2011). Recently, Ross-Innes et al. have established that
hormone-resistant breast cancers still recruit ER to the chro-
matin, and this binding is associated with FOXA1 (Ross-Innes
et al. 2012). Interestingly, ER shows a distinct binding profile
in patients with poor clinical outcome to anti-estrogen thera-
pies. These newly identified regions are enriched toward the
genes that previously were described to predict clinical out-
come (Ross-Innes et al. 2012). More recently, Lupien et al.
have shown that SNPs associated with breast cancer risk are
located in a subset of the FOXA1 binding regions, which
influences the binding affinity for the pioneer factor FOXA1
(Cowper-Sal Lari et al. 2012; Zhang et al. 2008). Therefore,
data published to date suggest that FOXAI is a major deter-
minant of estrogen—ER activity in breast cancer.

Six GATA transcription factors have been identified in
vertebrates (GATA-1 to GATA-6) (Kouros-Mehr et al. 2008).
In breast, GATA-3 is expressed in luminal tumors (Sorlie et al.
2001). However, the mechanism of GATA-3 action or its
potential role as a pioneer factor of ER has not been described
yet. By contrast, GATA-4 has been shown to have pioneering
properties during early development (Bossard and Zaret 1998)
and for ER binding in U20S osteosarcoma cell line (Krum et
al. 2008; Miranda-Carboni et al. 2011), which stably expresses
exogenous ER and very low levels of FoxAl (Hurtado et al.
2011). Interestingly, Stender et al. have identified Runx1 as a
mediator for ER-DNA interaction in MDA-MB-231 breast
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cooperation with other transcription factors, opens chromatin regions
and facilitates ligand—ER binding. PBX1 seems to have a FOXAI-
independent effect
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cancer cell line (Stender et al. 2010), which stably expresses
exogenous ER and is negative for the expression of FOXA1
and HER?2. These results support the idea that distinct pioneer
proteins influence ER binding in FOXA 1-negative tissues.

The Pre-B cell leukemia homeobox 1 factor (PBX1) is a
cofactor for homeobox (HOX) transcription factors as it
increases their affinity and specificity to chromatin (Moens
and Selleri 2006). PBX1 has been described as a pioneer
factor whose function is essential for the ER-mediated tran-
scriptional response (Magnani et al. 2011). Magnani et al.
demonstrated that estrogen-induced transcriptional response
is preferentially associated with regulatory regions where
ER co-bounds with PBX1 or PBX1-FOXA1. Moreover, this
study also reports a distinct prognostic value for FOXA1
and PBX1. Indeed, the authors point out PBX1, and not
FOXAL, as a novel prognostic marker for recurrence in ER-
positive breast cancers (Magnani et al. 2011).

Genomic analyses of ER binding sites from ChIP-
sequencing experiments also identified enrichment for AP-2
motifs (Tan et al. 2011). The authors demonstrated that pertur-
bations of the expression of the transcription factor AP-2y
prevent ER binding to DNA and gene transcription.
Interestingly, the lack of this factor is even affecting ER long-
range chromatin interactions, which have been shown to be
essential for ER-mediated transcription (Fullwood et al. 2009).
Moreover, FOXAL also occupies the majority of these shared
regions. Further molecular studies indicate that both factors
collaborate in ER-mediated transcription (Tan et al. 2011).

The Groucho homologue transducin-like enhancer of split 1
(TLE1) is a multitasking transcriptional co-repressor. TLE
proteins can associate with condensed chromatin by binding
to the histone tails of nucleosomes (Sekiya and Zaret 2007).
The Groucho/TLE/Grg family of co-repressors operates in
many signaling pathways and distinct biological processes
(Jennings et al. 2006), through their association to different
partners. For instance, the human homologue of Groucho
TLE1 (Stifani et al. 1992) has critical transcription factor
partners such as TCF/LEF-1 (Daniels and Weis 2005), hairy/
enhancer of split 1 (Dasen et al. 2001; Carvalho et al. 2010),
and the AML/CBFa runt domain transcription factor (Levanon
et al. 1998). Biologically, the loss of TLE coincides with
increased global protein synthesis and enhanced cell prolifer-
ation (Ali et al. 2010), which implicates this factor as a general
repressor of gene transcription. Moreover, recently, Holmes et
al. have published that TLEI positively assists some ER—
chromatin interactions, a role that is distinct from its general
role as a transcriptional repressor. The specific silencing of
TLE1 inhibits the ability of ER to bind a subset of ER binding
sites within the genome, and this is accompanied by perturba-
tions in phospho-RNA Pol II recruitment (Holmes et al. 2012).
Interestingly, TLE1 action occurs at regions where FOXA1
binds more weakly (Holmes et al. 2012), suggesting that TLE1
might be more effective in these chromatin regions.

Function of ER-cooperating factors in hormone-regulated
cancers

FOXAT1 and GATA3 proteins are expressed in ER-positive
luminal breast cancers (Sorlie et al. 2003). In fact, FOXA1
expression is associated with the expression of steroid hor-
mone receptors (ER, progesterone receptor, and androgen
receptor) and other variables of good prognosis such as
smaller tumor size, lower histological grade, and expression
of luminal cytokeratins (CK18 and CK7/8), BRCAI1, and
E-cadherin (Habashy et al. 2008). These evidences imply
that high FOXAT1 expression is linked with survival and a
better outcome in breast cancer patients. Accordingly, a
recent publication suggests that FOXA1 directly represses
a subset of basal signature genes (Bernardo et al. 2012). In
this study, the silencing of FOXA1 causes a partial shift
from luminal to basal gene expression signatures, which
results in an increased migration and invasion of luminal
cancer cells. This phenotype is representative of the basal
subtype of tumors, which are negative for ER and HER2
expression. In breast, GATA-3 plays an important role in
mammary gland development and differentiation (Bossard
and Zaret 1998; Ho and Pai 2007). Moreover, the inactiva-
tion of GATA-3 in mice results in contracted mammary
epithelial structure, severely impaired lactogenesis, and dis-
rupted differentiation of luminal progenitor cells into ductal
and alveolar cells (Asselin-Labat et al. 2007). In breast
cancer cell lines, GATA-3 has been positively implicated
in mediating the estrogen—-ER signaling (Eeckhoute et al.
2007). All in all, FOXA1 and GATA3 that are subsequently
used by ER to bind chromatin and regulate gene transcrip-
tion, respectively (Carroll et al. 2005; Eeckhoute et al. 2007;
Hurtado et al. 2011), might be considered as biomarkers of
luminal tumors. In fact, 83.1 % of FOXA1-positive tumors
are comprised in the luminal A subtype. Similarly, 87.7 % of
GATA-3-positive tumors fall within this molecular subtype
(Wilson and Giguere 2008; Albergaria et al. 2009).

The pioneer factor FOXAT1 also plays an important role
in androgen receptor (AR) signaling of molecular apocrine
tumors, which have been recently identified as an additional
subgroup of ER-negative and AR-positive breast tumors (Ni
etal. 2011; Robinson et al. 2011). On the one hand, Ni et al.
identified AR as a mediator of the ligand-dependent activa-
tion of Wnt and HER2 signaling pathways through direct
transcriptional induction of WNT7B and HER3 (Ni et al.
2011). On the other hand, Robinson et al. demonstrated that
the specific silencing of FOXA1 inhibits AR binding, ex-
pression of the majority of the molecular apocrine gene
signature, and cell growth (Robinson et al. 2011). Moreover,
Ni et al. proved that specific targeting of AR, Wnt, or HER2
signaling impairs androgen-stimulated tumor cell growth, sug-
gesting potential therapeutic approaches for ER—/HER2+
breast cancers (Ni et al. 2011). Altogether, it seems that, in
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breast tumors, ER and AR binding and their functionality is
fully dependent on FOXA1. By contrast, in prostate cancer, the
effect of FOXA1 on AR binding is more complex. Recently,
two studies have reported a new paradigm for the forkhead
protein FOXALI action in androgen signaling. Besides the
pioneering function on the AR pathway, FOXA1 depletion
elicited extensive redistribution of AR-binding sites (Sahu et
al. 2011a, b; Wang et al. 2011). Interestingly, both groups
identified three distinct classes of AR binding sites and
androgen-responsive genes: some independent of FOXAI,
others pioneered by FOXA1, and some others masked by
FOXAI1 and functional upon FOXA1 depletion. Importantly,
FOXALI1 protein level in primary prostate tumors has a signif-
icant association with the disease outcome; high FOXAL1 level
is associated with poor prognosis, whereas low FOXALI level,
even in the presence of high AR expression, predicts good
prognosis. The role of FOXA1 in androgen signaling and
prostate cancer (Gerhardt et al. 2012) is different from that in
estrogen signaling and breast cancer (Sahu et al. 2011a, b). By
contrast, in breast cancer, there is a clear association between
high FOXA1 expression and a better survival (Habashy et al.
2008). In fact, the Oncotype DX test for breast cancer prognosis
shows a negative and significant correlation between FOXALI
expression and recurrence (Ademuyiwa et al. 2010). In the
future, studies focused on these tissue-specific properties of
FOXA1 will be instrumental for our understanding of
hormone-regulated cancers.

In endometrial cancer tumors, FOXA1 is expressed in
37 % of the cases, and its expression is significantly and
negatively associated with lymph node status (Abe et al.
2012). Interestingly, in ER-positive endometrial cancer
cells, FOXA1 has been suggested to function as a tumor
suppressor through modulation of proliferation and migra-
tion of endometrial cancer cells (Abe et al. 2012). However,
it is not clear whether FOXA1 action occurs through ER or
progesterone receptor (PR). Very recently, Clarke et al. have
reported that FOXA1 alters PR transcriptional response in
normal breast AB32 cells, a PR-positive clone of the MCF-
10A cell line (Clarke and Graham 2012). The conclusions of
this study suggest that FOXA1 is not absolutely required for
progesterone response. However, when FOXA1 is overex-
pressed in AB32 cells, it induces the expression of genes
involved in negative regulation of apoptosis. Yet, we do not
know the role of FOXAI in progesterone- and estrogen-
induced transcription in endometrial tissue.

In summary, all the published data suggest that the idea of
using FOXA1 as a therapeutic target in breast and endometrial
cancers could be an alternative for those patients with recur-
rence to current treatments. However, we still have a long way
to go. We need to know in what other functions, apart from
that of pioneering, FOXAL1 is involved. Furthermore, it is
important to know how the function of FOXA1 is regulated.
Finally, to decipher the specific weight of other pioneering
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functions that might compensate functionally the inactivation
of FOXAL is critical for future therapies.

ER-cooperating factors influence estrogen-mediated
transcription

Estrogen may activate or repress transcription of ER target
genes potentially by recruiting distinct classes of co-regulators
that have chromatin remodeling properties. Structural and
functional studies revealed that ER co-activators are recruited
to hormone-responsive genes through their interaction with
activated receptors. In turn, the co-activator complex remodels
the chromatin at this region through histone acetylation, facil-
itating RNA polymerase II-mediated transcription (Onate et
al. 1995; Anzick et al. 1997; Torchia et al. 1997; Chen et al.
1999a, b). It has also been established that, in estrogen-
repressed genes, estrogen—ER stimulates the selective associ-
ation of co-repressors (Carroll et al. 2006; Stossi et al. 2009).
The interaction of these co-repressors prompts the binding of
chromatin deacetylatases and therefore leads to transcriptional
inhibition. Some transcription factors have been shown to be
responsible for ER cofactor binding (GATA-3, FOXA1, and
RARA), to function as cofactors by themselves (XBP1) or to
be mediators of ER-repressive action (PITX-1). In the next
paragraphs, we discuss the function of these transcription
factors (Fig. 2).

Recently, Kong et al. reported in MCF-7 breast carcinoma
cells that FOXA1, GATA-3, and ER form a protein complex,
which regulates ER-mediated transcription (Kong et al. 2011).
The chromatin regions occupied by all these three transcrip-
tion factors were associated with the highest p300 co-activator
recruitment (histone acetylase enzyme), RNA Pol II occupan-
¢y, and chromatin opening. Interestingly, co-transfection of
these three transcription factors was sufficient to restore the
estrogen-responsive growth of ER-negative MDA-MB-231
and BT-549 cells. These findings are very significant and
suggest that all three transcription factors are needed for co-
activator recruitment and, ultimately, for ER-mediated tran-
scription in breast tissue. However, it is not clear yet whether
the complex of ER, FOXA1, and GATA-3 is necessary for all
ER-regulated transcripts in breast tissue.

Retinoic acid receptor alpha (RARA) is a nuclear recep-
tor, which regulates gene expression by retinoic acid (RA)
(Giguere et al. 1987). Both RA (Darro et al. 1998; Paroni et
al. 2012) and antagonists of RARA (Dawson et al. 1995;
Toma et al. 1998) promote anti-proliferative effects in breast
tumor cells. Moreover, RARA is known to be an estrogen-
induced target gene in breast cancer cells (Laganiere et al.
2005a, b). Yet, the mechanisms of action by which the
RARA agonists or antagonists carry out a repressive effect
in breast cancer are not entirely clear. The White and Carroll
groups have tried to solve this conundrum. Although both
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Fig. 2 ER-cooperating factors influence estrogen-mediated transcrip-
tion. In breast carcinoma cell lines, the complex created by FOXALI,
GATA3, and ER regulates estrogen (red bold dot) transcription. These
three factors are necessary for the recruitment of the co-activator p300
and RNA polymerase II. Moreover, XBP1 promotes ER transcriptional

teams agree that RARA binding throughout the genome is
highly coincident with ER binding (Hua et al. 2009; Ross-
Innes et al. 2010), they propose contradictory mechanisms of
action. Whereas White's group supports a genomic antago-
nism between RA and estrogen signaling (Hua et al. 2009),
Carroll's group supports a cooperative interaction between
RARA and ER (Ross-Innes et al. 2010). Altogether, it seems
that RARA might have two distinct roles in breast cancer
cells: first, repressing estrogen transcription via the classic
function of RARA with its interacting partner retinoid X
receptor and, second, interacting with ER and maintaining
ER—cofactor interaction for estrogen-mediated gene transcrip-
tion. Given the observation that both RARA agonist and
antagonist actions show benefit on breast cancer, both mech-
anisms of action might be taking place.

XBP1 is a transcription factor that belongs to the basic
region/leucine zipper (bZIP) family of proteins (Clauss et al.
1996). Regulation of transcription by XBP1 is a consequence
of its binding to and activation of specific cAMP-responsive
element. The XBP1 spliced form, XBP1(S), has the ability to
bind to and activate ER in a ligand-independent manner (Ding
et al. 2003). Furthermore, XBP1 is also rapidly induced in
response to estrogen stimulation (Wang et al. 2004; Tozlu et
al. 2006; Scriven et al. 2009), which suggests that transcrip-
tion of ER-regulated genes might be also modulated by the
complex ER-XBP1. Recently, the pituitary homeobox 1
(PITX-1) transcription factor has been related as a repressor
for a subset of ER target genes (Stender et al. 2010).

All together, these evidences suggest that ER-cooperating
factors might be needed for estrogen—ER-mediated tran-
scription. Interestingly, the transcription of some of these

activity in a ligand-independent manner. RARA, after binding its
ligand ATRA (blue bold dot), interacts and cooperates with ER at ER
binding sites, where it stabilizes both ER co-activator and co-repressor
binding. PITX-1 represses transcription of a subset of ER-regulated
genes

cooperating factors is induced both by estrogen at early time
points (Hurtado et al. 2011) as directly by FOXA1 (Nakshatri
and Badve 2009). This supports the established hypothesis
and also suggests that these factors are needed for a sustained
transcriptional activity of ER. Perhaps, FOXAI induces the
transcription of these cooperating factors to allow the expres-
sion of early ER-regulated genes. Subsequent activation of the
transcription of these cooperating factors by ER would then
allow the sustained expression of ER targets. However, the
mechanism of action of these factors for ER-mediated tran-
scription is not completely understood. It has been suggested
that they might be important for recruitment of chromatin
remodeling factors (Ross-Innes et al. 2010). Future studies
should provide a more comprehensive explanation of the
function of these factors.

ER-cooperating transcription factors and anti-estrogen
drug response

Breast tumors positive for ER expression represent around
70 % of these cancers (Dowsett 2001; Prat and Baselga
2008). Targeting estrogen action has been a therapeutic choice
of breast cancer treatment so far (Harvey et al. 1999). In the last
30 years, various endocrine treatments have been developed in
order to block estrogen action in breast cancer cells. One of the
most successful treatments is represented by the SERM tamox-
ifen (Jensen and Jordan 2003). It antagonizes estrogen action
by competing for the binding of ER in breast cancer cells and is
thought to repress ER-mediated transcriptional activation by
actively recruiting co-repressors (Katzenellenbogen and Frasor
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2004; Malik et al. 2010; Hurtado et al. 2011). More recently,
another class of anti-estrogen drug has been incorporated into
clinical treatment, namely aromatase inhibitors (AI). These
inhibitors antagonize estrogen metabolism, and therefore, their
use is restricted to postmenopausal women. Unfortunately, one
third of women treated with any of these treatments will relapse
(Musgrove and Sutherland 2009). The molecular mechanisms
by which tamoxifen induces repression on breast cancer cells
are not completely understood (Harvey et al. 1999), and diverse
models of endocrine resistance have been hypothesized
(Higgins and Stearns 2009). In this section of the review, we
discuss which transcriptional cooperating factors can affect ER
genomic activity in response to endocrine treatment and how
this process can affect cell proliferation and survival.

The effectiveness of tamoxifen requires both the bind-
ing with ER and the consequent interaction with DNA.
Importantly, genomic maps of ER binding induced with
estrogen or tamoxifen are almost identical (Hurtado et al.
2011), which evidences that tamoxifen—ER uses the same
genomic regions as estrogen—ER for its repressive action.
From these evidences, one might assume that tamoxifen-ER
and estrogen—ER use the same mechanisms to interact with
DNA (Hurtado et al. 2011). In agreement, the expression of
FOXAL is essential for ER-tamoxifen inhibitory action.
Interestingly, Ross-Innes et al. observed that, in tumors resis-
tant to endocrine therapy, ER interactions were enriched with
FOXA1 motifs (Ross-Innes et al. 2012). From these studies,
one can get the conclusion that FOXA1 is needed to permit
ER—tamoxifen interaction with DNA but is not sufficient to
induce repression.

Crosstalk between the ER and HER2 pathways has long
been implicated in cancer onset and response to tamoxifen, but
no direct connection at transcriptional level has been shown.
Tamoxifen-resistant breast tumors are characterized by elevat-
ed ERBB? levels (Osborne et al. 2003), and ER-positive cell
line models overexpressing ERBB2 acquire resistance to ta-
moxifen (Benz et al. 1992). In 2008, a new mechanism of
resistance to tamoxifen treatment was suggested (Hurtado et al.
2008), which revealed a novel interplay between ER and
ERBB?2 on a genomic level. This study proposes that the anti-
proliferative effects of tamoxifen require repression of ERBB?2
and that breast cancer cells acquire resistance by deregulating
the mechanisms that normally repress ERBB2 transcription.
This repression is mediated by the transcription factor PAX2,
which cooperates with ER at this locus. PAX2 belongs to the
pair box gene (PAX) family, a group of transcription factors
characterized by the presence of two DNA-binding domains
and are known for their role in terminal differentiation during
organogenesis (Mansouri et al. 1996; Dahl et al. 1997). PAX2
is expressed in around 60 % of breast tumors (Muratovska et
al. 2003), and its nuclear localization is more frequent in
luminal tumors than in nonluminal tumors (Silberstein et al.
2002; Liu et al. 2009). Moreover, in luminal breast cancer cell
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lines, PAX2 has been shown to be activated and confers a low
invasive phenotype (Beauchemin et al. 2011). Interestingly,
PAX2 silencing is able to abrogate the inhibition of ERBB2
transcription and increases ERBB2-dependent cell proliferation
(Hurtado et al. 2008). Moreover, the expression of PAX2 is
reduced in tamoxifen-resistant cells, and the overexpres-
sion of PAX2 is able to restore the sensitivity to tamoxifen in
these cells (Hurtado et al. 2008). Nonetheless, another study
showed that changes in ERBB2 expression are not dependent
on differences in PAX2 expression among various populations
of tamoxifen-resistant and estrogen-deprived MCF-7 cells
(Leung et al. 2010). Tamoxifen-resistant cells are also charac-
terized by increased levels of the ER co-activator AIB-1
(Osborne et al. 2003; Su et al. 2008). Indeed, there is a
competition between AIB-1 and PAX2 for the binding to the
ER binding region of the ERBB2 gene, which might explain
the differences between the two studies. This event has also
been shown in tamoxifen-treated breast cancer samples, where
the PAX2-positive AIB-1-negative tumors have the best prog-
nosis and the lowest percentage of ERBB2-positive cells
(Hurtado et al. 2008). These results suggest that the critical
event for ERBB?2 repression and tamoxifen resistance is not
just explained by the loss of PAX2 expression, but it supports
the idea that the balance between PAX2 and AIB-1 recruit-
ment at chromatin level is crucial for the determination of
tamoxifen response and resistance. Yet, the molecular mech-
anism underlying the competition between PAX2 and AIB-1
in ER-mediated regulation of transcription is not completely
understood. We have observed that tamoxifen mainly enhan-
ces the binding of PAX2 at genome-wide level (Gilfillan
et al. 2012), which suggests that PAX2 might be func-
tioning as a general repressor for ER—tamoxifen action
(Fig. 3). However, all the genomic regions where PAX2
interacts with DNA after estrogen or tamoxifen treatment have
not been identified yet, and therefore, it cannot be established
whether PAX?2 is required for all estrogen-repressed genes.
Furthermore, it is not clear yet if the competition between
PAX2 and AIB-1 might be affecting the transcriptional regu-
lation of many different ER target genes. In summary, all these
studies denote that the repressive action of tamoxifen is reg-
ulated by cooperating factors at least at two different levels:
FoxA1, which orchestrates ER binding on the chromatin, and
PAX2, which dictates the transcriptional activity of ER in-
duced by tamoxifen. Furthermore, all these findings highlight
the complexity of ER—tamoxifen transcriptional regulation in
human breast cancer.

Although tamoxifen is a successful ER antagonist in
breast cancer therapy, it shows partial agonistic effects
in other target tissues (Fisher et al. 1998; Jordan et al.
2001). In particular, tamoxifen treatment has been associated
with an increased incidence of endometrial carcinoma
(Persson 2000; Zeleniuch-Jacquotte et al. 2001). Gene expres-
sion analysis has shown that the genes targeted by tamoxifen
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Fig. 3 The balance between AIB-1 and PAX2 governs ER—tamoxifen
action. In breast cancer cells, after tamoxifen treatment (in blue, bound
to ER), PAX2 and AIB-1 compete for the binding of ER, and this
competition determines tamoxifen response. High levels of PAX2 may

are different from those targeted by estrogen, in endometrial
epithelial cancer cells (Wu et al. 2005). PAX2 is a common
target of estrogen- and tamoxifen-bound ER and is a crucial
effector for the proliferation of endometrial cancer cells.
Furthermore, PAX2 is silenced in normal endometrium,
and its expression is reactivated in endometrial cancer
upon hypomethylation of its promoter. Altogether, these
evidences suggest that PAX2 plays a crucial role in the
determination of tamoxifen response both in breast and
endometrial cancer cells, by repressing and promoting
cell proliferation, respectively. For these reasons, further
studies on the role of PAX2 in cooperation with ER
may shed light on tamoxifen molecular mechanisms of action
and resistance.

In previous sections, we have discussed the role of XBP-
I(S) in ligand-independent activation of ER. Moreover,
XBP-1(S) is also a key mediator of ER-independent growth
(Gomez et al. 2007; Davies et al. 2008). Gomez et al.
showed that just the overexpression of XBP-1(S) explained
both phenotypes (Gomez et al. 2007). Importantly, the study
confirms XBP-1(S) as an essential regulator of BCL2 tran-
scription, which is a prosurvival/antiapoptotic factor and
confers resistance to aromatase therapy in breast cancer
patients (Ding et al. 2003) (Fig. 4). For these reasons,
XBP-1(S) may be considered an important diagnostic and
prognostic biomarker of breast cancer samples and may be
also a useful tool in the identification of ER-positive breast
tumors with a relatively poor response.
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recruit co-repressors and other factors that promote chromatin com-
paction, ER-mediated repression, and tamoxifen sensitivity (on the
left). On the contrary, high levels of AIB-1 promote chromatin open-
ing, transcription activation, and tamoxifen resistance (on the right)

Cell signaling pathways modulating ER
and ER-cooperating factors

In addition to ligand binding, posttranslational modifica-
tions (acetylation and phosphorylation) of ER and its asso-
ciated co-activators (e.g., SRC1, SRC2, AIBI, p300) and
co-repressors (e.g., MTA1, NCoR, and SMRT) play a role in
ER action. Histone-modifying enzymes interact with ER
and influence its activity and that of its cooperating factors.
Yet, how the recruitment of these enzymes is regulated is an
open question. Moreover, in response to estrogen treatment,
ER can activate a variety of kinases (e.g., MAP kinases,
ERK, and AKT) and phosphatases (e.g., PP1, PP2A, and
PDXP), which can regulate histone proteins (e.g., Mskl,
Msk2, and histone H1) and ER co-regulators. In this section,
we review and discuss the importance of these enzymes in
modulating ER, ER cooperating partners, and their rele-
vance in hormone-resistant tumors (Fig. 5).

ER is modulated by membrane receptor tyrosine kinases/
growth factor signaling, including epidermal growth factor
receptor (EGFR), HER2, and insulin-like growth factor recep-
tor (Nicholson et al. 2002; Schiff et al. 2003), which contrib-
utes to endocrine resistance (Drury et al. 2011; Fagan et al.
2012). The overexpression of these receptor kinases can acti-
vate the downstream MAPK/ERK and PI3K/AKT pathways
(Kato et al. 1995; Chen et al. 1999a, b; Rayala et al. 2006;
Miller et al. 2011), which results in phosphorylation of ER at
multiple serine residues (e.g., 104, 106, 118, 167, and 305),
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XBP1(S)

High XBP1(S) levels

\ S

Fig. 4 XBP-1(S) has a role in ligand-independent ER activation and
anti-estrogen drug resistance. XBP-1(S) overexpression plays a dual
role in estrogen independence and anti-estrogen resistance. XBP-1(S)

and can influence ER signaling (Arnold et al. 1994; Chen et al.
2002; Likhite et al. 2006; Thomas et al. 2008; Williams et al.
2009). Importantly, phosphorylation of ER at serine 305 is
associated with endocrine resistance and poor prognosis (Kok
etal. 2011, Houtman et al. 2012). The phosphorylation of ER
by cytoplasmic kinases also regulates its function via interac-
tion with other transcription factors such as AP-1, SP1, and
CREB, which mediate ER interaction with chromatin (Porter
et al. 1997; Kushner et al. 2000; Zhou et al. 2005).

Fig. 5 The crosstalk between
growth factor signaling
pathways and ER-cooperating
factors. Receptor tyrosine
kinases EGFR, HER2, and
IGFRI activate downstream
signaling pathways including
PI3K/Akt, MAP kinases, and
ERK. These kinases may
phosphorylate ER, which can
be activated in a ligand-
independent manner. HER2
signaling also regulates
FOXAL. ER is activated and
interacts with other transcrip-
tion factors to bind chromatin.
IGFR-1 represses PAX2 tran-
scription factor by inducing
specific phosphorylation
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can bind and activate ER in a ligand-independent manner (upper
panel) and induces transcription of BCL-2 gene (lower panel), which
might have implications in anti-estrogen drug resistance

HER2 signaling has also connection with the ER-
cooperating factors FOXA1, PAX2, and AIB-1. In molecu-
lar apocrine breast tumors, HER2 regulates FOXA1 via
ERK phosphorylation (Naderi et al. 2012). However, the
precise mechanism behind the crosstalk between HER2 and
FOXAI1 signaling is not completely understood yet. HER2
signaling also induces AIB-1 phosphorylation (Osborne and
Schiff 2003), which contributes to tamoxifen resistance.
Moreover, IGF-1 negatively regulates PAX2 activity in
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breast by inducing its phosphorylation (Beauchemin et al.
2011). Perhaps, regulation of protein phosphorylation might
be a mechanism of control of the activity of PAX2 and AIB-
1 and may ultimately dictate the outcome to anti-estrogen
therapies.

In summary, ER signaling and its crosstalk with various
signaling pathways have been clinically associated with poor
clinical outcome and resistance to anti-estrogen therapies.
Therefore, affecting either kinases or phosphatases regulating
ER might help in treating patients with resistance to these
therapies. Importantly, PP1 phosphatase is known to dephos-
phorylate AIB-1, and this results in suppression of its degra-
dation (Li et al. 2008). The other phosphatases PDXP and
PP2A inhibit SRC3 interaction with ER in the absence of
ligand (Li et al. 2008). Future studies identifying how these
phosphatases and kinases regulate ER and its cooperating
factors might improve the anti-estrogen therapies.
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