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Rescue of replication failure by Fanconi anaemia proteins
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Abstract Chromosomal aberrations are often associated
with incomplete genome duplication, for instance at
common fragile sites, or as a consequence of chemical
alterations in the DNA template that block replication forks.
Studies of the cancer-prone disease Fanconi anaemia (FA)
have provided important insights into the resolution of
replication problems. The repair of interstrand DNA cross-
links induced by chemotherapy drugs is coupled with DNA
replication and controlled by FA proteins. We discuss here
the recent discovery of new FA-associated proteins and the
development of new tractable repair systems that have
dramatically improved our understanding of crosslink
repair. We focus also on how FA proteins protect against
replication failure in the context of fragile sites and on the
identification of reactive metabolites that account for the
development of Fanconi anaemia symptoms.

Fanconi anaemia

Fanconi anaemia (FA) was first recognised as a clinical
entity by Guido Fanconi in 1927 (Fanconi 1927). The
disease manifests with a variety of congenital abnormalities
at birth and by a severe depression of all bone marrow-
derived haematopoietic cell lineages (pancytopenia) during
childhood (Tischkowitz and Hodgson 2003). Patients are at
high risk of developing acute myeloid leukaemia and, in
adulthood, squamous cell carcinomas of the gastrointestinal

and of the female reproductive tracts (Alter et al. 2003). FA
cells feature a high frequency of broken and radial
chromosomes (Schroeder et al. 1964) and are highly
sensitive to interstrand DNA crosslinks (ICLs) (Auerbach
and Wolman 1976). Covalent bonds linking the two anti-
parallel strands of DNA are extremely toxic, as they prevent
DNA unwinding required for DNA replication and tran-
scription. Hence, bi-functional adducts such as nitrogen
mustards, mitomycin C or cisplatin are widely used in
antitumor therapies (Deans and West 2011).

Fourteen FA genes have been identified to date, plus a
15th one, RAD51C, inactivated in one patient with multiple
congenital anomalies (Vaz et al. 2010). The patient,
however, had no symptoms of bone marrow failure or
malignancies when diagnosed, so bi-allelic inactivation of
RAD51C has been provisionally associated with a FA-like
disorder. FA genes encode proteins implicated in an
ubiquitin signalling pathway, in S phase checkpoint
activation, in translesion DNA synthesis and in DNA
double-strand break (DSB) repair by homologous recombi-
nation (Kee and D’Andrea 2010; Moldovan and D'Andrea
2009; Wang 2007).

The FA pathway

A basic molecular view of the FA pathway is depicted in
Fig. 1. FANCA, FANCB, FANCC, FANCE, FANCF,
FANCG, the E3 ligase enzyme FANCL and an associated
protein of 100 kDa (FAAP100) form a nuclear, ubiquitin
ligase FA core complex (Garcia-Higuera et al. 2001; Ling
et al. 2007; Meetei et al. 2003a). The FA core complex
associates with chromatin and the nuclear matrix during S
phase, in a DNA damage-induced and FANCM-dependent
manner (Kim et al. 2008; Mi and Kupfer 2004; Qiao et al.
2001). FANCM is a DNA translocase that can bind and
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move the branch point of three- and four-strand DNA
structures akin to replication/repair intermediates (Gari
et al. 2008a, b; Meetei et al. 2005; Xue et al. 2008). The
DNA translocase forms a conserved DNA remodelling
holoenzyme with the histone fold heterodimer MHF (Yan
et al. 2010) and is assisted by the associated factor FAAP24

to regulate several independent aspects of the DNA damage
response (Ciccia et al. 2007): (1) FANCM/FAAP24
interacts with the checkpoint protein HCLK2 and facilitates
DNA damage signalling mediated by ATR (Collis et al.
2008); (2) FANCM associates with the Bloom’s complex
(BLM-TopoIIIα-RMI1-RMI2) via direct contacts with the
RMI1 and TopoIIIα subunits (Deans and West 2009;
Meetei et al. 2003b); (3) FANCM/FAAP24 recruits the FA
core complex to chromatin (Kim et al. 2008), through a
direct FANCM–FANCF interaction (Deans and West 2009).

Genotoxic stress in S phase activates the FA core
complex to monoubiquitinate FANCD2 and FANCI, two
key interacting paralogs in the FA pathway (Dorsman et al.
2007; Garcia-Higuera et al. 2001; Sims et al. 2007;
Smogorzewska et al. 2007). This signalling event has been
proposed to stabilise the ubiquitinated FANCI–FANCD2
complex in chromatin, which in turn allows recruitment of
DNA repair factors such as the nuclease FAN1 at damaged
sites (Kratz et al. 2010; Liu et al. 2010; MacKay et al.
2010; Shereda et al. 2010; Smogorzewska et al. 2010;
Stoepker et al. 2011; Yoshikiyo et al. 2010).

A number of posttranslational modifications regulate FA
proteins: Phosphorylation of FANCI by ATR is a prereq-
uisite for FANCD2 monoubiquitination (Ishiai et al. 2008).
In mammalian cells, the phosphorylation of FANCD2 by
ATR/ATM (T691 and S717) and by Chk1 (S331) is
required for potent FANCD2 monoubiquitination and for
resistance to DNA cross-linking agents (Ho et al. 2006; Zhi
et al. 2009). Several phosphorylation steps also regulate FA
core complex proteins. Phosphorylation of FANCA
(S1449) by ATR, of FANCG (S7), and of FANCE (T346
and S374) by Chk1 all appears necessary for cellular
tolerance to mitomycin C (Collins et al. 2008; Qiao et al.
2004; Wang et al. 2007).

An additional layer of complexity has emerged with
the discovery that RAD18 contributes to the regulation
of FANCD2 monoubiquitination (Geng et al. 2010; Palle
and Vaziri 2011; Park et al. 2010a; Song et al. 2010b;
Williams et al. 2011). RAD18 is an E3-ligase that
monoubiquitinates proliferating cell nuclear antigen
(PCNA) in response to replication fork stalling by bulky
DNA damage (Prakash et al. 2005). PCNA functions as a
scaffold for the recruitment of translesion DNA poly-
merases that bypass DNA lesions. In response to bulky
DNA adducts, the monoubiquitination of PCNA by
RAD18 and the subsequent recruitment of TLS poly-
merases are necessary for efficient FANCD2 monoubiqui-
tination (Song et al. 2010b). In cells exposed to mitomycin
C or camptothecin, however, the monoubiquitination of
FANCD2 is independent of PCNA, yet depends on
RAD18 (Palle and Vaziri 2011; Williams et al. 2011).
How exactly RAD18’s ligase activity participates in the
FA pathway remains elusive.

Fig. 1 Schematic representation of FA proteins during ICL repair.
FANCM recognises interstrand DNA crosslinks (in yellow) in
association with FAAP24 and MHF and promotes ATR signalling of
DNA damage. The FANCJ/BRIP1 helicase also facilitates ATR
signalling of stalled replication forks. FANCM recruits the Bloom’s
complex and the FA core complex at damaged sites. The FA core
complex monoubiquitinates FANCD2/FANCI. Monoubiquitination of
FANCD2 and FANCI stabilises the complex and promotes its
retention at stalled forks. The FANCD2/FANCI complex contains
two sets of dsDNA and ssDNA binding sites, which can bind and
stabilise replication intermediates that result from converging replica-
tion forks. Ub-FANCD2/Ub-FANCI in turn recruits the structure-
specific nuclease FAN1. Ubiquitination mediated by the FA core
complex may also promote recruitment of SLX4/FANCP and
associated nucleases. In the final stage of crosslink repair, BRCA2/
FANCD1 and its partner PALB2/FANCN control double-strand DNA
break repair by homologous recombination. For clarity, Fanconi
anaemia proteins are in colour and associated factors are filled in grey
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Deubiquitination of FANCD2 is under the control of
USP1 (Kim et al. 2009; Nijman et al. 2005), in association
with UAF1 (Cohn et al. 2007). USP1 binds FANCI directly
via its SUMO-like domain SLD2, which associates with the
SUMO-like domain-interacting motif (SIM) on FANCI
(Yang et al. 2011). Removal of the ubiquitin moiety on
FANCD2 and FANCI is necessary for completion of the
DNA repair process and ICL tolerance (Kim et al. 2009).

FANCJ/BRIP1 interacts with BRCA1, unwinds DNA
structures that block replication forks and facilitates
checkpoint signalling (Bridge et al. 2005; Cantor et al.
2001; Gupta et al. 2005; Hiom 2010; Levitus et al. 2005;
Litman et al. 2005). FANCJ/BRIP1 also forms a complex
with BLM, and the two helicases can unwind DNA
substrates synergistically (Suhasini et al. 2011). Some
symptoms in FA-J patients may be linked to a deficiency
in BLM protein, as BLM is unstable in the absence of
FANCJ (Suhasini et al. 2011). BRCA2/FANCD1 and
PALB2/N are key regulators of homologous recombination.
BRCA2, the product of the breast cancer susceptibility
gene, provides a structural platform for the fine regulation
of the strand exchange protein RAD51 (for a recent review,
see (Holloman 2011). Additional insights into structural,
functional and phenotypic features of Fanconi anaemia are
developed below.

FANCD2–FANCI and associated nucleases

Structure of FANCD2–FANCI

A new view of the FA pathway has been provided by the
recent crystal structure of the mouse FANCD2–FANCI
complex (Joo et al. 2011). Each protein is made of four
solenoid segments and two interspersed helical domains
that fold into a saxophone-like structure (cartooned in
Fig. 1). FANCD2 and FANCI interact in an antiparallel
manner along their saxophone body, forming a narrow and
shallow platform (Joo et al. 2011). Electron density maps
and FANCI-DNA crystals have revealed that the FANCD2/
FANCI surface includes two sets of double- (dsDNA) and
single- strand DNA (ssDNA) binding sites that could
accommodate a replication intermediate comprising two
converging forks at a crosslink (Fig. 1). This is consistent
with earlier reports on the DNA-binding properties of
FANCD2 and FANCI (Longerich et al. 2009; Park et al.
2005; Roques et al. 2009; Yuan et al. 2009). It is
noteworthy that the purified FANCI–FANCD2 complex
exhibits more affinity for branched DNA structures than
either FANCD2 or FANCI proteins alone (Yuan et al.
2009). Three phosphorylation sites in FANCI as well as the
FANCI and FANCD2 ubiquitination sites locate at the
FANCD2–FANCI interface and are thought to stabilise the

complex (Joo et al. 2011). Predictions suggest that the
lysine–ubiquitin isopeptide bonds would lie within solvent
free accessible tunnels from which the ubiquitin structural
domain could emerge, on either side of the FANCD2–
FANCI complex (Joo et al. 2011). This molecular view of
FANCD2–FANCI shows how the complex may bind and
protect stalled replication forks and control the recruitment
of structure specific DNA endonucleases for coordinated
unhooking of ICLs.

FAN1

The conjugation of FANCD2 with an ubiquitin moiety is
not only a signal for the localisation and the retention of
FANCD2 on chromatin but also for the recruitment of DNA
repair nucleases. One such nuclease is FAN1, discovered
independently by five groups that have reported congruent
observations (Kratz et al. 2010; Liu et al. 2010; MacKay
et al. 2010; Shereda et al. 2010; Smogorzewska et al.
2010): FAN1 stands for FANCD2-associated nuclease. The
protein is necessary for chromosome stability and for
cellular tolerance to cisplatin and mitomycin C. In cells
treated with ICL-inducing agents, FAN1 forms nuclear foci
that colocalise with FANCD2 and binds to the monoubi-
quitinated form of FANCD2. It contains an amino-terminal
ubiquitin-binding motif, a RAD18-like CCHC zinc finger
known as UBZ domain and a carboxy terminal VRR-nuc
domain (virus-type replication-repair nuclease domain).
The UBZ domain is both necessary and sufficient for
interaction with FANCD2 and for targeting of FAN1 to
DNA repair sites (Kratz et al. 2010; Liu et al. 2010;
MacKay et al. 2010; Shereda et al. 2010). FAN1 exhibits 5′
flap endonuclease and 5′–3′ exonuclease activities and
participates in DNA repair mechanisms dependent on
homologous recombination (Kratz et al. 2010; Liu et al.
2010; MacKay et al. 2010; Smogorzewska et al. 2010).
Together, these studies provide conclusive evidence of a
strong link between Ub-FANCD2 and a structure specific
endo/exo nuclease in ICL repair. Some nuances were
brought in a follow-up study where the FAN1 locus was
disrupted by gene targeting in chicken DT40 cells
(Yoshikiyo et al. 2010). First, FA proteins and FAN1
appear to have also non-epistatic functions because DT40
cells lacking both FANCC and FAN1 are more sensitive to
cisplatin than either single mutant. Second, unlike
FA-deficient cells that exhibit proliferation defects, the
growth kinetic of Fan1−/− cells is similar to wild-type DT40
cells (Yoshikiyo et al. 2010). This may suggest that FAN1
does not function with FA proteins in the resolution of
endogenous replication obstacles. Studies using defined
repair systems (discussed below) will be necessary to
understand precisely how FAN1 acts during repair of
DNA damage induced by crosslinking agents.
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SLX4

A second connexion with nucleases in the FA network
emerged from the discovery of bi-allelic SLX4 mutations in
six Fanconi anaemia patients (Kim et al. 2011; Stoepker et
al. 2011). Based on this, SLX4 has been renamed Fanconi
anaemia complementation group P (FANCP). With
FANCM, FANCP is the second FA protein to be conserved
in yeast. Inactivation of SLX4 sensitises cells to ICLs-
inducing agents and to camptothecin, an inhibitor of
topoisomerase 1. The discovery that SLX4 is a FA protein
was accompanied with the description of a Slx4−/− mouse
model (Crossan et al. 2011). Mice lacking SLX4 exhibit a
number of phenotypes akin to FA symptoms, including
multiple developmental defects, reduced fertility as well as
genetic instability and deficiencies in the hematopoietic
compartment (Crossan et al. 2011). The protein is necessary
for homologous recombination measured using a GFP
reporter system that involves the repair of a DSB generated
by I-SceI endonuclease (Munoz et al. 2009; Svendsen et al.
2009). It has been proposed that SLX4/FANCP may act a
regulatory platform associated with multiple structure-
specific endonucleases, namely, SLX1, XPF-ERCC1 and
MUS81-EME1 (Andersen et al. 2009; Fekairi et al. 2009;
Munoz et al. 2009; Svendsen et al. 2009). Whether and
how SLX4 coordinates the activities of structure-specific
nucleases is a heavily studied topic. SLX4 contains
multiple protein–protein interaction modules: two amino
terminal C2HC zinc finger (UBZ4) domains; a MEI9XPF-
interaction-like region that binds XPF-ERCC1; a BTB/POZ
protein–protein interaction domain; a SAP motif necessary
for MUS81–EME1 binding; and a conserved C-terminal
domain implicated in the interaction with SLX1 (Fekairi et
al. 2009; Svendsen et al. 2009). The human SLX1–SLX4
complex exhibits 5′ flap endonuclease activity and resolves
Holliday junctions (Fekairi et al. 2009; Munoz et al. 2009;
Svendsen et al. 2009). That SLX1–SLX4 is a bona fide
Holliday junction resolvase is substantiated by the demon-
stration that it produces directly “ligatable” nicked duplexes
(Fekairi et al. 2009). MUS81–EME1 exhibits structure
specificity for 3′ flaps, replication fork-like structures and
Holliday junctions, whereas the nucleotide excision repair
factor XPF-ERCC1 cleaves bubble and stem loop structures
near the 5′ side of the junction between dsDNA and
ssDNA, and will also act on 3′ flaps during single-strand
annealing (Ciccia et al. 2008). These nucleases are most
likely used in specific biological contexts. Expression of a
recombinant SLX4 protein bearing a deletion of the SLX1
interaction motif complements the MMC sensitivity of
Slx4−/− mouse embryonic fibroblasts, whereas Slx4−/− cells
expressing a mutant SLX4 protein lacking the XPF-ERCC1
interaction motif remain MMC sensitive (Crossan et al.
2011). Consistently, sub-cellular fractionation studies

revealed that, unlike SLX1 and MUS81-EME1, the chromatin
association of XPF-ERCC1 was specifically impaired in a
FA-P cell line (EUFA1354) (Stoepker et al. 2011). This was
confirmed by immunofluorescent studies showing that the
formation of ERCC1 nuclear foci was impaired in EUFA1354
cells (Stoepker et al. 2011). These observations show that the
association of SLX4 with XPF-ERCC1 is critical for the DNA
damage response mediated by FA proteins.

Unlike FAN1, SLX4 is essential for the proliferation of
chicken DT40 cells, suggesting that it plays an important
role in the repair of DNA lesions that arise spontaneously
(Yamamoto et al. 2011). Chicken SLX4 is connected to the
Fanconi anaemia network by its UBZ domain, which is
necessary for tolerance to ICL-inducing agents. SLX4
forms ICLs-induced foci in DT40 cells and associates with
FANCD2 in pull-down experiments. The recruitment of
SLX4 at DNA repair sites depends on the integrity of its
UBZ domain and on the Fanconi anaemia core complex
(Yamamoto et al. 2011). The observation that the function
of SLX4 in ICL repair depends on the FA ubiquitination
pathway in chicken DT40 cells awaits confirmation from
studies based on human cellular systems. Additional work
is also necessary to determine whether SLX4 UBZ domain
binds Ub-FANCD2 directly. Finally, Fancc−/Slx4−UBZD
double mutants are more sensitive to ICLs inducing agents
than either single mutant, suggesting that SLX4 and the FA
core complex have also non-epistatic roles in ICL repair
(Yamamoto et al. 2011).

FA proteins promote DNA damage signalling

Replication obstacles and stalled forks are signalled by
ATR, which detects RPA-covered single-stranded DNA that
accumulate as a result of uncoupling of MCM helicases and
DNA polymerases (Byun et al. 2005; Zou and Elledge
2003). The replication checkpoint is triggered efficiently by
the recognition of primed single-stranded DNA with a free
5′ end (MacDougall et al. 2007). Single-stranded DNA
coated by the single-strand DNA-binding protein RPA is
bound directly by ATRIP (ATR-interacting protein), which
enables the association of the ATRIP–ATR complex at
stalled forks (Zou and Elledge 2003). The 5′ junction
between ssDNA and dsDNA is recognised by RAD17-
RFC, which loads the 9–1–1 checkpoint clamp necessary
for efficient ATR activation (Ellison and Stillman 2003;
Majka et al. 2006; Zou et al. 2003). FA proteins stimulate
DNA damage signalling in multiple ways.

Role of FANCM

Collis et al. (2008) provided initial evidence that FANCM
functions in ATR-mediated checkpoint signalling, indepen-
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dently of the Fanconi anaemia core complex. FANCM and
FAAP24 associate with the checkpoint protein HCLK2.
Depletion of FANCM in mammalian cells results in cellular
features shared with ATR-defective cells, including sponta-
neous increase in DNA damage markers, increased fre-
quency of cells with supernumary centrosomes and
inefficient damage-induced Chk1 activation. Importantly,
the integrity of the ATPase motif of FANCM is necessary
for its role in checkpoint signalling (Collis et al. 2008;
Huang et al. 2010). Subsequent studies confirmed that
FANCM participates in Chk1 activation and limits
replication-associated DNA damage (Luke-Glaser et al.
2010; Schwab et al. 2010). FANCM also promotes the
retention of chicken TopBP1 in chromatin (Schwab et al.
2010) and the restart of stalled replication forks (Luke-
Glaser et al. 2010; Schwab et al. 2010). Finally, Chk1 and
FANCM protect each other from proteosomal degradation
during DNA replication stress (Luke-Glaser et al. 2010).
Together, these studies have unveiled a tight link between
FANCM and S-phase checkpoint signalling.

Role of FANCJ/BRIP1

FANCJ/BRIP1 provides another link between Fanconi
anaemia proteins and checkpoint signalling. The BRIP1
helicase interacts with TopBP1 (Gong et al. 2010). This
interaction involves S-phase-specific phosphorylation of
BRIP1 at Thr 1133 and the TopBP1 BRCT repeats 7 and 8,
which undergo important conformational change upon
binding with BRIP1 (Leung et al. 2011). In cells exposed
to hydroxyurea, the helicase activity of BRIP1 and its
interaction with TopBP1 are both required for the accumu-
lation of RPA in chromatin, which in turn promotes the
assembly of the ATR signalling complex and the phosphor-
ylation of Chk1 (Gong et al. 2010). Hence, FANCJ/BRIP1
is likely to facilitate ATR activation by unwinding DNA at
stalled forks.

Signalling from a DNA crosslink

As crosslinks prevent the separation of DNA strands, and
RPA covered single-stranded DNA is a critical determinant
of ATR activation, it raises the question of how DNA
damage signalling is implemented at ICL-stalled forks. Two
reports suggest that Fanconi anaemia proteins sense ICLs
directly and promote an ICL-specific mode of ATR
activation (Ben-Yehoyada et al. 2009; Huang et al. 2010).
Specifically after exposure to ICL-inducing agents,
FANCM and FAAP24 proteins are necessary for the
accumulation and the phosphorylation of RPA32 at dam-
aged sites (Huang et al. 2010). Interestingly, the formation
of RPA foci induced by ICLs occurs in the absence of
microscopically detectable single-stranded DNA foci. In

vitro, FAAP24 binds ICL-damaged DNA preferentially and
promotes the recruitment of RPA (Huang et al. 2010). In a
cell-free extract from Xenopus eggs, plasmid DNA con-
taining a single ICL can induce ATR signalling in the
absence of DNA replication (Ben-Yehoyada et al. 2009).
ICL-induced ATR activation depends on xFANCD2 and
xFANCL (Ben-Yehoyada et al. 2009) in contrast to human
cells that do not seem to rely on FA core complex proteins
for ICL-signalling (Huang et al. 2010). Using episomal-
based chromatin IP from HEK293 cells to detect proteins
bound to a plasmid bearing a defined interstrand DNA
crosslink, Shen et al. (2009) found that the FA core
complex proteins and FANCD2 were enriched on the
damaged plasmid compared with the unmodified substrate
(Shen et al. 2009). The recruitment of FA proteins to the
ICL was not dependent on the plasmid undergoing DNA
replication (Shen et al. 2009), consistent with the observa-
tions that FA proteins bind crosslinked DNA and promote
ATR signalling of ICLs independently of DNA replication
(Ben-Yehoyada et al. 2009; Huang et al. 2010).

In conclusion, FA proteins seem to bind DNA crosslinks
before replication forks reach the lesion and promote an
ICL-specific mode of ATR activation that is mechanistical-
ly distinct from signal activation induced by uncoupling of
MCM helicase and DNA polymerase activities.

Indirect role of FA proteins

More recently, a genome-wide screen for genes necessary
to maintain cell cycle arrest after exposure to ionizing
radiation revealed that homologous recombination and
Fanconi anaemia proteins play a critical role in S-phase
checkpoint activation (Cotta-Ramusino et al. 2011). Con-
sistently, the homologous recombination protein RAD51C
has been implicated in Chk2 activation and cell cycle arrest
in response to DNA damage (Badie et al. 2009). The
involvement of homologous recombination (HR) proteins
in checkpoint signalling suggests that cells may sense
ongoing DNA repair (Cotta-Ramusino et al. 2011).
Consequently, the role of Fanconi anaemia protein in
DNA damage signalling may also result from their
function in channelling DSBs into repair by homologous
recombination (Adamo et al. 2010; Pace et al. 2010).
Consistent with this, inhibition of the non-homologous
end-joining machinery restores most of the IR-induced
signalling defects in cells lacking FANCM, FANCL and
FANCJ (Cotta-Ramusino et al. 2011).

FA proteins promote replication-coupled ICL repair

The removal of interstrand DNA crosslinks mobilises an
important part of the cellular DNA repair tool kit, including
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helicases, nucleases, translesion DNA polymerases, DNA
recombinases, and a battery of posttranslational modifica-
tions and scaffold proteins, which orchestrate the sequential
intervention of DNA processing enzymes. The develop-
ment of experimentally tractable systems, using DNA
plasmids damaged with a single ICL at a defined position,
has provided powerful means to tackle ICL repair in
Xenopus egg extracts and in mammalian cells. ICLs can
be repaired in G0/G1 cells by the combined action of the
nucleotide excision repair machinery that unhooks and
excises the crosslink and translesion DNA polymerases that
ensure DNA repair synthesis (Ben-Yehoyada et al. 2009;
Sarkar et al. 2006; Shen et al. 2009). In S/G2, the repair of
ICLs is coupled with DNA replication and depends on
Fanconi anaemia proteins and homologous recombination
(Fig. 2). The Fanconi anaemia pathway has long been
thought to promote homologous recombination, but this has
been difficult to demonstrate with the widely used GFP
reporter mammalian system developed in the laboratory of
Maria Jasin, which measures the repair of a double-strand
DNA break introduced by I-SceI endonuclease (Moynahan
et al. 2001). The Jasin’s laboratory has now modified the
reporter system to demonstrate that the Fanconi anaemia
pathway facilitates replication-coupled homologous recom-
bination in mammalian cells (Nakanishi et al. 2011). The
authors used a triplex-forming oligonucleotide (TFO)
conjugate to introduce a psoralen interstrand DNA crosslink
into the GFP reporter plasmid at a specific site. After
crosslink formation, the TFO was removed by reduction of
a disulphide bond that links the oligonucleotide and the
psoralen moiety. To measure repair with or without
replication, they simply used plasmids containing or not
the OriP EBV replication origin. Whereas DNA replication
had little impact on recombination repair induced by a
DSB, ICL-induced homologous recombination was greatly
stimulated when coupled to replication and strongly
dependent on the integrity of the FA pathway (Nakanishi
et al. 2011).

Replication-coupled ICL-repair in Xenopus egg extracts

Major advances in our understanding of the mechanism of
replication-coupled ICL repair have been made in the
laboratory of Johannes Walter, using plasmids containing
either nitrogen-mustard like or cisplatin ICL and Xenopus
egg extracts (Raschle et al. 2008). Plasmids bearing a
defined ICL are replicated by sequential incubation into
high-speed supernatant of egg cytoplasm followed by
highly concentrated nucleoplasm egg extracts. This proce-
dure promotes synchronous and efficient replication. As the
plasmid is small, two replication forks rapidly converge and
stall at the ICL after random initiation of bidirectional
replication. Fork stalling at the ICL induces the activation

of the ATR signalling pathway and the monoubiquitination
of FANCD2, suggesting that the system supports the DNA
damage response. A detailed examination of plasmid-ICL
replication in this system revealed that the leading strand of
both forks first pause 20–40 nucleotides from the ICL
(Fig. 2). A recent study from the same laboratory has
demonstrated that the replicative DNA helicase complex is
a 3′–5′ ssDNA translocase that unwinds DNA by steric
exclusion (Fu et al. 2011). During replication-coupled
repair of crosslinked plasmids, the observed pausing site
20–40 nt from the ICL corresponds to the footprint of the
stalled replicative DNA helicase, composed of the hexame-
ric ATPase MCM2-7, CDC45 and GINS. After initial
pausing, DNA synthesis proceeds from one of the two
leading strands up to one nucleotide from the ICL. The

Fig. 2 Replication-coupled, recombination dependent repair of ICLs.
Two adjacent replication forks converging at the crosslink (green box)
are represented. Single replication forks blocked at a crosslink can
also be repaired. DNA synthesis is halted temporarily 20–40
nucleotides away from the lesion, before further extension to within
one nucleotide from the ICL. The MCM2-7 accumulates at ICL-
stalled forks, and removal of the replicative helicase may be necessary
for crosslink repair. The RAD51 recombinase is recruited early during
fork stalling, before nucleolytic incisions. The FA core complex and
FANCD2–FANCI are recruited at ICLs and coordinate nucleolytic
processing of one of the parental DNA strands to “unhook” the
crosslink. REV1 may be responsible for the insertion of one
nucleotide across the lesion, and DNA polymerase ζ extends the
leading strand past the lesion. The restored duplex is used as a
template for repair of the broken sister by homologous recombination
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disappearance of MCM7 from the ICL site correlates
with the leading strand nearing towards the ICL,
suggesting that displacement of the replicative helicase
facilitates the resumption of DNA synthesis towards the
ICL (Fu et al. 2011).

After DNA replication, nucleolytic digestions occur on
one of the parental DNA strands to “unhook” the crosslink
(Fig. 2). As a result, one sister chromatid is broken, while
the other sister duplex is restored, first by insertion of a
nucleotide opposite the adduct and then by DNA repair
synthesis dependent on Pol ζ (Raschle et al. 2008).

The “unhooking” of the crosslink and the insertion of a
nucleotide opposite the unhooked crosslink are mediated by
ubiquitylated FANCD2 and FANCI (Knipscheer et al.
2009). Both events are abolished when the FANCD2–
FANCI complex is removed from the extract or when
depleted extracts are complemented with recombinant
FANCD2 bearing a lysine to arginine substitution in its
monoubiquitination site. It is likely that Ub-FANCD2/
Ub-FANCI recruits structure-specific nucleases to coordi-
nate incisions in one of the parental DNA strands. A recent
study has shown that human SNM1A can digest ICL-
containing DNA from a single 5′ nick (Wang et al. 2011).
The data suggest that, in principle, an initial incision
catalysed by XPF-ERCC1 would be sufficient to prime
SNM1A exonucleolytic digestion of DNA past the ICL,
yielding a gapped DNA intermediate with a covalently
linked mononucleotide.

In DT40 cells, the Fanconi anaemia pathway interacts
genetically with REV1 (Niedzwiedz et al. 2004), a dCMP
transferase containing an ubiquitin-binding motif (Lehmann
et al. 2007). Hence, ub-FANCD2/Ub-FANCI may also
recruit REV1 to insert a nucleotide across the unhooked
crosslink, followed by DNA polymerase ζ for DNA repair
synthesis and restoration of one sister duplex (Raschle et al.
2008).

A recent replication-coupled repair study has used low
speed supernatants from Xenopus eggs, which supports a
single replication initiation event on plasmid DNA after
chromatinization and assembly into pseudo nuclei
(Le Breton et al. 2011). Whether both Raschle et al.
(2008) and Le Breton et al. (2011) show that concerted
incisions occur in one of the parental DNA strands,
incisions are observed in the later study whether one or
both forks have reached the ICL. Consistent with this, ICL-
plasmids containing the origin of replication from Epstein–
Barr virus are repaired when introduced in mammalian cells
(Nakanishi et al. 2011). Since EBNA1 initiates unidirec-
tional DNA replication at OriP, this shows that crosslink
repair can be accomplished from a single stalled fork.

In the final stage of ICL repair, the restored duplex is
used as a template for repair of the broken sister by
homologous recombination. Remarkably, recombination-

dependent ICL repair can be recapitulated in the Xenopus
egg extract system: Repair of the broken sister duplex is
RAD51 dependent and leads to the formation of a
recombination intermediate containing a hemicatenane
(Long et al. 2011). As expected, formation of the
recombination intermediates requires the presence of
FANCD2–FANCI. Chromatin immunoprecipitation analy-
ses showed that RAD51 and FANCD2–FANCI accumulate
near the ICL independently of each other. Interestingly,
RAD51 is targeted to ICL-stalled fork before the formation
of a double-strand DNA break. This is consistent with a
role for RAD51 in the protection of nascent DNA strands
from degradation at stalled forks (Hashimoto et al. 2010). A
similar role has been attributed to BRCA2, which prevents
MRE11-mediated degradation of nascent DNA (Schlacher
et al. 2011). Fork protection by BRCA2 depends on a
RAD51-binding site at the carboxyl terminus of BRCA2,
which stabilises RAD51 nucleoprotein filaments. It is
therefore possible that BRCA2/FANCD1 targets RAD51
to replication forks stalled at ICLs.

Pathway choice

HR and non-homologous end joining (NHEJ) are compet-
ing DSBs repair pathways (Kass and Jasin 2010). Recruit-
ment of DNA-PKcs to DSB sites is observed already two
seconds after micro-irradiation (Uematsu et al. 2007).
Ku70/Ku80 and DNA-PKcs are very abundant, largely
outnumber HR factors, and would easily win in a DNA end
binding competition based on the law of mass action (Meek
et al. 2008). To prevent this, the repair of DSBs is highly
regulated in S phase. Adamo et al. (2010) and Pace et al.
(2010) have shown that elimination of NHEJ components
in FA-deficient cells suffice to suppress hypersensitivity to
DNA crosslinks and accumulation of chromosomal aberra-
tion and to correct homologous recombination defects. This
suggests that the main function of Fanconi anaemia proteins
is to prevent the toxic engagement of the non-homologous
end joining machinery, thereby allowing recombination
dependent crosslink repair (Adamo et al. 2010; Pace et al.
2010). There is, however, one difference between the two
studies: Pace et al. (2010) find that only the knockout of
Ku70 eliminates the cisplatin sensitivity of DT40 Fancc−/−

cells; suppression of DNA-PKcs or Ligase IV provides no
advantages. In contrast, Adamo et al. (2010) observe that
deletion of lig-4 in Caenorhabditis elegans fcd-2 mutant
strains restores meiotic and ICL repair defects and that the
knockdown or drug inhibition of DNA-PKcs suppresses
phenotypic features of transformed human cells lacking FA
core complex or FANCD2 proteins. Whereas the reason for
this difference is not clear yet, the consensus is that an
important function of FA proteins is to shield replication-
coupled repair intermediates from the promiscuous inter-
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vention of NHEJ factors. Inhibitors of DNA-PKcs may
relieve the symptoms of Fanconi anaemia, but some
questions remain outstanding. Monoubiquitinated FANCD2
targets the crosslink repair nuclease FAN1 to damaged sites
(Kratz et al. 2010; MacKay et al. 2010; Smogorzewska et
al. 2010). If the FA pathway is necessary to recruit repair
endonucleases at ICLs, it is difficult to conceive how
crosslink repair can take place without FA core complex
proteins or FANCD2. DNA-PKcs may also have hidden
functions that are important for the repair of replication-
associated double-strand DNA breaks. In response to DNA
damage induced by camptothecin, DNA-PKcs phosphor-
ylates RPA32 at Ser4 and Ser8 (Anantha et al. 2007; Shao
et al. 1999). Phosphorylation of RPA32 at Ser4 and Ser8
probably has important consequences for DNA repair
(Anantha et al. 2007). Interestingly, DNA-PKcs is
phosphorylated by ATR at a Thr2609 cluster in response
to UV-induced replication stress (Yajima et al. 2006). Mice
carrying three alanine substitutions in the Thr2609 cluster
of DNA-PKcs die prematurely of severe bone marrow
failure (Zhang et al. 2011). MEFs derived from DNA-PK3A/3A

cells are hypersensitive to ICLs, exhibit an attenuation of
damage-induced monoubiquitination of FANCD2 and
RAD51 foci formation and exhibit impaired DSB repair by
homologous recombination (Zhang et al. 2011). By contrast,
HR activity in DNA-PKcs−/− is enhanced as the competing
NHEJ pathway is eliminated. This shows that the mouse
Thr2609 phosphorylation cluster promotes FA pathway
activation and homologous recombination. Clearly, further
work is needed to dissect the complex regulation of
replication-coupled and recombination-dependent repair of
ICLs.

Role of FA proteins at fragile sites

In general, FA patients are not exposed to chemotherapeutic
agents that induce ICLs. Endogenous sources of DNA
replication defects may drive the expression of FA
symptoms. Some evidence suggests that FA proteins either
prevent or resolve replication problems at common fragile
sites (Howlett et al. 2005). Fragile loci are intrinsically
difficult to replicate and often coincide with chromosomal
breakpoints in tumors (Gorgoulis et al. 2005; Yunis 1984).
Interestingly, FANCD2 foci that persist in mitosis localize
to fragile site loci on metaphase chromosome spreads
(Chan et al. 2009). Recent studies have provided fresh
insights into the nature of fragile sites, which brings
perspective to the role of Fanconi anaemia proteins
(Fig. 3). Fragile sites are late-replicating regions that are
poor in origins of replication (Letessier et al. 2011). We
discuss below why supplementary origins of replication are
necessary to prevent replication catastrophes.

Foreword on supplementary replication origins
and the rescue of stalled forks

During licensing of DNA replication origins, MCM2-7
complexes are loaded onto chromatin in large excess
(Edwards et al. 2002; Hua and Newport 1998; Ritzi et al.
1998). This reserve of chromatin-bound MCM2-7 com-
plexes is much larger than is needed to duplicate the
genome, and supplementary origins remain dormant as
long as replication forks that proceed from selected
origins move freely. Under stressful conditions, however,
dormant origins become essential to complete DNA
replication and prevent genomic instability (Ge et al.
2007; Ibarra et al. 2008; Woodward et al. 2006). Whereas
a reduction of 50% of chromatin-bound MCM2-7 is
compatible with cell cycle progression (Ge et al. 2007), it
leads to death when cells are exposed to low doses of
hydroxyurea or aphidicolin (Ge et al. 2007; Ibarra et al.
2008). Subsequent studies have shown that supplementary
origins are also necessary to prevent the pathologic
consequences of endogenous replication blocks: Mice
with reduced levels of MCM2-7 proteins are cancer prone
(Chuang et al. 2010; Kunnev et al. 2010). Cells derived
from Mcm4 mutant mice exhibit an increased frequency
of stalled replication forks (Kawabata et al. 2011).
Together, these studies show that supplementary origins
are necessary to rescue stalled replication forks. Letessier
et al. (2011) have now demonstrated that chromosomal
breaks occur at fragile sites because these loci are late
replicating and origin poor. At fragile sites, replication
forks have to cover unusually long distances. Therefore,
there is a probability that replication forks do not
complete the duplication of fragile loci before entry into
mitosis, and this probability increases if fork movement is
slowed down by nucleotide depletion or polymerase
inhibition (Letessier et al. 2011). Another study suggests
that breaks at some fragile sites may stem from secondary
DNA structures that induce replication fork stalling in a
context where no supplementary MCM2-7 complexes are
available to rescue stalled forks (Ozeri-Galai et al. 2011).
Both studies show that the density of usable replication
origins is a key determinant of genome stability in
S phase.

Role of FANCD2/I in the response to oncogene-induced
DNA replication stress

The activation of oncogenes in an evolving population
of tumor cells induces the expression of fragile sites
and the formation of double-strand DNA breaks
associated with DNA replication (Bartkova et al.
2005; Gorgoulis et al. 2005). One study has shown that
inappropriate stimulation of S phase entry by human
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papillomavirus (HPV) E6/E7 or by cyclin E occurs
without concomitant induction of nucleotide biosynthesis
pathways to sustain DNA replication (Bester et al. 2011).
E7 binds and degrades the retinoblastoma protein, leading
to E2F activation, whereas E6 induces p53 degradation. It
has been proposed that suboptimal levels of nucleotides in
aberrant S phase cells may account for the increased
frequency of replication fork stalling and for the formation
of replication-associated DSBs (Bester et al. 2011).
Individuals infected with HPV are at high risk of
developing head and neck squamous cells carcinomas
(HNSCCs). Fanconi anaemia patients are also predisposed
to HNSCCs. It is noteworthy that FANCD2 counteracts
DNA damage induced by (HPV) E7 activation (Park et al.
2010b). In cultured cells, the expression of (HPV) E7
oncoprotein induces FANCD2 foci formation and chro-
mosomal aberrations (Spardy et al. 2007). In vitro, FA
deficiency increases hyperplasia of HPV-positive kerati-
nocytes (Hoskins et al. 2009). In vivo, the knockout of
Fancd2 predisposes transgenic mice to (HPV) E7-induced
HNSCCs (Park et al. 2010b). Conflicting clinical data,

however, have been obtained regarding the potential
increased susceptibility of Fanconi anaemia patients to
HPV-induced carcinogenesis (Kutler et al 2003; van
Zeeburg et al 2008). Nevertheless, these studies show
strong connections between the FA pathway, the expres-
sion of fragile sites induced by (HPV) E7 and carcino-
genesis. This is consistent with the notion that the FA
pathway either prevents replication fork stalling within
origin poor regions or resolves the problem of incomplete
DNA replication at fragile sites.

FANCD2/I may coordinate the repair of un-replicated
regions flanked by two stalled forks (Kawabata et al.
2011). Alternatively, a recent study has shown that
FANCD2 is required for efficient initiation of replication
origins in primary human cells (Song et al. 2010a).
Hence, the paucity of origins at fragile sites may be
further aggravated in FA cells. A third non-exclusive
possibility is that FA proteins prevent formation of breaks
in mitosis via the resolution of topological entanglements
between partially replicated sister chromatids (discussed
below).

Fig. 3 Cytological consequen-
ces of replication failure at
fragile sites. DNA lesions or
oncogene activation that results
in nucleotide pool imbalance
induce the stalling of replication
forks. Supplementary origins
that remain dormant if replica-
tion is unperturbed are mobi-
lised and allow replication
restart when forks stall. In the
absence of supplementary
origins, or at fragile sites, which
are intrinsically origin-poor and
late replicating, completion of
DNA replication is not ensured.
The FANCD2–FANCI complex
stabilises DNA structures that
are partially replicated, forming
twin foci detectable by immuno-
fluorescence microscopy in G2.
In mitosis, the entanglement of
partially replicated sister chroma-
tids induces the formation of
ultrafine anaphase bridges
(UFBs) flanked on each side by a
FANCD2/FANCI
focus. UFBs may be resolved by
decatenation, yielding damaged
duplexes that are transmitted to
G1 cells and shielded from
nucleolytic degradation in 53BP1
nuclear bodies
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Role of FA proteins in the resolution of ultrafine anaphase
bridges

Abnormal replication intermediates formed at fragile sites
have repercussions beyond the S and G2 phases of the cell
cycle. Immunofluorescent staining of polo-like kinase 1
interacting checkpoint helicase (PICH) and Bloom’s syn-
drome protein (BLM) have revealed that ultrafine DNA
bridges that connect sister chromatids form frequently in
anaphase (Baumann et al. 2007; Chan et al. 2007). Ultrafine
DNA structures are not detectable using conventional DNA
dyes. Two classes of ultrafine anaphase bridges (UFBs)
have been identified: centromeres-associated and non-
centromeric/damage-induced, anaphase bridges. In mitosis,
FANCD2 and FANCI form sister foci that localise
specifically to the termini of UFBs induced by replication
blocking agents, such as aphidicolin and mitomycin C
(Chan et al 2009; Naim and Rosselli 2009). Most
FANCD2/I “sister foci” are already detectable in G2 cells
and are located at fragile sites (Chan et al 2009). Thus, it is
likely that damage-inducible UFBs in anaphase originate
from incomplete DNA replication. Consistent with this,
nearly 50% of mice Mcm4 mutant cells that have less
potential origins exhibit spontaneous FANCD2 sister foci in
prophase (Kawabata et al 2011). Interestingly, only 10% of
FANCD2 sister foci detected in metaphase are connected
by UFBs in anaphase, suggesting that a significant
proportion of abnormal replication intermediates that recruit
FANCD2/I are resolved before chromosome migration to
the poles of the dividing cell (Chan et al. 2009). Unresolved
UFBs would otherwise degenerate into double strand DNA
breaks, yield chromosomal abnormalities and cause cytoki-
nesis failure with the production of micronuclei and
binucleated cells. Formation of bulky anaphase bridges
(stained with DNA dyes) in FA cells has been reported
before (Qiao et al. 2004). The recent studies show that FA
deficiency is accompanied with increased ultrafine ana-
phase bridges that derive from fragile sites, consistent with
the notion that FA proteins rescue replication failure (Chan
et al. 2009; Naim and Rosselli 2009; Vinciguerra et al.
2010).

Bloom’s syndrome protein (BLM) is recruited in
anaphase to resolve DNA bridges, in association with its
partner proteins RMI1 and the decatenase Topoisomerase
IIIα (Chan et al. 2007). Similarly, some FA proteins may
also participate in the resolution of topologically inter-
twined sister chromatids. FANCM decorates UFBs flanked
by FANCD2 foci in telophase cells (Vinciguerra et al.
2010). Intriguingly, FANCM UFBs are BLM-dependent,
but the two proteins do not colocalise. BLM UBFs staining
tend to disappear at the time FANCM bridges form
(Vinciguerra et al. 2010). This may reflect a BLM to
FANCM “hand off” mechanism for the resolution of UFBs.

Finally, two recent reports show that marks of replication
failure can be transmitted to daughter cells. Incomplete
DNA replication induced by aphidicolin or unresolved
replication intermediates in BLM cells correlate with the
formation of 53BP1 nuclear bodies in the subsequent G1
(Harrigan et al. 2011; Lukas et al. 2011). 53BP1 nuclear
bodies are enriched at common fragile sites and contain a
number of DNA damage response proteins (Harrigan et al.
2011; Lukas et al. 2011). These replication stress structures
presumably shield DNA lesions that persist after mitosis
until optimal repair conditions are met in the next cell cycle
(Lukas et al. 2011). In conclusion, replication failure at
fragile sites initiates a cascade of causally linked processes
with repercussions up to the next cell cycle.

FA proteins repair DNA lesions induced by reactive
aldehydes

The role for FA proteins at fragile sites is not sufficient to
explain the severe clinical manifestations of Fanconi
anaemia. Recent studies have provided answers to the
long-standing question on the identity of endogenous DNA
damaging molecules that can promote the appearance of FA
symptoms. The Fanconi anaemia pathway appears to limit
the toxicity of DNA adducts formed by endogenous
aldehydes. Aldehydes are highly reactive products impli-
cated, among other things, in amino acids, carbohydrates,
lipids, vitamins and steroidsmetabolic processes (Voulgaridou
et al. 2011). For instance, malondialdehyde and crotonal-
dehyde are both produced through lipid peroxydation and
can induce interstrand crosslinks in DNA (Cho et al. 2006;
Niedernhofer et al. 2003; Summerfield and Tappel 1984).
Some studies have focused on identifying DNA damage
response pathways necessary for tolerance to formaldehyde
and acetaldehyde. Formaldehyde is widespread in the
environment, in nutriments and in the metabolism of
purines and some amino acids. The main alteration induced
by formaldehyde is protein–DNA crosslinks (Voulgaridou
et al. 2011). DT40 cells lacking Fanconi anaemia or
homologous recombination proteins are hypersensitive to
endogenous levels of formaldehyde in human plasma
(Ridpath et al. 2007). Chinese hamster ovary cell lines
bearing inactivating mutations of homologous recombina-
tion and Fanconi anaemia genes are also hypersensitive to
acetaldehyde (Mechilli et al 2008), the product of ethanol
oxidation and an intermediate in carbohydrate metabolism.
Acetaldehyde generates mainly mono adducts, and it can
also produce ICLs (Brooks and Theruvathu 2005): In a
basic environment composed of histones and polyamines,
acetaldehyde reacts with deoxyguanine (dG) to form 1,N2-
propano-2′-deoxyguanosine adducts, which can in turn
react with dG on the complementary strand to form an
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ICL (Fig. 4). Cellular exposure to acetaldehyde induces
FANCD2 monoubiquitination (Marietta et al 2009). To test
the relevance of acetaldehyde-induced DNA damage in
vivo, Langevin et al. (2011) have disrupted the main
acetaldehyde detoxifying enzymes aldehyde dehydrogenase
2 (ALDH2) in Fancd2−/− mice. Aldh2−/− Fancd2 −/− mice
were born only from mothers bearing at least one wild-type
Aldh2 allele, showing that the catabolism of acetaldehyde in
utero was essential for embryonic development (Langevin
et al. 2011). Stress overload with intraperitoneal injection of
ethanol caused severe developmental defects in double-
mutant embryos. After birth, exposure of Aldh2−/−Fancd2−/−

to ethanol in drinking water induced severe bone marrow
failure. Unexposed Aldh2−/−Fancd2−/− mice were born
with subtle developmental defects and succumbed 3 to

6 months later from a disease similar to acute lymphoblastic
leukemia (Langevin et al. 2011). These striking observations
demonstrate that in addition to acetaldehyde detoxification
pathways, Fanconi anaemia proteins constitute an essential
line of defence against the genotoxic consequences of
acetaldehyde. Based on the Aldh2−/−Fancd2−/− mouse
model, a defect in the repair of acetaldehyde-induced lesions
seems to account for most of the Fanconi anaemia
symptoms. Reduced exposure to exogenous sources of
acetaldehyde combined with therapeutic strategies to accel-
erate the catabolism of acetaldehyde will likely ameliorate
the condition of Fanconi anaemia patients. Further studies
will be necessary to decipher whether acetaldehyde is the
most critical reactive metabolite for Fanconi anaemia or
whether exposure to additional aldehyde-derived DNA

Fig. 4 Connections between acetaldehyde metabolism and the
Fanconi anaemia pathway. Acetaldehyde is an intermediate in sugar
and alcohol metabolism, which is catabolised by aldehyde dehydro-
genase enzymes, notably ALDH2, disabled in approximately 36% of
East Asians. This reactive metabolite can induce a variety of chemical
alterations in DNA, including interstrand DNA crosslinks. The
reaction of two aldehydes molecules with deoxyguanosine (dG) forms
1,N2-propanodeoxyguanosine adducts (1,N2-PdG) that can react with
dG on the opposite strand to form interstrand DNA crosslinks. 1,N2-

PdG can also be formed from crotonaldehyde, a product of lipid
peroxidation (Marietta et al 2009). The FA pathway coordinates the
repair of DNA lesions induced by acetaldehyde. The accumulation of
acetaldehyde-induced lesions may induce congenital malformations,
bone marrow failure and leukaemia in Fanconi anaemia patients;
foetal damage from excessive alcohol consumption during pregnancy;
and oesophageal squamous cell carcinomas in ALDH2-deficient
individuals (Brooks et al 2009)
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adducts must be reduced. Limited consumption of alcohol is
also advisable for the 36% of East Asians that have an
inherited deficiency in ALDH2 (Brooks et al. 2009).

Concluding remarks

Important connections between DNA replication and
tumorigenesis have been established. Aberrant entry into
S phase may occur without coordination with supportive
metabolic programs, such as nucleotide biosynthesis path-
ways, and lead to chromosomal breaks, primarily at fragile
sites, the latest origin-poor region of the genome to be
replicated. Replication-blocking lesions induced by reactive
metabolites, such as aldehydes, and exogenous DNA
damaging agents aggravate difficulties intrinsic to the
replication program. FA proteins appear to play a central
role in the response to both endogenous and exogenous
sources of replication obstacles. The question remains as to
why FA-deficient cells appear uniquely hypersensitive to
ICL-inducing agents. An important function of FA proteins
is to ensure the maintenance of genome stability in cancer
prone multicellular organisms. A small number of blocked
replication forks do not necessarily induce cell death: In a
mouse model that develops spontaneous tumors as a result
of insufficient dormant origins, stalled replication forks
poorly activate the ATR-Chk1 signalling pathway (Kawabata
et al. 2011). One important challenge in the future will be to
understand precisely how FA proteins ensure fragile sites
stability in the S/G2 and mitotic phases of the cell cycle,
which may be relevant for our understanding of the
development of solid tumors in FA patients and in the
general population. The protection of replication-associated
double-strand DNA breaks from toxic repair by NHEJ may
be sufficient to explain how the FA network maintains
genome integrity. NHEJ components, however, are also
required for the maintenance of genome stability. The
existence of specific phospho-sites in DNA-PKcs that
promote ICL repair suggests that it may be possible to
control toxic NHEJ activities without compromising the
entire NHEJ pathway in FA patients.

The identification of genotoxic aldehydes that account
for disease symptoms in Fanconi anaemia is an important
breakthrough that will foster the elaboration of new cancer
prevention strategies. Future studies will be necessary to
confirm whether acetaldehyde is the most hurtful metabo-
lite in FA patients or whether protection against other
aldehydes must be considered. As acetaldehyde induces
several types of DNA lesions, mainly monoadducts, the
identification of the specific acetaldehyde-induced lesion
(s) that depend (s) on FA proteins for repair will shed new
light on the FA pathway. After all, the main physiological
function of FA proteins may not be to repair ICLs.

Nevertheless, FA proteins are necessary for cellular
tolerance to chemotherapeutic, ICL-inducing agents. The
complete understanding of the biochemical steps and
associated factors involved in FA-mediated crosslink repair
will provide new opportunities to improve the use of
crosslinking agents in cancer therapy. The development of
systems using mammalian or Xenopus extracts to study
crosslink repair will greatly accelerate progresses in this
field.

It is clear that studies of the rare genetic disease Fanconi
anaemia have provided and will continue to provide
important knowledge on how cells respond to endogenous
replication obstacles, on the nature of these obstacles and
on how cells can surmount chemotherapeutic treatments
that cause replication failure. This knowledge will not only
help improve the care of Fanconi anaemia patients but also
contribute to reducing the burden of cancer in the general
population.
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