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Positional variations among heterogeneous nucleosome maps
give dynamical information on chromatin

Yoshiaki Tanaka & Itsuki Yoshimura & Kenta Nakai

Received: 21 November 2009 /Revised: 2 February 2010 /Accepted: 8 February 2010 /Published online: 12 March 2010
# The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Although nucleosome remodeling is essential to
transcriptional regulation in eukaryotes, little is known
about its genome-wide behavior. Since a number of
nucleosome positioning maps in vivo have been recently
determined, we examined if their comparisons might be
used for obtaining a genome-wide profile of nucleosome
remodeling. Using seven yeast maps, the local variability of
nucleosomes, measured by the entropy, was significantly
higher in a set of reported unstable nucleosomes. The
binding sites of four transcription factors, known as the
remodeling factors, were distinctively high both in entropy
and linker ratio, whereas those of Yhp1, their potential
inhibitor, showed the lowest values in both of them. Taken

together, our map shows the general information of
nucleosome dynamics reasonably well. The “nucleosome
dynamics” map provides the new significant correlation
with the degree of expression variety instead of their
intensity. Furthermore, the associations with gene function
and histone modification were also discussed here.

Introduction

The genome of eukaryotes takes the chromatin structure,
which plays important roles in many cellular processes,
such as transcription and replication. The unit of the
chromatin structure is the nucleosome, which is composed
of a histone octamer, and its positioning on DNA seems to
be optimized for facilitating these cellular processes. For
example, a number of researchers reported that the
upstream region of transcription start sites (TSSs) of
genes is statistically free of nucleosomes (Jiang and Pugh
2009a, b). This kind of studies are accelerated thanks to a
series of recent releases of genome-wide nucleosome
positioning maps in human (Ozsolak et al. 2007; Schones
et al. 2008), fly (Mavrich et al. 2008a, b), nematode
(Johnson et al. 2006; Valouev et al. 2008), Medaka fish
(Sasaki et al. 2009), and budding yeast (Kaplan et al. 2009;
Lee et al. 2007; Mavrich et al. 2008a, b; Whitehouse et al.
2007; Yuan et al. 2005).

The nucleosome positioning is not uniform temporally,
either. This phenomenon is known as nucleosome remodel-
ing, where ATP-dependent chromatin remodeling factors
can change the nucleosome organization by inducing DNA
superhelical torsion (Chandy et al. 2006; Havas et al. 2000).
In yeast, several transcription factors, such as Abf1, Reb1,
and Rap1, known as General Regulatory Factors (GRFs;
Chasman et al. 1990), also perturb nucleosome positioning
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in the vicinity of their binding sites for activating
neighboring regulatory sites (Fourel et al. 2002; Hartley
and Madhani 2009). In the promoters of ribosomal protein,
Rap1 is required for recruitment of Esa1 catalytic subunit of
NuA4 H4 lysine acetyltransferase (Reid et al. 2000).
Additionally, it is known that induction of chromatin
remodeling factors is controlled by a variety of histone
modifications. For example, a typical remodeling complex,
Swi/Snf, requires histone acetylation by the Spt-Ada-Gcn5-
acetyltransferase (SAGA) complex to bind to DNA and
then displaces the acetylated histone (Chandy et al. 2006;
Varga-Weisz 2001). Another remodeling complex, Mi-2,
also contains histone deacetylases (Whitehouse et al. 1999).
Therefore, it is of great interest to compare the changes
between histone modification patterns and associated
nucleosome dynamics.

To examine the chromatin remodeling globally, it is
necessary to compare the change of nucleosome positions
upon some stimuli. So far, while the positional changes of
nucleosomes have been analyzed in several loci (Almer et
al. 1986; Barbaric et al. 1992; Kent et al. 2001; Moreira and
Holmberg 1998; Weiss and Simpson 1997), only a little is
known about their genome-wide behavior. As a pioneering
study, Shivaswamy et al. showed the depletion of nucleo-
somes in promoters induced by heat shock (Shivaswamy et
al. 2008). However, their results are based on the
comparison between only two conditions. Much more data
are necessary to get the general genome-wide landscape.
Jiang and Pugh developed a compiled reference map of
nucleosome positions in Saccharomyces cerevisiae, using
multiple maps independent of our study (Jiang and Pugh
2009a, b). However, detailed analyses of its “dynamic”
positions have not been published yet.

In this study, we tested a simple hypothesis that the local
positional variance of nucleosomes in a set of heteroge-
neous maps can be an indicator of local nucleosome
remodeling. Seven yeast maps were used, and we show
that our results are quite promising, that is, consistent with
a number of previous observations, such as promoters,
replication origins, and transcription factor binding sites
(TFBSs) (Field et al. 2008; Hartley and Madhani 2009;
Shivaswamy et al. 2008), and are useful for deriving novel
but reasonable correlations between the change of nucleo-
some positioning and several features, such as gene
function, expression variety, and histone modifications.

Results

Re-definition of nucleosome positions

We combined seven different maps from four publications,
which are based on two different experimental techniques:

tiling arrays and next-generation sequencers (Supplementa-
ry Table 1). Since it is desirable to define all nucleosome
positions based on a unified method, we modified a hidden
Markov Model (HMM) that was first introduced by Yuan et
al. with the signal gradient instead of its intensity (Yuan et
al. 2005; Supplementary Fig. 1 and Materials and methods).
In each map, more than 55,000 locations of nucleosomes,
which cover 70–85% of the entire genome, were re-
assigned (Fig. 1a and Table 1). The total count of detected
nucleosomes in this study was about 3,000–4,000 higher
than the original values in (Mavrich et al. 2008a, b;
Whitehouse et al. 2007) and was closer to that in Lee et
al. (2007). However, for more than 80% of the originally
reported positions, newly assigned nucleosomes were
positioned within a 30-bp range of the inter-center distance
(Supplementary Fig. 2). Thus, we regarded that our re-
definition of nucleosome positions is reasonable.

Consistency with known stable/unstable nucleosomes

By comparing the relative positions of re-assigned nucle-
osomes with the above procedure, we can identify local
regions where nucleosome positions are stable or unstable
among the seven maps. As a measure of the positional
variability of nucleosomes, we adopted the average of
“entropy” value over a 100-bp window (see Materials and
methods). This definition of entropy is based on Shannon's
entropy, which is a standard measure for estimating the
uncertainty of a given signal in Information Theory
(Schneider 2010). While the entropy is high in the region
where nucleosome positioning is variable between datasets
(black rectangle in Fig. 1a), the entropy is low where
nucleosomes are occupied or depleted in all datasets (white
or gray rectangles in Fig. 1a).

To verify our “nucleosome dynamics” map, we collected
experimentally verified examples of 21 stable and 13
unstable nucleosomes on five promoters from literature
(Almer et al. 1986; Barbaric et al. 1992; Kent et al. 2001;
Moreira and Holmberg 1998; Weiss and Simpson 1997)
(Supplementary Table 2). The unstable nucleosomes show
significantly higher entropy values than the stable ones (P=
1.6e-3 from Wilcoxon test; Fig. 1b).

It is also important to know how much the variability of
nucleosome locations is explained by the difference of
experimental techniques. Thus, the mutual correlation
of assigned positions in highly dynamic regions between
different maps was examined using a cluster analysis
(Supplementary Fig. 3). The data produced by the same
authors tend to be clustered together. To confirm if this
intra-laboratory correlation does significant harm or not, we
further checked the effect of removing one or two of the
data from the same Kaplan et al.'s laboratory. The Pearson's
correlation coefficient (PCC) was calculated between the
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entropy values of each case and the original one along the
whole genome. In all cases, high correlation was observed
[PCC ≥0.936 (P<2.2e-16)], indicating that the differences of
nucleosome locations were not always due to those of
experimental techniques or authors. In the following sections,
we will further validate the reliability of our map by
comparing our observations with a variety of previous reports.

Nucleosomes around TSSs and replication origins

The averaged positions of nucleosomes around TSSs and
replication origins have been studied in various organisms
(Field et al. 2008; Johnson et al. 2006; Lee et al. 2007;
Mavrich et al. 2008a,b; Ozsolak et al. 2007; Sasaki et al.
2009; Schones et al. 2008; Valouev et al. 2008; Whitehouse
et al. 2007). Then, we took similar statistics from our map.
In Saccharomyces Genome Database (SGD), the data of
mRNAs/TSSs are classified into three groups depending on
their reliability: verified, uncharacterized, and dubious ones

(Supplementary Table 3). Since the lower entropy may
indicate the stable open or closed nucleosome regions (gray
or white rectangles in Fig. 1a, respectively), we added the
linker ratio (the ratio of linker regions in a 100 bp window),
which indicates the tendency of nucleosome depletion, to
distinguish them in this analysis. In Fig. 2, the entropy
values of these three groups as well as autonomous
replication sequences (ARSs) are shown in black lines
while the linker ratio values are shown as a heat map.
Around the “verified” TSSs, a clear peak for both values
was observed around the −100 bp region and a less
significant negative peak just downstream of the TSS. This
result can be interpreted that a highly unstable nucleosome
exists around −100 bp from the TSS while another stable
nucleosome is positioned just downstream of the TSS.
Similar tendencies were also observed in “uncharacterized”,
but not in “dubious”. Additionally, one unstable nucleo-
some was also observed at around +100 bp from ARSs. It is
noteworthy that the less conspicuous the peaks around TSS

Fig. 1 The nucleosome dynamics map. a An example of the promoter
region of the NUC1 gene. Red rectangles represent the location of
detected nucleosomes. Orange waves indicate the distribution of
entropy (2nd row) and linker ratio (3rd row). b Difference of entropy

between stable and unstable nucleosomes reported in literature. Black,
red, green, blue, and cyan points were obtained by datasets of (Almer
et al. 1986; Barbaric et al. 1992; Kent et al. 2001; Moreira and
Holmberg 1998; Weiss and Simpson 1997), respectively

Data source Reported Our result

Count Occupancy (%) Count Occupancy (%)

Lee et al. 2007 70885 80.957 69972 85.401

Whitehouse et al. 2007 (WT) 63026 78.842 67291 81.417

Whitehouse et al. 2007 (Δisw2) 62594 78.301 67109 81.123

Mavrich et al. 2008a 55141 67.151 58412 74.499

Kaplan et al. 2009 (Ethanol) 55431 70.731

Kaplan et al. 2009 (Galactose) 56516 72.223

Kaplan et al. 2009 (YPD) 56172 72.082

Table 1 Summary of our detec-
tion method and the comparison
with reported nucleosomes
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become, the more questionable the data becomes. This
makes sense and supports the plausibility of our data.

Nucleosomes around the binding sites of 100 transcription
factors

Since nucleosome remodeling has been reported to occur
around the binding sites of several transcription factors
(Shivaswamy et al. 2008), we next examined the positional
variability of nucleosomes around conserved binding sites

of 100 transcription factors (Harbison et al. 2004; MacIsaac
et al. 2006; Supplementary Fig. 4). Interestingly, the
correlation between TFBSs and the entropy/linker ratio
was quite variable with transcription factors (Fig. 3a;
typical examples are shown in Fig. 3b). For example,
Abf1 and Reb1 show the highest linker ratios, implicating
that the chromatin structure in their binding sites is
relatively open. On the other hand, Yhp1 shows the lowest
in both entropy and linker ratio, suggesting that its binding
sites exist in closed and stable chromatin. As discussed

Fig. 2 Distribution of entropy/linker ratio around TSSs with three kinds of quality and ARSs. The black points and bars show the average and the
standard deviation of entropy, respectively. The heat colors show the log2(count) of the linker ratio

Table 2 Over-represented GO terms in each cluster

Cluster 1 Cluster 2 Cluster 3 Cluster 4

GO terms p value GO terms p value GO terms p value GO terms p value

Plasma membrane 0.00028 Translation 1.70E-05 DNA metabolic process 0.00061

Cell wall 0.00052 Structural molecule activity 0.0001 Organelle organization 0.00142

Oxidoreductase activity 0.00106 Ribosome 0.00022 Chromosome 0.00161

Microtubule organizing center 0.00026 Nucleus 0.00216

Cellular component 0.00045
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later, many of those extremely positioned transcription
factors are known or the relationship with chromatin
remodeling is proposed (Fourel et al. 2002; Hartley and
Madhani 2009), which strongly suggests that our “nucleo-
some dynamics” map is reasonably reliable. Furthermore,
the binding sites of 83 out of 100 transcription factors are
located in regions with significantly higher entropy than
expected at random (Bonferroni-adjusted P<0.01; Supple-
mentary Table 4). These results imply that most conserved
binding sites are subject to chromatin remodeling.

Genome-wide distribution of “dynamic” regions

From the above results, we concluded that the entropy/linker
ratio values of the combined map are reliable indicators of (at
least) the averaged dynamic status of chromatin. Hereafter, we
report some of the new results derived from our data.

The first one is the distribution of “dynamic” regions
along the whole genome (Fig. 4a). The histogram of the
entropy value is shown in Supplementary Fig. 5a. The local
regions with higher entropy values, which are interpreted as

Fig. 3 Nucleosome dynamics around transcription factor binding
sites. a Plot of 100 transcription factors with the two values around
their binding sites. b Distribution of entropy/linker ratio around the

binding sites of six typical factors. The solid and dashed lines are the
entropy and the linker ratio, respectively
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Fig. 5 Nucleosome dynamics
and gene expression. a Clusters
of genes plotted by the entropy/
linker ratio values. Clusters 1 to
4 are represented by black,
red, green, and blue, respective-
ly. Difference of b the expres-
sion variety and d the
expression intensity among the
four clusters. c A relationship
between the expression variety
and the entropy. Genes are
classified into 20 clusters by
expression variety

Fig. 4 The genome-wide distri-
bution of “dynamic” regions. a
Distribution of the entropy values
throughout the whole chromo-
some regions. The differences of
b Entropy and c Linker ratio
between intragenic and intergenic
regions are shown
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highly dynamic chromatin regions, are distributed relatively
uniformly in each chromosome. This distribution is slightly
negatively correlated with the GC content (PCC=−0.243),
but shows no clear correlation with the transcriptome map
by Nagalakshmi et al. (PCC=−0.039; Nagalakshmi et al.
2008).

Difference between the inside and the outside of genes

Next, the difference of “nucleosome dynamics” between
intragenic regions (i.e., exons plus introns) and inter-
genic regions was examined. The entropy in intergenic
regions was significantly higher than in intragenic
regions (P<1.0e-15 from the Wilcoxon test; Fig. 4b).
Within the intragenic regions, the entropy in introns was
significantly higher than in exons (P<1.0e-15), but was
lower than in the intergenic regions (P<1.0e-15). Like
entropy, the linker ratio in exons was significantly lower
than in introns and in intergenic regions (P<1.0e-15 in
both regions; Fig. 4c). These results suggest that nucleo-
somes are stably and densely located within exonic
regions.

Correlation with gene expression

Since chromatin remodeling is involved in transcription-
al regulation, it is of interest to study the correlation
between our data and systematic gene expression data.
First, we plotted 5,089 genes based on the entropy and
the linker ratio, averaged over their upstream 400-bp
region (Fig. 2). Roughly speaking, these two values
correlate with each other, but there exists a group of
exceptional genes that have larger linker ratios than
expected. Second, we classified these 5,089 genes into
four clusters by Ward's method and tried to characterize
each of them (clusters 1 to 4 in Fig. 5a and Supplementary
Fig. 6). Each cluster contained 1,142, 788, 1,289, and
1,870 genes, respectively (Supplementary Table 5). Since
the entropy and the linker ratio in cluster 1 were the
highest, this cluster was interpreted as having “dynamic
and open” promoters. On the other hand, cluster 2 showed
the lowest entropy and linker ratio, characterized as
“stable and closed”. As noted above, cluster 3 is
exceptional because it has lower entropy but higher linker
ratio. This cluster of genes is expected to have “stable and
open” promoters.

Next, using 173 DNA microarrays for which time-scale
expression changes under 16 different stresses have been
measured (Gasch et al. 2000), we calculated the standard
deviation of log2(ratio) for each gene as a measure of
expression variety and examined this value among the
clusters (Fig. 5b). Cluster 1, the “dynamic and open”
cluster, shows the largest expression variety (Bonferroni-

adjusted P<3.0e-3 in all comparisons from Wilcoxon
test). On the other hand, cluster 3, the “stable and open”
cluster, shows the smallest expression variety (Bonferroni-
adjusted P<1.5e-12 in all comparisons). For a confirma-
tion, we did an opposite analysis: we classified the genes
into 20 clusters based on the degree of their expression
variety. As shown in Fig. 5c, clusters with larger variety
tend to have higher entropy values while clusters with
smaller variety show lower values, an observation which
supports our claim that “dynamic” promoters often
regulate genes with larger expression variety. We also
tested the correlation with the gene expression intensity
(interpreted as equivalent with the mRNA amount) by
comparing the counts of cDNA tags mapped on the
intragenic regions among the four clusters (Fig. 5d;
Nagalakshmi et al. 2008). Although the expression level
of cluster 1 was slightly higher than cluster 2 (Bonferroni-
adjusted P=8.1e-4), there were no clear differences. Thus,
these results support the idea that chromatin remodeling is
linked to the degree of expression change but not to its
expression level.

Relationship with gene function

For each of the above-mentioned four clusters, we
checked whether there are any over-represented Gene
Ontology (GO) terms (Table 2). In cluster 1, terms such
as “plasma membrane” and “cell wall” were over-
represented. Cluster 2 showed the enrichment of terms
such as “ribosome”, “structural molecule activity”, and
“microtubule organizing center”. Cluster 3 was enriched
with terms such as “DNA metabolic process”, “chro-
mosome”, and “nucleus”. To confirm the stability of
this GO analysis, we clustered the genes into three
classes in a different way. [First, divide the data into
two, using the average entropy value as a border; then,
the genes with lower entropy values were further
classified by the average linker ratio value (Supplemen-
tary Fig. 7)]. With these three clusters, we confirmed that
the result of their GO analysis gave the same tendency
(Supplementary Table 6). Although they are just a
statistical tendency, these results may imply that the initial
changes of gene expression in response to various outside
signals tend to be regulated by chromatin remodeling (See
Discussion).

Comparison between two histone modification maps
and ours

To clarify the correlation between the variability of nucleo-
some positioning and the histone modification pattern, we
used two datasets: ChIP-on-chip data (Pokholok et al. 2005)
and tiling array data (Liu et al. 2005).
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From the comparison with the ChIP–chip data, we found
significant differences in entropy for five out of eight
modifications (Fig. 6). In monomethylation of H3 lysine 4
(H3K4me1) and trimethylation of H3 lysine 36
(H3K36me3), the entropies in hyper-modified sites were
significantly higher than those in hypo-modified sites (P<
1.3e-7 from Wilcoxon test). On the other hand, hyper-
acetylation of H3 lysine 14 (H3K14ac) and H4 (H4ac) as
well as trimethylation of H3 lysine 4 (H3K4me3) showed
significantly lower entropies than their hypo-modifications
(P<2.6e-6). For the linker ratio, small differences were
observed in H3K36me3, H3K4me3, and H3K14ac (P<
5.0e-3; Supplementary Fig. 8).

Similarly, in the comparison with the tiling array data,
hyper-H3K4me1 showed significantly higher entropies
while hyper-H3K4me3 and H3K14ac showed significantly
lower entropies (P<1.0e-04 from Wilcoxon test; Supple-
mentary Fig. 9). Note that trimethylation of H3 lysine 79
(H3K79me3), H3K36me3, and H4ac were not included in

this tiling array data. The linker ratio was not significantly
different between hyper- and hypo-modifications in all of
the five modifications (P>0.01). Thus, at least the
consensus of these two results (positive correlation of
H3K4me1 and negative correlation of H3K4me3 and
H3K14ac) seems to be reliable.

Histone modifications in promoters

To examine if there are any tight links between any of the
four clusters of genes and the status of histone modification
in each promoter is also interesting. Cluster 3 was clearly
enriched with H3K4me3 in the upstream region (Fig. 7).
The levels of H3K9ac and H3K14ac in stable chromatin
clusters (clusters 2 and 3) were modestly higher, too. On the
other hand, H3K4me1 and H3K4me2 did not show a large
difference among the four clusters. These results suggest
that H3K4me3 modification is required to maintain stably
open chromatin in the upstream regions.

Fig. 6 Nucleosome dynamics and histone modifications with the dataset of Pokholok et al., 2005. The asterisk indicates significant difference
(P<0.01 from Wilcoxon test)
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Discussion

In this study, we tested our hypothesis that a compendium of
heterogeneous nucleosome maps should give us the local
information of nucleosome instability, in other words,
nucleosome dynamics. There are two kinds of raw data: the
tag counts of next-generation sequencers and the hybridiza-
tion signals in tiling arrays. They differ both in signal
intensities and in resolutions. To make objective alignments
of nucleosome positions, it is desirable to use a common
method to assign these positions. Therefore, we modified the
HMM method by Yuan et al. so that signal gradients, instead
of intensity, are used as inputs (Yuan et al. 2005). Another
modification was to add two self-loops to nucleosome states
to make the model flexible enough to deal with noisy data.

The comparative analysis of the entropy value between
known stable nucleosomes and known unstable nucleo-
somes showed the accuracy of our “nucleosome dynamics”
map (Fig. 1b). Although there was a statistically significant
difference between the two groups, the distinction was not
perfect. It can be interpreted that our map may not be
accurate enough to assess the situation of individual
nucleosome accurately, but its statistical analysis is mean-
ingful. Then, we analyzed the averaged distribution of the

two indicator values (the entropy and the linker ratio)
around TSS with three groups of mRNA data and ARSs
(Fig. 2). There was a sharp peak of open and dynamic
chromatin at around the −100 bp position, and this open
region extends to around the −400 bp position from the
TSS. A similar peak was also observed within ARSs. On
the contrary, there was a weak tendency of dense and stable
chromatin just downstream of TSS. Notably, these obser-
vations are consistent with our current knowledge of
chromatin remodeling in promoters (Shivaswamy et al.
2008) and in replication origins (Field et al. 2008). The
observed tendency becomes weaker as the reliability of the
data becomes less.

Furthermore, our data indicate that most of the tran-
scription factor binding sites are dynamic and open, more
or less. Impressively, GRFs showed especially large
entropy/linker ratio values (Fig. 3a). This is consistent with
previous studies proposing that GRFs may have chromatin
remodeling activity (Fourel et al. 2002; Hartley and
Madhani 2009). Our observation that Abf1 and Reb1 show
similar values, but are a little apart from Rap1, is also
consistent with a previous report (Kaplan et al. 2009;
Yarragudi et al. 2004). Mcm1, which is also located near
GRFs in our plot, is implicated to be involved in chromatin

Fig. 7 Distribution of histone
modifications across upstream
and transcribed regions. Modifi-
cations across the averaged pro-
moter regions based on Liu et
al.'s (2005) dataset. Pink rec-
tangles indicate (partial) tran-
scribed regions
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remodeling (Chang et al. 2003). The fact that Mcm1
regulates the expression of a number of replication
initiation factors may be related to our observation that
there is a peak of nucleosome dynamics around ARSs
(Fig. 2). On the contrary, Yhp1, which can bind to Mcm1
and the sites adjacent to Mcm1-binding sites, was observed
in the stable and closed chromatin regions. Pramila et al.
previously showed that Yhp1 protein represses cell-cycle-
regulated genes with Mcm1 (Pramila et al. 2002). Thus,
Yhp1 may restrict the activity of chromatin remodeling of
Mcm1. Moreover, the two transcription activators, Ime1
and Fhl1, are also associated with the regulators of
chromatin structure. The former factor activates meiosis-
specific genes by recruiting with RSC chromatin remodel-
ing complex (Inai et al. 2007); the latter is involved in the
activation of ribosomal protein genes with Rap1 and is
proposed to mediate the recruitment of Esa1 (Schawalder et
al. 2004; Wade et al. 2004).

These results suggest that our map is reliable enough to
predict the degree of chromatin remodeling around the
binding sites of individual transcription factor. In addition,
significant differences of the entropy and the linker ratio
between inside and outside of genes (Fig. 4b, c) are consistent
with the fact that TFBSs are enriched in intergenic regions,
which contain promoters and enhancers. Recent reports
suggesting that nucleosome positioning within exon regions
may function as an exon–intron marker also support our
results (Schwartz et al. 2009; Tilgner et al. 2009).

The correlation between nucleosome positioning and
gene expression has often been reported. For example, Lee
et al. showed that average nucleosome occupancy in
promoters with high expression intensity is significantly
lower than that with low intensity using a single nucleo-
some map (Lee et al. 2007). Our results give a little
different interpretation from an additional dimension: based
on the entropy value that is derived from the comparison of
multiple maps, we further classified the “open” chromatin
status, which is characterized by higher linker ratio values,
into “dynamic” (higher entropy) and “stable” (lower
entropy) statuses (Fig. 5a). As an example, we mapped
the four clusters onto the promoter of genes involved in a
typical stress-responsive pathway, cAMP-protein kinase A
(Aguilera et al. 2007). There is a clear tendency that
upstream genes have the “dynamic and open” promoters
while downstream ones have “stable” promoters except a
few exceptions, such as Msn4 (Supplementary Fig. 10).
Additionally, while genes involved in nucleotide metabo-
lism, promoters of which are enriched in cluster 3, are
reported to show little changes in expression under various
winemaking conditions too (Varela et al. 2005), promoters
of upstream genes on another stress-responsible pathway,
protein kinase C pathway, such as Rho1 and Mid2, are
enriched in cluster 1. Taken together, we conclude that our

clustering results seem to reflect the difference between
genes that are responsive to various external stimuli and
ones that are constantly expressed. Furthermore, the
difference between the “open” and “closed” statuses was
not significantly correlated with the expression intensity. It
is an important observation that is only obtainable using
multiple maps.

Although the interpretation of various histone modifica-
tion data is complicated, the results obtained from two
independent datasets (Liu et al. 2005; Pokholok et al. 2005)
were basically consistent, further supporting our “nucleo-
some dynamics” map. Moreover, we observed that the
contribution of each histone modification to nucleosome
dynamics is different. H3K4me3, H3K14ac, and H4K9ac,
which are known to be rich in the 5′ end of active genes
(Barski et al. 2007; Heintzman et al. 2007; Li et al. 2007;
Liu et al. 2005; Pokholok et al. 2005; Sung and Amasino
2006; Wang et al. 2008), were enriched in stable chromatin
promoters in our study. Furthermore, H3K4me3 showed a
clear difference in the upstream regions of genes in cluster
3 (Fig. 7). Recently, Vermeulen et al. showed that
H3K4me3, but not the other two acetylations, is specifically
associated with TFIID complex (Vermeulen et al. 2007).
They also showed that H3K9ac and H3K14ac have a
potential to enhance TFIID interaction with H3K4me3.
Their associations with remodeling factors also have been
presented in several studies (Kuo et al. 1998; Wysocka et
al. 2006; Zhang et al. 1998). On the other hand, the
H3K4me1-rich regions showed significantly higher entropy
values (Fig. 6). Since this modification is reported to be
associated with enhancer activity (Heintzman et al. 2007), it
is possible that the modification modulates the enhancer
activity with the change of nucleosome positioning.

Conclusion

From the above results, we conclude that the integration of
various maps can show general features of nucleosome
dynamics. Using our “nucleosome dynamics” map, a number
of novel observations are made. We hope that some of them
will be experimentally verified in the future. For example, the
order of nucleosome dynamics was: “intergenic regions”
>“introns”>“exons”. The degree of nucleosome instability
correlates well with their degree of expression variety but not
their intensity. The genes whose TSS region is highly dynamic
and open tend to encode proteins that can sense extracellular
conditions while the genes whose TSS regions are stably open
tend to encode nuclear proteins. In addition to the GRFs, there
are additional transcription factors whose binding sites exist at
dynamically open regions: Leu3, Ime1, Rds1, and Fhl1, two
of which have been suggested to be associated with chromatin
remodeling.
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It is evident that our methodology is quite intuitive, and
there is much room for further improvement. Nevertheless,
this methodology is promising in clarifying various aspects
of epigenetic effects in cellular processes such as gene
expression.

Materials and methods

Dataset

The in vivo nucleosome maps were obtained from four
articles (Supplementary Table 1; Kaplan et al. 2009; Lee
et al. 2007; Mavrich et al. 2008a, b; Whitehouse et al.
2007). The genome sequences, the gene coordinates, and
the GO Slim data of S. cerevisiae were downloaded from
the SGD (http://www.yeastgenome.org/). Yeast cDNA
tags generated by random primers (GSE11209) were
obtained from the Gene Expression Omnibus database
(http://www.ncbi.nlm.nih.gov/geo/; Nagalakshmi et al.
2008). The microarray data of time-scale expression
changes were obtained from Stanford Genomic Resources
(http://www-genome.stanford.edu/yeast_stress/; Gasch et
al. 2000). The in vivo binding sites of yeast transcription
factors, with the criteria of p value cutoff 0.005 and no
conservation, were downloaded from the website of
Fraenkel's laboratory (http://fraenkel.mit.edu/; Harbison
et al. 2004; MacIsaac et al. 2006). The ChIP-on-chip data
for histone acetylations and methylations were obtained
from the website of Young's laboratory (http://inside.wi.
mit.edu/young/pub/download.html; Pokholok et al. 2005).
The tiling array dataset of histone modifications was
downloaded from the supporting information of (Liu et al.
2005). The data of stable and unstable nucleosomes was
collected from five articles (Almer et al. 1986; Barbaric et
al. 1992; Kent et al. 2001; Moreira and Holmberg 1998;
Weiss and Simpson 1997). In each article, nucleosomes,
which were depleted or largely moved in another
condition, were defined as unstable nucleosomes (Supple-
mentary Table 2).

Assignment of nucleosome locations

Since the downloaded nucleosome maps were heteroge-
neous in both their experimental techniques and the
algorithms for nucleosome position assignment (Supple-
mentary Table 1), we modified the HMM algorithm by
Yuan et al. to be applicable to both the next-generation
sequencer and the tiling array data with various resolutions
(Yuan et al. 2005):

Since only 36-bp from 5′ end is read for each
mononucleosomal DNA fragment by Illumina sequencer,
we need to estimate the position of corresponding nucleo-

some centers from the data. Basically, we followed the way
of Jiang and Pugh (2009a, b) and added 73 bp, which is the
half length of the nucleosomal DNA, to each position of the
5′ end as the estimated center. In the GS20 sequencer data,
covering more than 100 bp of the nucleosomal DNA, the
midpoint of tags is used as the nucleosome center. For each
nucleosome center i, the counts of corresponding tags c(i)
were recorded. Then, at each discrete position Ij (Ij=5+10j,
j=0, 1, 2, ...) in the genome, the nucleosome signal s(Ij) is
calculated with the following formula:

s Ij
� � ¼ log2

PIjþ73

i¼Ij�73
w i; Ijð ÞcðiÞ

PIjþ73

i¼Ij�73
w i; Ijð Þ

þ 1

0
BBBB@

1
CCCCA

where w(i, Ij) is the Gaussian distribution with mean Ij and
standard deviation 20 as introduced in (Albert et al. 2007).
The nucleosome signals were further normalized to the Z-
scores. In the tiling array data, we used the log2(intensity)
as the nucleosome signal.

Next, for each discrete position L (L=10, 20, 30, ...), the
minimum range that encompasses it is defined as follows:

Im < L� 5 < Imþ1 and In�1 < Lþ 5 < In

Note that the above formulae are applicable to both of
the data. It is possible that m=n−1 where the tiling array is
sparse.

Then, we define the gradient (more accurately, the sine)
g(L) as:

gðLÞ ¼ 10 s Inð Þ � s Imð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102 s Inð Þ � s Imð Þð Þ2 þ In � Imð Þ2

q

g(L) takes the values from −1 to +1. The value “10” is a
scaling coefficient. In the linker region, the gradient signals
are almost zero, whereas the signals are positive/negative
on the 5′/3′ side of the nucleosome region, respectively
(Supplementary Fig. 1a).

Our HMM contains three types of hidden states, each of
which outputs the gradient signal value: one linker node (L),
seven nucleosome nodes on the 5′ side (5N1-5N7), and seven
nucleosome nodes on the 3′ side (3N1-3N7; Supplementary
Fig. 1b). In addition to one self-connecting loop on the L
node for allowing various lengths of linker regions, two self-
loops were added to the 5N7 and 3N7 nodes for the detection
of wider peaks. The emission probability function in each
node is represented by a Gaussian distribution N(μ,ρ), where
μ and ρ are parameters that take the same value in all nodes
for each state (Supplementary Fig. 1c). All model parameters
were estimated from a sliding window of 100 consecutive
positions by Baum-Welch algorithm using the gradient signal
in chromosome 3 as input (therefore, the parameter values are
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different for each original map). The averaged parameters
from all windows were used for the estimation of hidden
states by Viterbi's algorithm.

Since several nucleosome signals were obtained from
short DNA sequences, we removed abnormal regions,
where the length of the linker region is more than 300 bp
(Supplementary Fig. 11).

For control studies, the nucleosome positions were
shuffled randomly. This shuffling was iterated ten times.
The distance between each nucleosome reported in the
original article and the nearest nucleosome detected by our
method was used for evaluation.

Similarity of nucleosome maps in highly dynamic regions

In the highly dynamic regions, where the entropy is more
than 0.8, the output of Viterbi algorithm was converted to
binary code (1=nucleosome state and 0=linker state). Phi
coefficient was calculated with each pair of nucleosome
maps.

Two indicators for representing chromatin status

To evaluate the level of nucleosome positional variety, we
introduced average Shannon entropy, calculated as follows:

Entropy ¼ � 1

W=10

XW=10

i¼1

pN ;i log pN ;i þ pL;i log pL;i
� �

where PN,i and PL,i (=1−PL,i) are the ratio of nucleosome
states and linker states at relative position i, respectively
(Schneider 2010). The entropy value goes toward zero if
either state becomes dominant within the window (PN,i → 1
or PL,i → 1) while it takes the maximum value if the two
states are equally observed (PN,i=PL,i=0.5). The entropy is
calculated through the whole genome using moving
windows. In this study, we used 100 bp as the window
size W, with a sliding interval of 10 bp.

Additionally, we used the linker ratio, which is defined
as the count of linker states within the window divided by
the window size (=100 bp) and the number of the
nucleosome maps (=7).

Histone modification data analysis

In Pokholok et al.'s data, which covers the whole genome, we
used the average of the entropy and the linker ratio within
the probe center ±250 bp for characterizing the chromatin
state. In Liu et al.'s tiling array data, which covers the entire
chromosome 3 and parts of the other chromosomes at 20-bp
resolution, we used the values at the corresponding sites as
they were. For the analysis of hyper- and hypo-modified
sites, the 250 highest and the 250 lowest probes were used.

Transcription factor binding sites

Among the data of 119 transcription factors downloaded
from Fraenkel's website, we removed those of 19 factors
because their binding sites were not observed in the
“normal” regions more than five times. The entropy and
the linker ratio at each position within ±50 bp from the
binding sites were averaged over all binding sites for each
transcription factor. As a control, we randomly picked up
100 sites and calculated the values in the same manner.
This sampling was repeated 100 times. The significance of
the distribution against the control for each transcription
factor was calculated based on the two-dimensional
Gaussian distribution.

Mapping of cDNA tags

About 15 million cDNA tags were mapped onto the yeast
genome using the Maq software with the option “-n 3 -e
100” (http://maq.sourceforge.net/). Failed tags were fur-
ther mapped by BLAT with the option “-trimHardA-
minIdentity=85 -mask=lower” (Kent 2002). Then, the
transcriptome map was constructed by counting the
mapped tags within a sliding window of 100 bp with a
10-bp interval. Additionally, the count of tags mapped on
the intragenic region of each gene was used as its expression
intensity.

Gene clustering and gene ontology analysis

Using the average of the entropy and the linker ratio on the
upstream 400 bp region from the TSS of “verified mRNAs”
and “uncharacterized mRNAs”, we categorized these
mRNAs (genes) into four clusters using Ward's method.
In this clustering, we ignored 683 genes, whose promoters
were overlapped with the above-mentioned abnormal
regions. In each cluster, p values for 84 GO terms were
calculated by the hyper-geometric test and were adjusted
using Benjamini-Hochberg's method (false discovery rate
<0.05).
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