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Abstract
Radiation dose estimations performed by automated counting of micronuclei (MN) have been studied for their utility for 
triage following large-scale radiological incidents; although speed is essential, it also is essential to estimate radiation doses 
as accurately as possible for long-term epidemiological follow-up. Our goal in this study was to evaluate and improve the 
performance of automated MN counting for biodosimetry using the cytokinesis-block micronucleus (CBMN) assay. We 
measured false detection rates and used them to improve the accuracy of dosimetry. The average false-positive rate for 
binucleated cells was 1.14%; average false-positive and -negative MN rates were 1.03% and 3.50%, respectively. Detection 
errors seemed to be correlated with radiation dose. Correction of errors by visual inspection of images used for automated 
counting, called the semi-automated and manual scoring method, increased accuracy of dose estimation. Our findings suggest 
that dose assessment of the automated MN scoring system can be improved by subsequent error correction, which could be 
useful for performing biodosimetry on large numbers of people rapidly, accurately, and efficiently.
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Introduction

Following a radiological accident, it is necessary to rapidly 
perform radiation dosimetry on victims, which will identify 
those who have suffered overexposure and require urgent 
medical treatment. In general, the dicentric chromosome 
assay (DCA) is considered to be the gold standard for such 
biodosimetry. It has been widely used to evaluate radiation 
doses of accidentally and occupationally exposed persons 
(Slozina et al. 2001; Ramalho and Nascimento 1991; Suto 

et al. 2013; Chung et al. 1996), but it might be not suitable 
for larger- scale radiological accidents due to multiple draw-
backs: it is labor-intensive, time-consuming, and requires 
highly skilled personnel.

The development of automated systems using alternative 
tools should be considered to overcome these limitations and 
increase dosimetry throughput. As counting of micronuclei 
(MN) is much simpler and faster than the DCA, it has been 
considered as an alternative. MN are produced by lagging 
acentric chromosome fragments or whole chromosomes at 
anaphase (IAEA 2011; Lue et al. 2015). The cytokinesis-
block micronucleus (CBMN) assay developed by Morley 
and Fenech (Fenech and Morley 1985), is a well-established 
method that exploits this phenomenon for genotoxicity test-
ing. It has been recommended by the Organisation for Eco-
nomic Co-operation and Development (OECD) for in vitro 
genotoxicity testing (OECD 2016). It has been reported that 
MN frequencies in binucleated (BN) cells are strongly corre-
lated with radiation dose (Vral et al. 2011, 1994); the CBMN 
assay has been recommended as a valuable technique to 
measure chromosomal damage for biodosimetry (IAEA 
2011). The International Organization for Standardization 
(ISO) has published a guideline on CBMN performance cri-
teria for biodosimetry (ISO 2014).
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The simplicity of MN scoring and the availability of 
automated scoring system through computerized imag-
ing makes the CBMN assay more attractive, especially for 
large-scale radiological accidents (Depuydt et al. 2017). 
Multiple attempts have been made to score MN frequencies 
automatically, using computerized imaging or flow cytom-
etry (Shibai-Ogata et al. 2011). One of these, the MNScore 
module, is an automated MN scoring system integral to the 
MetaSystems Metafer 4 image-analysis platform, which is 
commonly used to find metaphase cells in clinical cytogenet-
ics laboratories. Automation of the CBMN assay with the 
MNScore module has been introduced as a biodosimetry 
tool for population triage, but its accuracy relative to manual 
scoring has not been extensively studied.

From a clinical viewpoint, dosimetry to identify subjects 
who require urgent clinical needs may provide sufficient 
information, but it would be desirable to improve accuracy 
as much as possible to improve long-term epidemiological 
follow-up (Romm et al. 2013; Rothkamm et al. 2013). Here, 
we investigated the impacts of automated scoring errors and 
sex on MN dose–response curves.

Materials and methods

Blood samples and irradiation

This study was approved by Institutional Review Board 
(IRB) of the Korea Institute of Radiological and Medical 
Sciences (IRB No. K-1707–001-003). Heparinized blood 
samples were collected from healthy donors (3 males and 
3 females with ages ranging from 29 and 34) who provided 
informed written consent. For dose–response curves, blood 
samples were irradiated with different doses (0- 4 Gy) of 
60Co gamma rays at 0.5 Gy/min in a water phantom at 37 ℃. 
After irradiation, samples were incubated at 37 ℃ for 2 h, 
then processed for the CBMN assay.

CBMN assay

Whole-blood samples (1.5 ml) were cultured in 9 ml Roswell 
Park Memorial Institute (RPMI) 1640 medium (Gibco, 
Waltham, MA) supplemented with 20% fetal bovine serum 
(JR Scientific, Woodland, CA), 1% antibiotic–antimycotic 
(Gibco), and 2% phytohemagglutinin (Gibco) at 37 ℃ and 
5% CO2 in air. After 24 h of culture, cytochalasin B (Sigma, 
St. Louis, MO) was added to the cultures at a final concen-
tration of 6 μg/ml. After an additional 48 h of culture, cells 
were harvested and resuspended in ice-cold hypotonic solu-
tion (0.075 M KCl). Cells were fixed once with methanol/
acetic acid (10:1) diluted 1:1 with Ringer’s solution, and 
fixed three more times with methanol/acetic acid without 
Ringer’s solution. Fixed cells were dropped on slides. To 

obtain enough BN cells, 1–4 slides per dose point of each 
donor were made and stained with DAPI (Cytocell, Cam-
bridge, UK).

MN scoring

DAPI-stained slides were scanned with Metafer 4 software 
(MetaSystems, Altlussheim, Germany) with 10 × objective. 
For fully-automated scoring mode, scoring MN in BN cells 
was performed in MNScore module in Metafer 4 image 
analysis platform. After automated scoring, images captured 
with MNScore were reanalyzed by a trained human scorer 
according to published scoring criteria (Fenech et al. 2003); 
for semi-automated scoring mode, BN cells with MNScore-
detected MN were inspected to eliminate false-positive MN; 
for manual scoring mode, all BN cells, both with and with-
out detected MN, were completely scored to remove false-
positives and false-negatives. False positive BN cells were 
rejected in semi-automated and manual scoring mode.

Validation using blind samples

X-irradiated samples (n = 10) for dose estimation tests were 
provided from Health Canada as part of intercomparison 
exercises for radiation biodosimetry, which was approved 
by the IRB of Health Canada (approval REB 2002–0012). 
Blood samples were obtained from 10 donors (6 males, 4 
females, age 21–55) after obtaining informed consent. Sam-
ples were irradiated with different doses (0, 0.4, 0.8, 1.0, 
1.4, 2.0, 2.2, 2.6, 3.2 and 3.6 Gy) at 0.37 Gy/min using an 
X-RAD 320 device operated at 250 kVp and 15 mA. After 
irradiation, blood samples were incubated at 37 ℃ for 2 h, 
coded to blind us to sources, and shipped to our laboratory 
in the Korea Institute of Radiological and Medical Sciences 
(KIRAMS). γ-irradiated samples for validation were pre-
pared in KIRAMS, Republic of Korea. For γ-irradiated sam-
ples (n = 12), blood samples collected from 3 donors (1 male 
and 2 females, age 35–50) were irradiated with different 
doses (0, 0.5, 1, 3 Gy) of 60Co gamma rays at 0.5 Gy/min in 
a water phantom at 37 ℃ using GammaBeam 100–80 (Best 
Theratronics) of KIRAMS. All samples for validation were 
coded and the CBMN assay was performed as described 
above.

Dose estimation and statistical analysis

Fitting of dose–response curves to data from blind samples 
was performed using Dose Estimate software ver. 5.2, kindly 
provided from Dr. E.A. Ainsbury of UK Health Security 
Agency (Ainsbury and Lloyd 2010). The curves for MN 
were fitted to the linear quadratic model: y = c + �D + �D2 , 
where y is the MN frequency per BN cell, c is the spontane-
ous MN frequency, α is a linear component of a curve, β is a 
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quadratic component of a curve, and D is the radiation dose. 
Doses given to the 10 validation samples were estimated 
with the Dose Estimate software. The 95% upper and lower 
confidence limits were calculated taking into account Pois-
son and calibration curve errors (IAEA 2011). To test the 
discriminatory power (≤ 1.5 Gy/ > 1.5 Gy) of our CBMN 
assay, sensitivity, specificity and accuracy was calculated 
according to Rothkamm et al. (2013). We considered the 
dose estimates to be accurate when their 95% confidence 
intervals encompassed the known, actual dose.

Results

Dose–response calibration curve

The data for micronucleus formation by 60Co γ-irradiation 
obtained from 6 healthy donors (3 males and 3 females) 
were pooled to construct a dose–response calibration curve 
(Table 1, Supplementary Tables 1 and 2). Dose response 
curves were constructed on the average values of 3 males and 
3 females. For automated dose response curves, MNScore 
software in Metafer4 platform scored at least 16,000 binu-
cleated (BN) cells for each dose point.

To evaluate the accuracy of our automated scoring sys-
tem, images gallery captured with MNScore were manu-
ally inspected. Table 2 shows the false detection rates of 
BN cells and MN in automated scoring system. After visual 
inspection, 0.72–2.20% of the auto-selected BN cells were 
rejected because they did not comply with the standardized 
scoring criteria (Fenech et al. 2003). Average false-positive 
and false-negative MN frequencies in the total scored BN 
cells were 1.03% (range: 0.72–1.50) and 3.50% (range: 
1.02–10.78), respectively. The rejected BN cells and false 
detected MN in automated scoring system seemed to be 
increased with radiation dose.

Dose–response curves of micronuclei described 
in Fig.  1 were fitted using a linear quadratic 

equation using DoseEstimate v5.2. The equations regen-
erated as: y = 0.0178(±0.0016) + 0.0237(±0.0039) × D
+ 0.0080(±0.0012) × D2  in the fully automated scoring 
m e t h o d ,  y = 0.0096(±0.0011) + 0.0170(±0.0031) × D
+ 0.0111(±0.0010) × D2  in the semi-automated scoring 
method and y = 0.0197(±0.0018) + 0.0259(±0.0045) × D
+ 0.0135(±0.0014) × D2 in the manual scoring method.

Radiation dose prediction

For the dose prediction exercise, we estimated the radiation 
dose of 22 blind samples irradiated with different doses of 
X-rays or γ-rays by calculating the MN frequency observed 
with fully-automated, semi-automated and manual modes 

Table 1   Micronucleus 
frequencies in and distributions 
lymphocytes from 6 donors (3 
males and 3 females pooled) 
scored by fully-automated 
method

MN micronucleus, BN binucleated cell

Dose (Gy) No. of BN No. of MN Distribution of MN Dispersion 
index ( �2∕y)

MN frequency

0 1 2 3 4

0 16,020 335 15,706 295 17 2 0 1.12 0.021
0.1 18,000 334 17,676 314 10 0 0 1.04 0.019
0.25 18,000 419 17,602 382 13 1 2 1.11 0.023
0.5 18,000 591 17,440 531 28 0 1 1.08 0.033
0.75 18,000 650 17,371 610 17 2 0 1.03 0.036
1.0 18,000 866 17,167 802 29 2 0 1.03 0.048
2.0 18,000 1861 16,256 1630 111 3 0 1.03 0.103
3.0 17,572 2898 14,933 2400 220 18 1 1.03 0.165
4.0 18,000 4231 14,295 3215 455 34 1 1.03 0.235

Table 2   False detection rate of automated micronucleus scoring 
shown in Table 1

1 False positive BN frequency (%) = No. of false positive binucleated 
(BN) cells / No. of total scored BN cells × 100
2 False positive MN frequency (%) = No. of false positive micronuclei 
/ No. of total scored BN cells × 100
3 False negative BN frequency (%) = No. of false negative micronuclei 
/ No. of total scored BN cells × 100
MN micronucleus, BN binucleated cell

Dose (Gy) False positive 
BN frequency 
(%)1

False positive 
MN frequency 
(%)2

False negative 
MN frequency 
(%)3

Total 1.14 1.03 3.50
0 0.98 0.67 1.12
0.1 0.72 0.73 1.02
0.25 0.80 0.72 1.33
0.5 1.16 1.02 1.77
0.75 1.09 0.76 1.68
1.0 1.02 1.04 2.04
2.0 0.87 1.36 4.43
3.0 1.38 1.50 7.37
4.0 2.20 1.46 10.78
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(Supplementary Tables 3 and 4). To test the performance 
of our automated scoring system for triage in a large-scale 
radiological incident, we merged dose measurements into 
binary categories reflecting clinically relevant aspects. The 
sensitivity, specificity and accuracy based on MN measure-
ments using automated, semi-automated and manual modes 
are summarized in Table 3. The sensitivity, specificity and 
accuracy to detect MN and non-MN correctly in total BN 
cells was 1.0, 0.20, and 0.56 in the fully-automated mode, 
respectively. Our automated scoring system with high sen-
sitivity seemed to be sufficient to identify subjects who are 
likely to suffer from acute radiation syndrome several days 
after radiation exposure, but the ability to define persons 
exposed to below 1.5 Gy from higher exposed group was 
low. Visual inspection after automated scoring overcame the 
poor specificity of fully-automated scoring. The sensitivity, 
specificity and accuracy in the semi-automated and manual 
mode was 1.0, 0.90 and 0.94, respectively. When splitting 
data according to radiation source, similar results were 
observed and γ-irradiated samples have particularly higher 
specificity and accuracy than X-irradiated ones. These data 
show that additional visual inspection improves the perfor-
mance of automated scoring to better identify subjects who 
need less urgent clinical attention.

Next, we compared the dose estimation between the scor-
ing modes. Of the 10 X-irradiated samples, actual doses fell 
within the 95% confidence interval of dose estimates for 
7 and 10 samples for semi-automated and manual modes, 
respectively, whereas only 3 samples had accurate dose 

estimates in the fully-automated mode (Fig. 2A). Similar to 
this result, semi-automated and manual modes estimated a 
more accurate dose of 12 γ-irradiated samples (8 for semi-
automated, 10 for manual vs. 4 for fully-automated modes; 
Fig. 2B). These findings indicate that a manual inspection 
step following automated scoring improves the accuracy of 
dose prediction.

To investigate the impact of sex on MN dose–response 
curves, our MN scoring data were divided and dose response 
curves for males and females were reconstructed (Table 4).

Table 5, Supplementary Tables 3 and 4 show the dose 
predictions using pooled and sex-specific dose response 
curves with different scoring modes. The use of sex-specific 
curves seemed to further improve dose prediction of semi-
automated and manual modes, but statistical significance 
between the sexes was not observed.

Discussion

The MN assay is a valuable tool for radiation biodosimetry 
that overcomes the limitations of the dicentric chromosome 
assay (Vral et al. 2011). Automated MN scoring using the 
Metafer slide-scanning system has many advantages over the 
conventional manual MN assay, enhancing throughput and 
reducing laborious and time-consuming tasks (Seager et al. 
2014; Decordier et al. 2009). We found that dose estimation 
of the automated MN scoring can be improved by correcting 
automatic scoring errors.

Automated scoring tends to have a high false-positive rate 
(Seager et al. 2014). We evaluated the false detection rates 
of our automated scoring system. Only 0.72–2.20% of the 
scored BN cells did not comply with the standardized scor-
ing criteria (Fenech et al. 2003); that is, most of automati-
cally identified BN cells were correctly detected. Our false 
positive BN (0.72–2.20%) and MN frequency (0.67–1.50%) 
was comparable to that reported by Willems et al. (2010) 
[6.28% false positive BN rate, 1% false positive MN yields]. 
The error rates of BN and MN tend to increase with the 
radiation dose, which may be related to radiation-induced 
cell death, including apoptosis (Boreham et al. 2000). This 
reduces the accuracy of the fully-automated scoring mode.

To adjust detection errors occurring during automated 
micronucleus assay, a visual inspection of BN cells on the 
automated scoring-produced image gallery was performed. 
In this method, false-positive and false-negative MN scor-
ing was corrected and false-positive BN cells were rejected. 
Therefore, the ability to identify individuals at risk of acute 
radiation syndrome in a triage and the accuracy of dose 
estimation were improved relative to fully-automated scor-
ing. Similarly, the MultiBiodose study and RENEB inter-
comparison exercises have shown the higher accuracy of 
semi-automated micronucleus scoring (Depuydt et al. 2017; 

Fig. 1   Dose–response curves from micronucleus (MN) data produced  
by fully-automated, semi-automated and manual scoring. MN yields  
were fitted to a linear quadratic model: y = 0.0178(±0.0016) + 0.0237

(±0.0039) × D + 0.0080(±0.0012) in fully-automated scoring 
method, y = 0.0096(±0.0011) +0.0170(±0.0031) × D + 0.0111(±0.0010) × D

2 
in semi-automated scoring method, y = 0.0197(±0.0018)+ 
+0.0259(±0.0045) × D + 0.0135(±0.0014) × D

2 in manual scoring 
method. Symbols and lines represent the average MN frequencies for 
6 subjects and fitted curves. BN: binucleated
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Thierens et al. 2014). Our study found that visual inspection 
following automated scoring can improve CBMN assay per-
formance by comparing dose estimation for blind samples 
irradiated with 12 different doses with manual mode as well 
as semi-automated mode.

MN frequency can be affected by various factors such as 
exposure to environmental mutagens, dietary factors, age 
and sex (IAEA 2011). In the present study, dose estimates 
of 3 blind samples exposed to 0 Gy 60Co tended to be some-
what overestimated. The three donors (age: 35 to 50) were 
older than subjects for MN dose–response curve (age: 29 
to 34), so donor age but also history of exposure to envi-
ronmental clastogens and aneugens could be contributing 
factors. Various confounding factors influencing the sponta-
neous MN frequency assay could be a problem in real radio-
logical accident. The discrimination of centromere-negative 
or positive MN could overcome the limitation because age 
increases mainly centromere-positive MN (Thierens et al. 
1999, 2000). Indeed, it would be helpful to more precisely 
assess background MN frequencies in various age groups 

and investigate the confounding factors such as the anteced-
ent exposure history.

Females are known to have higher spontaneous MN 
frequencies than males (Bonassi et al. 2001; Fenech and 
Bonassi 2011; Fenech et al. 1999, 1994). Female baseline 
MN frequencies are higher by 1.4–1.65-fold depending on 
age (Fenech et al. 1994), with the difference increasing with 
age (Bonassi et al. 2001; Fenech and Bonassi 2011). We split 
our automated MN scoring data based on sex. The use of 
sex-specific curves seemed to further improve the dose pre-
diction of semi-automated and manual modes, but we could 
not see a statistical significance. Our subjects for MN dose 
response curve consisted of 3 males and 3 females so the 
small numbers might be not be sufficient for statistical sig-
nificance. Larger studies are needed to confirm the improve-
ment of dose estimation by the use of sex-specific curves.

To determine the best way to use automated scoring, 
we extensively compared its characteristics with those of 
other scoring methods. Visual inspection improved accu-
racy, but the additional steps required increase of scoring 

Table 3   Sensitivity, specificity 
and accuracy of triage 
classification in the automated 
micronucleus (MN) assay

1 a binary category (≤ 1.5 Gy / > 1.5 Gy) to identify the subjects likely to suffer from acute radiation syn-
drome several days after radiation exposure (Rothkamm et al. 2013). Samples with true dose of 0 Gy was 
excluded in this comparison
2 Sensitivity = true positives/(true positives + false negatives)
3 Specificity = true negatives/(true negatives + false positives)
4 Accuracy = (true positive + true negative)/total

Estimated dose (Gy)

Fully-automated Semi-automated Manual

 ≤ 1.5  > 1.5  ≤ 1.5  > 1.5  ≤ 1.5  > 1.5

All
 Delivered dose (Gy)
   ≤ 1.51 2 8 9 1 9 1
   > 1.5 0 8 0 8 0 8

 Sensitivity2 1.00 1.00 1.00
 Specificity3 0.20 0.90 0.90
 Accuracy4 0.56 0.94 0.94

X-irradiated
Delivered dose (Gy)

   ≤ 1.51 1 3 3 1 3 1
   > 1.5 0 5 0 5 0 5

 Sensitivity2 1.00 1.00 1.00
 Specificity3 0.25 0.75 0.75
 Accuracy4 0.67 0.89 0.89

γ-irradiated
 Delivered dose (Gy)

 ≤ 1.51 2 4 6 0 6 0
 > 1.5 0 3 0 3 0 3
 Sensitivity2 1.00 1.00 1.00
 Specificity3 0.33 1.00 1.00
 Accuracy4 0.56 1.00 1.00
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time. Approximately 10 min for fully-automated mode, 
15 min for semi-automated mode, and 30 min for manual 
mode was required to scan and analyze one slide. The best 
choice of scoring systems would therefore depend on the 
purpose. When the main goal of the MN assay is to iden-
tify subjects who need urgent clinical treatment for a triage, 
more rapid method would be preferred. But if more precision 
is required, scoring methods with visual inspection, semi-
automated or manual, should be chosen over fully-automated 

Fig. 2   Dose prediction using fully-automated, semi-automated and 
manual mode with automated micronucleus scoring system. Blind 
samples were irradiated with X-ray A and γ-ray B. Symbols and error 

bars represent estimated doses and corresponding 95% confidence 
intervals. The dashed and solid lines represent ideal fit to estimate 
accurate delivered dose and their ± 0.5 Gy intervals

Table 4   Coefficients of calibration curves for micronuclei in male 
and female lymphocytes scored by different methods1

1 linear quadratic model was applied for dose response curves as fol-
lows: y = c + �D + �D2 , where y is the MN frequency per BN cell, c 
is the spontaneous MN frequency, α is a linear component of a curve, 
β is a quadratic component of a curve, and D is the radiation dose

c α β

Fully-automated
 Pooled 0.018 (± 0.0016) 0.024 (± 0.0039) 0.0080 (± 0.0012)
 Male 0.018 (± 0.0019) 0.020 (± 0.0043) 0.0081 (± 0.0013)
 Female 0.018 (± 0.0015) 0.027 (± 0.0038) 0.0079 (± 0.0012)

Semi-automated
 Pooled 0.0096 (± 0.0011) 0.017 (± 0.0031) 0.011 (± 0.0010)
 Male 0.0088 (± 0.0013) 0.015 (± 0.0035) 0.011 (± 0.0011)
 Female 0.010 (± 0.0012) 0.019 (± 0.0033) 0.011 (± 0.0011)

Manual
 Pooled 0.020 (± 0.0018) 0.026 (± 0.0045) 0.014 (± 0.0014)
 Male 0.016 (± 0.0026) 0.027 (± 0.0066) 0.012 (± 0.0021)
 Female 0.023 (± 0.0013) 0.025 (± 0.0033) 0.014 (± 0.0010)

Table 5 Comparison of dose estimation between pooled and sex-spe-
cific dose response curves

1 Dose estimates were considered accurate, when actual doses fell 
within the 95% confidence interval of dose estimates
2 Absolute difference between estimated and actual irradiated dose 
was calculated

Dose estimation 
accuracy1

Mean of absolute 
difference2

Pooled curve Sex-
specific 
curve

Pooled curve Sex-
specific 
curve

All
 Fully-auto-

mated
0.32 0.27 0.96 0.95

 Semi-auto-
mated

0.55 0.59 0.38 0.37

 Manual 0.68 0.82 0.31 0.28
X-irradiated
 Fully-auto-

mated
0.30 0.20 1.24 1.26

 Semi-auto-
mated

0.50 0.50 0.40 0.41

 Manual 0.60 0.80 0.34 0.31
γ-irradiated
 Fully-auto-

mated
0.33 0.33 0.73 0.70

 Semi-auto-
mated

0.58 0.67 0.36 0.35

 Manual 0.75 0.83 0.29 0.26
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scoring. Considering that the same images can be used for 
both automated and visually inspected methods, those per-
forming the assay have significant technical and temporal 
latitude to adjust the assay to achieve the accuracy required 
for specific situations. Additional visual inspection following 
automated scoring can be the best approach. In addition, the 
use of sex-specific curves can be considered as a simple way 
to further improve dose estimation.

In addition, the energy of the photon radiation source 
could affect the MN frequency induced by radiation. Our 
dose–response curve was constructed using blood samples 
exposed to γ-rays from 60Co with a mean energy of 1.2 MeV. 
The dose of γ-irradiated blind samples could be estimated 
with higher accuracy and specificity than that of the samples 
exposed to 250 kVp X rays. This might be explained by the 
higher relative biological effectiveness (RBE) of soft vs hard 
photons (Schmid et al. 2002). The dependence of RBE on 
the energy of sparsely ionizing radiations has been attributed 
to microdosimetric differences between these radiations. 
Lloyd et al. (1975) and Schmid et al. (2002) showed 250 kV 
X rays produced higher α coefficient than 60Co γ rays. These 
differences might cause the overestimation of exposed dose 
in X-irradiated samples when using dose–response curve 
generated using 60Co γ rays. Additional generation of 
dose–response curves for X-irradiation of appropriate energy 
could improve the accuracy of dose estimation.

Our study provides strong evidence showing that visual 
inspection of images captured by an automated MN sys-
tem is necessary for accurate dosimetry. Using a validation 
data set of 22 blind samples, we found that the correction of 
automated scoring improved the performance of automated 
MN scoring. Our findings could be useful for performing 
radiation dosimetry on large numbers of people rapidly, 
accurately, and efficiently.
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