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Abstract
The nucleation and growth theory, described by the Avrami equation (also called Johnson–Mehl–Avrami–Kolmogorov 
equation), and usually used to describe crystallization and nucleation processes in condensed matter physics, was applied in 
the present paper to cancer physics. This can enhance the popular multi-hit model of carcinogenesis to volumetric processes 
of single cell’s DNA neoplastic transformation. The presented approach assumes the transforming system as a DNA chain 
including many oncogenic mutations. Finally, the probability function of the cell’s cancer transformation is directly related 
to the number of oncogenic mutations. This creates a universal sigmoidal probability function of cancer transformation of 
single cells, as observed in the kinetics of nucleation and growth, a special case of a phase transition process. The proposed 
model, which represents a different view on the multi-hit carcinogenesis approach, is tested on clinical data concerning 
gastric cancer. The results also show that cancer transformation follows DNA fractal geometry.

Keywords Cancer physics · Cancer transformation · Neoplastic transformation · Modeling · Avrami equation · Phase 
transition · Gastric cancer

Introduction

Cancer transformation of a cell, known to some biologists 
as neoplastic transformation, is a rapid process in which the 
functionality of the cell is totally reorganized. This process 
starts with some disturbances within the cell that cause an 
accumulation of stable mutations over time. Carcinogen-
esis is usually described either by two-hit or multiple-hit 
bio-mathematical models (Armitage and Doll 1957; Ashley 
1969; Armitage 1985). However, the process of cancer trans-
formation is also analogical to the physical concept of phase 
transition, for example crystallization.

The idea that the phase transition formalism can be 
applied to the biophysics of cancer transformation is gen-
erally nothing new. For example, the model proposed by 
Davies et al. (2011) describes the dynamics of cancer phase 
transition. This binary model (which assumes two states: 
normal or cancer cell), however, does not take into consid-
eration the mid-state, e.g., the state where cells are mutated. 

Therefore, the transition from normal to cancerous should be 
considered as a dynamical non-equilibrium thermodynami-
cal phenomenon, following the Second Law of Thermody-
namics, where a potential barrier between both of the states 
exists. “Cancer is a robust state of living matter, which can 
be rephrased in terms of nonlinear systems as a stable attrac-
tor of a complex dynamical system that is represented by a 
living cell” (Davies et al. 2011). In this model, the transi-
tion from a normal to a cancerous cell can be described by 
manipulation of a single control parameter in the free energy 
function.

Another interesting approach was proposed by Tsuchiya 
et  al. (2015) who stated “that self-organized criticality 
occurs as a form of genomic phase transition for dynamic 
control of the genome-wide gene expression”, especially as 
the “sandpile-avalanche type of singular behavior around 
the critical point” of cancer transformation (Tsuchiya et al. 
2015). This presents a substantially different point of view 
on the same problem than the aforementioned model.

Another example of a cancer transformation treated as a 
physical phase transition is when the probability function 
of such transformation is related to the number of accumu-
lated mutations in the DNA chain. This idea was originally 
proposed by Dobrzyński and practically used few years later 
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(Dobrzyński et al. 2016). The cited paper adapts the Avrami 
equation (Avrami 1939, 1940, 1941) as a rapid sigmoidal 
probability function for the change of the cell’s status into a 
cancerous one. In this approach, however, the Avrami equa-
tion (also called Johnson–Mehl–Avrami-Kolmogorov, or 
JMAK, equation) was applied without considering the basic 
biophysical background (Dobrzyński et al. 2016, 2019). Here 
it is shown how to apply the original Mehl–Avrami nuclea-
tion and growth theory to the popular concept of multi-hit 
cancer transformation (Ashley 1969; Anandakrishnan et al. 
2019) and how to derive a physical basis for that assumption.

Methods—theory

Biological background

A human DNA chain is composed of approx. 20,000 
genes. Just 299 of them are known to be driver genes (Bai-
ley et al. 2018) or proto-oncogenes which are potentially 

responsible for cancer transformation of a cell. However, 
proto-oncogenes are not grouped in one place, but rather 
are scattered over the whole DNA chain (Fig. 1a) which 
results in a relatively random distribution of potential 
hits on DNA (e.g., attacks on DNA that cause damages) 
(Fig. 1b). To reiterate, this means that a mutation (namely, 
a stable and unrepaired damage of the DNA chain) created 
in one of the proto-oncogenes (Fig. 1c) can lead to cancer 
transformation (Fig. 1d). However, a single mutated proto-
oncogene (from now on referred to simply as oncogene) 
virtually cannot cause cancer—usually between three to 
six oncogenic mutations within the cell are needed to 
induce cancer transformation (Renan 1993; Hahn et al. 
1999; Hahn and Weinberg 2002). Recent analysis broad-
ened this range to two to eight mutations for more general 
cases and cancer types (Anandakrishnan et al. 2019).

Fig. 1  Simplified 2D scheme 
of DNA double chain with a 
proto-oncogenes (light gray) 
scattered all over the chain; 
b randomly distributed hits 
(lesions) in the DNA (red stars): 
when not repaired (or repaired 
wrongly) they can cause c muta-
tions in oncogenes (dark gray), 
which can finally result in d the 
cancer transformation of the 
whole DNA chain (black) when 
mutated oncogenes reach the 
summarized effective volume 
threshold VT. See Table 1 for 
description of corresponding 
parameters (color figure online)



171Radiation and Environmental Biophysics (2022) 61:169–175 

1 3

Application of multi‑hit theory of carcinogenesis

Let us denote the geometric volume of the whole DNA 
chain molecule as V (see Table 1 for a description of all 
model parameters). This volume contains all proto-onco-
genes, which are responsible for cancer transformation 
when mutated. Next, let us assume that when the mutated 
oncogenes reach some threshold volume, say VT (where 
VT << V), the whole DNA gets neoplastically transformed. 
When the total volume of mutated oncogenes is still lower 
than the threshold volume mentioned, the cell is mutated 
but does not become cancerous. For further investigation, 
let us denote M as the number of all mutations in the whole 
DNA, and m as the number of oncogenic mutations only 
(appearing in VN,tot only, see Table 1).

In accordance with the multi-hit theory in its simplest 
binomial form (Dobrzyński et al. 2019; Anandakrishnan 
et  al. 2019), let us consider a single mutation which 
appeared somewhere in V. This mutation can influence 
the risk of cancer transformation with the probability

which means that the mutation appeared within the proto-
oncogene(s) responsible for the cancer transformation, 
located somewhere in the region which is a threshold vol-
ume. Note that this approach refers to volumetric quanti-
ties, which represents a new approach to the multi-hit theory 
formalism.

For two single mutations (M = 2) this probability 
changes to

because one shall consider three scenarios: (i) only the first 
mutation appeared in a proto-oncogene in VT, and the second 
did not, (ii) only the second mutation appeared in a proto-
oncogene in VT, and (iii) both mutations appeared in proto-
oncogene(s) in VT. For many mutations (m) one can use the 
sum of binomial distribution functions:

where the rare case m = M represents the situation where 
all existing mutations are exclusively located in oncogenes. 
Taking into account the opposite situation and adding the 
missing term for lack of mutations in proto-oncogenes, 
pm=0 = (1 – VT/V)M, one can use the fact that the sum of the 
binomial distribution is equal to 1 (Dobrzyński et al. 2019):
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In accordance with the information presented before (Bailey 
et al. 2018), one can express M and m as m ≈ 0.015 M = µM. 
In the case of VT << V (which is always true in the present 
case), the second term on the left-hand side of Eq. (4) converts 
to a first-order expansion of exp(-M VT/V) (Maclaurin series 
equation) and finally the probability function for getting m 
oncogenic mutations is:

Equation 5 will be used for further calculations.

Application of the Avrami theory of nucleation 
and growth

Cancer (neoplastic) transformation is a rapid process which 
can be described by the phase transition theory. This means 
that the whole DNA chain (Fig. 1a) is transformed into a new 
state—a cancerous one (Fig. 1d). As mentioned earlier, the 
proto-oncogenes are limited to just some small parts of the 
DNA, scattered all over the whole chain (Fig. 1a). The muta-
tion of just some of them, VT (Fig. 1c), is equivalent to the 
cancer transformation of the whole DNA chain (Fig. 1d).

Usually, the terms “mutation” and “oncogene” (or “mutated 
proto-oncogene”) are equivalent from the perspective of the 
mechanistic description of the process of cancer transforma-
tion. However, a proto-oncogene can become mutated con-
taining a single mutation, but multiple mutations are also pos-
sible—and the result will be practically the same. The main 
difference is that “mutation” is a point change of the DNA, 
while “mutated proto-oncogene” means a volumetric onco-
gene with at least one mutation.

Let us now denote N as the number of mutated oncogenes 
(where m ≥ N), and Vn as the volume of a single mutated 
oncogene (their geometric sum VN,tot = ∑Vn < V). Therefore, 
according to Avrami’s theory, the number of mutated onco-
genes at a given time is always dependent on the increment of 
mutations in oncogenes:

However, because the number of mutations during cancer 
transformation is still growing, it is not strictly equivalent to N, 
especially in its later phases (m ≥ N). Analogically, the volume 
of a single oncogene is also related to its number of mutations. 
So, due to its dimensions and the fact that more than one muta-
tion can create an oncogene, Vn should be written as

(4)pm +

(

1 −
VT

V

)M

= 1.

(5)pm = 1 − e
−

VT

V

m

�

(6)N ∼ Δm.

(7)Vn = �m�
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where β and ξ are constants greater than zero. Note that 
existing cancer cells, i.e., the cells still existing long after 
the cancer transformation process, can contain tens or even 
hundreds of mutations (Milholland et al. 2015).

The situation described above is quite similar to the physi-
cal process of nucleation and growth. The more the mutations 
(m), the more are the mutated oncogenes (N) and the higher 
is the value of VN,tot. Let us assume that VN,tot is the part of 
the total DNA volume which is already neoplastically trans-
formed. According to the theory of nucleation and growth, 
each oncogene’s volume Vn can be treated as a cancer cluster 
appearing within the effective volume V of the DNA chain. In 
other words, the transformation of the effective volume V of 
DNA is assumed to be analogical to the nucleation and growth 
phenomena. The process of cancer transformation stops when 
the whole oncogenic DNA volume is filled by cancer clusters 
or, in a more real situation, the total volume of cancer clusters 
exceeds some critical threshold value, VT, analogically to the 
theory of nucleation and growth (Avrami 1939, 1940, 1941).

Now, the number of mutated oncogenes can grow and the 
volume VN,tot can simply increase. As mentioned earlier, the 
cancer transformation of the cell will be finished when VN,tot 
exceeds (or equals) the threshold value VT which is equivalent 
to the cancer transformation of the whole DNA chain (Fig. 1d):

Equation (8) represents the condition of a successful cancer 
transformation of the cell.

Let us return to Eq. (6) which, according to the Avrami 
concept, can be rewritten for the number of new clusters N 
(mutated oncogenes):

because it is assumed that mutations in oncogenes are 
responsible for the creation of new clusters somewhere 
in V. Additionally, the new parameter N’ corresponds to 
the dynamics of cancer clusters changing with mutations 
(N’ = dN/dm), which is generally constant.

As mentioned, according to Eq. (8) the volume VN,tot is 
increasing because the number of clusters (N) is growing. 
Therefore, using Eqs. 7 and 9 the total increase in total vol-
ume of the clusters due to the appearance of new clusters can 
be described as

Integrating Eq. (10) from m = 0 to m yields Eq. 11:

However, the increase of the total volume of clusters is 
not infinite—it is constrained by VT, as presented in Eq. (8). 

(8)VN,tot =
N

∪
n=1

Vn ≈ VT ≪ V

(9)N = N� V Δm

(10)dVN,tot = NVN = �m� N� Vdm

(11)VN,tot = constV m�+1

Therefore one can write VN,tot ≈ VT and substitute this in 
Eq. (11), when the cancer transformation appears.

Next, using the multi-hit model of carcinogenesis, and 
after substituting Eq. (11) into Eq. (5) (assuming VN,tot ≈ 
VT), one obtains the original Avrami equation (Avrami 1939, 
1940, 1941) which can be applied to the volumetric cancer 
transformation of the cell:

for a specific number of oncogenic mutations, m, within 
the DNA chain (Dobrzyński et al. 2016), where α is a con-
stant (corresponding to the curve’s slope), and k = ξ + 2 is a 
critical index. Note that the index k in the original Avrami 
formalism includes a number of dimensions of the crystal 
cluster. In the present study it represents the parameter of 
transformation’s dynamics connected with the volumetric 
dimensions of the DNA.

Equation  12 was successfully used in models which 
describe the cancer transformation of irradiated cells 
(Dobrzyński et al. 2016, 2019). These authors used Eq. 12 
as a probability function of neoplastic transformation of a 
single cell.

Phase transition theories can be also used for further 
phases of cancerogenesis, namely the rapid growth from 
a single cancerous cell to a tumor. This is, however, not 
described in the present paper. For example, Solẻ (2003) 
described the problem of phase transition among can-
cer cell populations. He discussed that the phase transi-
tion occurs at high levels of genetic instability, thus one 
can separate two phases: the phase of slow and the phase 
of rapid growth. “Tumor progression is a microevolution 
process in which tumors must overcome selection barriers 
imposed by the organism” (Solẻ 2003). Therefore, the phase 
transition occurs toward a random replication phase of a 
group of cells. Another example of a phase transition theory 
applied to tumor growth can be found in the recent paper by 
Dobrzyński et al. (2019) where the percolation theory was 
discussed.

Equation (12) is a probability function of cancer transfor-
mation of a single cell. This form is sometimes inconvenient, 
especially when it is applied to real clinical data, e.g., for 
cancer cases of individuals. In that situation it is better to 
use the form of

where C corresponds to a scaling factor to convert a prob-
ability function to a risk function, for example the num-
ber of detected cancer cases in some human population. 
Further, α is a shape constant (related to the slope of the 
sigmoidal curve) responsible for the distribution of muta-
tions (the smaller the value of α is, the narrower is the range 

(12)P(m) = 1 − e−�m
k

(13)P(m) = C
(

1 − e−�m
k
)
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of mutations necessary for cancer transformation), and the 
critical index k describes the transformation’s dynamics con-
nected with the volumetric dimensions of the DNA.

Equation (13) is an example of a highly nonlinear, sig-
moidal function which is quite often observed in radia-
tion biophysics (Dobrzyński et al. 2016; 2019; Fornalski 
et al. 2020). This type of function corresponds to a rapid 
change of some trait, like matter organization or biological 
parameter(s). Sometimes the sigmoidal function can look 
similar to the threshold of a process—and in this context the 
threshold for cancerogenic processes can also be discussed 
(Calabrese et al. 2021; Nagashima et al. 2021). Usually, in 
this context, a sigmoidal curve is used to describe tumor 
growth dynamics, where both Gompertz- or Avrami-like 
functions can be used (González et al. 2017; Goris et al. 
2020; Fornalski et al. 2020; Dobrzyński et al. 2016). How-
ever, the presented paper for the first time discusses the 
Avrami function applied to the probability of appearance of 
a cancer transformation, i.e., to a process occurring before 
cancer growth.

Results and discussion

Let us consider clinical data on gastric cancer as an example 
to validate the proposed model. First, one needs to correlate 
the number of measured mutations with the patients age 
(Pan et al. 2018). Thus, the average number of oncogenic 
mutations per cell equals 0.053 × Age (years) of gastric can-
cer patients (see Fig. 4b in (Pan et al. 2018)). Second, one 
requires information about the number of oncogenic (driver 
gene) mutations: as mentioned earlier, out of the total num-
ber of about 20,000 genes in the human genome, 299 have 
been identified as driver genes (Bailey et al. 2018) which 
gives their ratio as µ = 0.015. Finally, the correlation between 
the age (both for men and women) and the exemplary num-
ber of gastric cancer cumulative incidence (Elmajjaoui et al. 
2014) gives the relationship between the average number of 
mutations per cell and the cumulative incidence of gastric 
cancer (Fig. 2).

Figure 2 presents Eq. (13) fitted to the gastric cancer 
clinical data (Elmajjaoui et al. 2014; Pan et al. 2018). This 
curve has a typical sigmoidal shape which corresponds to 
the probability of cancer transformation. This probability 
varies for different types of cells, tissues, organs or species, 
and can be regulated by three free parameters in Eq. (13). 
For example, only three driver gene mutations are required 
for the development of lung and colorectal cancers (Toma-
setti et al. 2015). On the other hand, the maximal possible 
number of mutations in oncogenes which result in certain 
cancer transformation can be assumed to be equal to eight 
(Anandakrishnan et al. 2019) or ten (Dobrzyński et al. 2019). 
The biologically based explanation of this phenomena has 

been given many times over the past decades. For example, it 
was stated that the probability of tumorigenic transformation 
is dependent on the number of mutations in the cell which 
can be generally described by the Knudson hypothesis (Nor-
dling 1953; Knudson 1971). Later, double-hit or multiple-
hit models were proposed and successfully applied to some 
experimental data (Armitage and Doll 1957; Ashley 1969; 
Armitage 1985; Moolgavkar 1988; Moolgavkar and Luebeck 
1990). This approach was well generalized by Little (1995). 
In the presented paper, however, the proposed enhancement 
of the multiple-hit model treated the phenomenon of can-
cer transformation from a purely physical perspective as an 
analogy to a phase transition, related to the general number 
of m oncogenic mutations in the volumetric space of DNA.

The clinical data presented in Fig. 2 can be fitted using 
Eq. (13) with fixed k = 4 and C = 155, which give α = 0.0133. 
This provides the information that the neoplastic transfor-
mation of the DNA is analogical to the three-dimensional 
growth of a crystal, and that the most probable number of 
mutations necessary for gastric cancer transformation lies 
between two and four (this is a consequence of α of around 
0.01, because the α parameter determines where the cen-
tral part of the function (Eq. 13) is located on the muta-
tion axis, see Table 1), which is an effective threshold for 
that process. This result is consistent (assuming 95% confi-
dence intervals) with experimental results (Anandakrishnan 
et al. 2019). However, much better fitting can be obtained 
for k = 4.1 (α = 0.0119), k = 4.2 (α = 0.0107) or for k = 4.3 
(α = 0.0097) which suggests that the appearance of gastric 
cancer may be governed by fractal geometry (because k > 4). 
Indeed, the geometric shape of the DNA can be described as 

Fig. 2  Avrami equation (Eq. 13), fitted to gastric cancer clinical data 
(Elmajjaoui et al. 2014; Pan et al. 2018). Fitting parameters: k = 4.4, 
α = 0.0087, C = 155. The data points shown were prepared as follows: 
the cumulative distribution of cancer cases related to age (Fig.  1 in 
Elmajjaoui et al. 2014) was correlated with the best linear fit between 
the number of mutations and the age (Fig. 4b in Pan et al. 2018)
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a fractal-like structure (Grosberg et al. 1993; Cattani 2010; 
Mirny et al. 2011).

Although these results look rather promising, the model 
needs to be tested on many other clinical data which are, 
unfortunately, difficult to obtain because of lack of data 
where oncogenic mutations are directly correlated with can-
cer risk. Additionally, studies on DNA mutations vary with 
respect to types of cells, types of cancer, or the methods of 
measurement. And, there is a large variation in mutation 
rates across individuals, which creates additional bias in the 
proposed approach (Anandakrishnan et al. 2019). It should 
be noted that currently correlation of cancer risk with patient 
age seems to be the most often used approach worldwide, as 
the mutation frequency generally increases proportionally 
with time (age). This can be observed, e.g., on human ger-
mline mutation rate studies (Rahbari et al. 2016). The same 
increase with age can be observed practically in all types of 
cancer, which makes the proposed approach a good physical 
background for multi-hit carcinogenesis models.

Conclusions

The present paper proposes a new biophysical model of neo-
plastic transformation of cells, which connects the multi-hit 
theory of carcinogenesis with the phase transition theory 
of nucleation and growth. This approach allows to describe 
this process in fully volume space which is closer to reality. 
Generally, the proposed final equation, called the Avrami 
equation, is a simple sigmoidal probability function describ-
ing that some number of oncogenic mutations will lead to 

cancer transformation. In other words: Eq. 13 gives the prob-
ability (risk) of a neoplastic transformation of a cell with m 
oncogenic mutations in the DNA. In practice the sigmoidal 
shape corresponds to the effective threshold of neoplastic 
transformation.

The model was applied to clinical data on gastric cancer, 
to give an example. However, more clinical data should be 
investigated (especially to find specific relationships between 
model parameters and types of cells). Additionally, it was 
shown that the neoplastic transformation represents the frac-
tal geometry of DNA structure, at least for gastric cancer.
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Table 1  Parameters used in the theoretical investigation of the presented model

Note that in the end the proposed model contains just three free parameters (Eq. 13)

Parameter Description

V Volume of the whole DNA molecule
VT Threshold volume of mutated oncogenes at which cancer transformation occurs, VT << V
Vn Volume of a single n’th mutated oncogene
VN,tot Geometric sum of the volumes of all mutated oncogenes, VN,tot = ∑Vn; note that the condition VN,tot ≈ VT means the cancer transfor-

mation of the cell
N Total number of all n mutated oncogenes
M Total number of mutations (incorrectly repaired lesions) within V
m Number of mutations within VN,tot only; this corresponds to oncogenic mutations only (M ≥ m); note that m ≥ N because it is possible 

to find more than one mutation within Vn

µ Empirical constant that equals to approx. 0.015 (the ratio of proto-oncogenes to all genes) (Bailey et al. 2018)
β Empirical constant—proportionality factor between the geometrical distribution of mutations and the volume of a single mutated 

oncogene
ξ Empirical constant related to the geometrical distribution of mutations within mutated oncogene(s)
C Empirical constant—scaling factor from the probability function to the risk function (like the number of detected cancer cases in a 

human population or cohort)
α Empirical constant—shape parameter related to the slope of the sigmoidal curve, responsible for the distribution of mutations
k Empirical constant—critical index describing the dynamics of the transformation connected with DNA volumetric dimensions
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