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Abstract
The effect of low-dose ionizing radiation exposure on leukemia incidence remains poorly understood. Possible dose-response 
curves for various forms of leukemia are largely based on cohorts of atomic bomb survivors. Animal studies can contribute 
to an improved understanding of radiation-induced acute myeloid leukemia (rAML) in humans. In male CBA/H mice, inci-
dence of rAML can be described by a two-hit model involving a radiation-induced deletion with Sfpi1 gene copy loss and 
a point mutation in the remaining Sfpi1 allele. In the present study (historical) mouse data were used and these processes 
were translated into a mathematical model to study photon-induced low-dose AML incidence in male CBA/H mice follow-
ing acute exposure. Numerical model solutions for low-dose rAML incidence and diagnosis times could respectively be 
approximated with a model linear-quadratic in radiation dose and a normal cumulative distribution function. Interestingly, 
the low-dose incidence was found to be proportional to the modeled number of cells carrying the Sfpi1 deletion present 
per mouse following exposure. After making only model-derived high-dose rAML estimates available to extrapolate from, 
the linear-quadratic model could be used to approximate low-dose rAML incidence calculated with our mouse model. The 
accuracy in estimating low-dose rAML incidence when extrapolating from a linear model using a low-dose effectiveness 
factor was found to depend on whether a data transformation was used in the curve fitting procedure.
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Introduction

Many epidemiological studies have been conducted to eluci-
date the relationship between low-dose (LD) ionizing radia-
tion (IR) exposure and leukemia incidence (Hsu et al. 2013; 
Preston et al. 1994; Pearce et al. 2012; Laurier et al. 2017). 
For radiological protection it is important to reliably quan-
tify possible LD risks, to develop health and safety policies 
concerning IR exposure related to occupational hazards and 
public health. Data analyses of the Japanese atomic bomb 

survivors life-span study showed that both a linear-quadratic 
(LQ) and a preferred purely quadratic model can describe 
acute myeloid leukemia (AML) risk over a wide dose range 
(Preston et al. 1994; Richardson et al. 2009; Hsu et al. 2013). 
Different dose-response curves can often describe available 
high-dose (HD) data well but provide significantly different 
LD risk estimates after extrapolation.

The dose and dose-rate effectiveness factor (DDREF) has 
been introduced by the International Commission on Radio-
logical Protection (ICRP) to account for possible overesti-
mation of risk, when extrapolating from HD (rate) data to 
infer cancer risk possibly observed after LD (rate) exposure 
(ICRP 1991). The DDREF combines the concepts of the LD 
effectiveness factor (LDEF) and the dose-rate effectiveness 
factor (DREF). An examination of the LDEF to facilitate LD 
extrapolation will be considered here in the context of AML.

IR-induced AML (rAML) has been studied extensively 
in CBA/H mice due to very low background incidence 
and similarities with human AML (Major 1979; Verbi-
est et al. 2015). CBA/H mice have been exposed to acute 
X-ray doses between 0.25 and 6 Gy with maximum rAML 
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incidence of about 22% following 3 Gy exposure (Major 
and Mole 1978; Major 1979; Mole et al. 1983). Occur-
rence of these rAML cases can largely be described by 
a two-hit model in which the gene Sfpi1 coding for the 
hematopoietic transcription factor PU.1 undergoes two 
mutations. Hematopoietic target cells turn pre-leukemic 
after acquiring an IR-induced hemizygous interstitial 
deletion on chromosome 2 (del2) with Sfpi1 copy loss 
(Bouffler et al. 1996, 1997; Silver et al. 1999). In time, 
these cells become malignant after accumulating a point 
mutation in the remaining Sfpi1 allele at codon R235 in 
the DNA-binding domain of PU.1 (Suraweera et al. 2005; 
Cook et al. 2004), resulting in clonal expansion and rAML 
onset (Bouffler et al. 1996; Verbiest et al. 2018b).

The target cell responsible for leukemogenesis still 
remains unidentified, but multiple cases have been made 
for hematopoietic stem and progenitor cells (HSPCs) (Hope 
et al. 2004; Taussig et al. 2005; Shlush et al. 2014; Passegué 
et al. 2003; Hirouchi et al. 2011; Verbiest et al. 2018b). Dek-
kers et al. (2011) developed a mathematical model capable 
of quantifying rAML incidence in CBA/H mice in which 
hematopoietic stem cells (HSCs) were assumed to be the 
target cells responsible for rAML development. This study 
was the first endeavor to model murine rAML in terms of the 
two-hit model of leukemogenesis. However, due to lack of 
data, some key features such as cell/animal survival and for-
mation of del2 cells could not be incorporated, nor was the 
model applied to study LD rAML incidence. New data have 
since become available that allowed, in the present study, to 
include these aspects in the model.

In the present paper a new model for X/gamma-ray-
induced AML following acute exposure in male CBA/H 
mice is presented. This model expands on previous modeling 
work from Dekkers et al. (2011) by using historical data 
to include dose-dependent death of mice from non-rAML 
causes and by defining cell survival and del2 formation in 
terms of the LQ model. It is shown that numerical solutions 
can be approximated with simple expressions to describe 
various aspects of dose- and time-dependent rAML onset. 
Using HD rAML model estimates in a fitting procedure, 
it was possible to quantify how accurate various functions 
describe LD incidence.

Materials and methods

Brief model description

Figure 1 shows an overview of the stochastic model used 
here to calculate dose-dependent rAML incidence in total 
body photon-irradiated male CBA/H mice in which HSCs 
are assumed to be responsible for leukemogenesis. A model 
for bone marrow leukemogenesis (Fig. 1a) is coupled to a 
model in which mice can die from either rAML or other 
causes (Fig. 1b). In the bone marrow, IR exposure causes 
healthy target cells H to either survive, die or transform into 
intermediate cells I carrying del2. These intermediate cells 
can give rise to actively proliferating del2 cells Ip responsible 
for bringing about a malignant cell M after accumulation of 
the R235 point mutation in the remaining Sfpi1 allele. In in 

Fig. 1  Overview of the rAML 
model. a Healthy bone marrow 
target cells H transform into 
pre-leukemic del2 intermediate 
cells I due to radiation-induced 
Sfpi1 copy loss. In time, inter-
mediate cells I are selected from 
the stem cell pool to become 
proliferating del2 cells Ip , capa-
ble of forming malignant cells 
M after occurrence of the Sfpi1 
point mutation. Cells H and I 
can additionally die as a conse-
quence of radiation exposure. 
Transition rates r determine the 
pace at which cells progress 
through the model in response 
to radiation exposure. b Fol-
lowing total-body exposure 
mice may develop a malignant 
leukemic cell M that will result 
in rAML onset in Tlag days, or 
they may die from other causes
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silico mice (Fig. 1b), clonal expansion starts after the first 
malignant cells has been formed, leading to rAML onset and 
diagnosis over the course of Tlag days. Note that it is possible 
for mice to die from other causes before developing rAML.

Intercompartmental transition rates r (number of cells per 
hour) are the backbone of the model and are used in a sto-
chastic tau-leap algorithm developed by Cao et al. (2006). 
During each time leap step � , the algorithm determines how 
many cells H, I and Ip move along each of the arrows into a 
new compartment. The tau-leap algorithm was developed as 
a fast alternative to the relatively slow Gillespie stochastic 
simulation algorithm, which can generate sample trajectories 
distributed in accordance with the solution of the master 
equation (Gillespie 1976, 1977, 2001). Thus, by running 
the model once, one simulates stochastic continuous-time 
discrete-state trajectories for cells H, I and Ip corresponding 
to the bone marrow response of a single irradiated in silico 
mouse.

Modeling cell survival

IR-induced loss of clonal potential is based on the classical 
LQ model for describing clonogenic survival (Kellerer and 
Rossi 1974; Chadwick and Leenhouts 1973):

where L(D) can be considered as the average number of IR-
induced lethal lesions present per cell after receiving dose D 
(Gy). Cells are exposed with a constant dose-rate Ḋ (Gy/h) 
from t = 0 to t = D∕Ḋ = T  hours. The lethal lesion forma-
tion rate follows from:

Note that any lesions formed in the absence of radiation 
were disregarded. The rate at which healthy cells lose clonal 
potential, rH,� , can be described in terms of the lethal lesion 
formation rate (Zaider and Minerbo 2000):

The same rate for intermediate cells rI,�(t) was acquired by 
substituting I(t) for H(t).

Del2 formation rate

The del2 interstitial deletion with Sfpi1 copy loss respon-
sible for the transition from healthy cells to intermediate 
cells is a chromosomal aberration. The total number of 
chromosome aberrations can be described in terms of the 
aforementioned number of lethal lesions L because they 
are linearly correlated (McMahon 2018). Furthermore, the 

(1)S(L(D)) = e−L(D) = e−(�D+�D
2),

(2)L̇(t) =

{

𝛼Ḋ + 2𝛽Ḋ2t if 0 ≤ t ≤ T

0 otherwise.

(3)rH,𝛿(t) = L̇(t)H(t).

number of interstitial deletions present following radiation 
exposure can be described in terms of the number of chro-
mosome aberrations (Cornforth et al. 2002). Based on these 
observations it is assumed that del2 constitute a fixed, dose-
independent, fraction of the total number of chromosomal 
aberrations formed. The rate at which healthy cells H trans-
form into intermediate cells I is then proportional to the rate 
at which healthy cells die (Eq. (3)):

The parameter �del2 is a dimensionless scalar relating IR-
induced formation of chromosome aberrations to the del2-
induction rate. By using this rate it is assumed that all del2 
cells are formed during exposure.

Since only acute exposure is considered here it is possible 
to derive an expression for the initial number of intermedi-
ate cells I at time t = T ≈ 0 by using rates rH,� , rH,I and rI,� . 
Doing so reduces computation time because one only needs 
to track cells I and Ip in time until the mouse dies or until the 
first malignant cell M is formed. The initial condition for cell 
population I can be found by solving the following ordinary 
differential equations for cells H and I:

Note that the transitioning from I to Ip can be ignored 
because any dose of interest is absorbed almost instanta-
neously. Solving these equations with initial conditions 
H(0) = H0 and I(0) = 0 yields the following expressions at 
time t = T ≈ 0:

where H0 ≈ 15670 HSCs (Staber et al. 2013). It is assumed 
that I(D) represents the mean of a Poisson distribution 
reflecting the number of del2 cells present after T hours 
of exposure, thus yielding the initial condition: I(0) ∼
Pois(I(D)).

Proliferation of pre‑leukemic cells

Proliferation of the pre-leukemic subpopulation I is 
assumed to be negligible in the initial stage after IR expo-
sure. This assumption is supported by two observations. 
Firstly, transplantation of irradiated  Lin-c-Kit+Sca-1+ 
(LSK) cell populations containing del2 cells into host 
CBA/H mice leads to reduced repopulation of host ani-
mals compared to non-irradiated cells four months after 

(4)rH,I(t) = 𝜇del2L̇(t)H(t)

(5)Ḣ = −rH,𝛿 − rH,I

(6)İ = −rI,𝛿 + rH,I .

(7)H(D) = H0e
−(�D+�D2)(1+�del2)

(8)I(D) = H(D)
(

e�del2(�D+�D
2) − 1

)

,
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exposure. This indicates that del2 cells do not have a pro-
liferative advantage in the early stages following IR expo-
sure (Olme et al. 2013a). Secondly, HSCs have very low 
proliferation rates (Manesso et al. 2013).

It has been proposed that approximately 9 months 
post-IR exposure, pre-leukemic cells with chromosome 
2 abnormalities have an increased probability of being 
selected from the stem cell pool into the proliferating com-
partment (Bouffler et al. 1997). It is thus assumed here that 
non-proliferating intermediate cells I are selected from the 
stem cell pool into the proliferating intermediate cell com-
partment Ip with a time-constant of Tpool = 9 months. The 
corresponding transition rate then follows from:

Thus assuming that, after 9 months on average, about 63% 
of the intermediate cells I moved into the proliferating inter-
mediate cell compartment Ip . Note, however, that this rate is 
a simplification of a possible 9-month delay. Once selected 
from the stem cell pool, the proliferating pre-leukemic popu-
lation Ip is assumed to exhibit exponential growth through:

Similarly to Dekkers et al. (2011), it is assumed that the 
proliferation rate is independent of dose. This is, in the 
early stages (at least 4 months) following exposure, sup-
ported by the aforementioned observation that transplanta-
tion of irradiated LSKs into host mice does not result in a 
growth advantage compared to controls (Olme et al. 2013a). 
Note, however, that the growth rate does implicitly depend 
on dose: the more radiation-induced del2 cells are formed, 
the larger the pool of proliferating pre-leukemic cells will 
become.

Malignant cell formation and diagnosing rAML

The R235 point mutation responsible for malignant cell 
transformation has mainly been found in del2 hematopoi-
etic cells and occurs late in the leukemogenic process 
(Verbiest et al. 2018b; O’Brien et al. 2020). Staber et al. 
(2013) showed that mice with heterozygous knockout of 
PU.1 had a ∼60% reduction in PU.1 mRNA levels com-
pared to controls. Gault et al. (2019) suggested that an 
increased point mutation rate might be the result of (exces-
sive) proliferation due to HSC cell cycle dysregulation 
following PU.1 loss (del2). It was therefore assumed that 
only proliferating intermediate cells Ip can transform into 
malignant cells M through the rate:

(9)rI,Ip(t) =
I(t)

Tpool
.

(10)rIp,2Ip (t) = bIp(t).

where �Sfpi1 is the Sfpi1 point mutation rate. It should be 
noted that alternative explanations such as IR-induced 
genomic instability and/or oxidative stress might be respon-
sible for the Sfpi1 point mutation (Wright 1998; Ishikawa 
and Morisaki 2019). Both explanations can in principle also 
be modeled through the above mutation rate.

Once the first malignant cell M has been formed at 
time tM=1 , it is assumed that rAML onset occurs over the 
course of Tlag days with diagnosis taking place at time 
tAML = tM=1 + Tlag . However, this only occurs if diagnosis 
takes place because the survival time of the mouse, ts , is 
larger than or equal to the time of rAML diagnosis, that 
is, tAML ≤ ts . Tlag was assumed to be 22 weeks based on 
the observation that C57BL mice developed rAML with 
a median latency of about 22 weeks following conditional 
knockout of both PU.1 alleles (Metcalf et al. 2006), this is 
similar to the latency of 21.86 weeks found by Dekkers et al. 
(2011).

Dose‑dependent survival of mice

To avoid overestimation of rAML incidence one needs to 
consider death due to other causes as well. Dose-dependent 
death unrelated to rAML in CBA/H mice was simulated by 
sampling nonnegative survival times ( tS ) in days from a skew 
normal distribution with parameters � = 786.43 − 17.45D , 
� = 178.60 and � = −1.013.

Distribution parameters were set in accordance with the 
observation that survival time in unexposed male CBA/H 
mice follows a left-skewed distribution with a skewness of 
−0.141 , a mean of 685 days and a standard deviation (SD) of 
147 days. Skew normal distribution parameter � is assumed 
to decrease linearly with dose to satisfy the observation that 
mean survival time decreases to approximately 580 days 
after 6 Gy X-ray exposure (Major 1979).

Model implementation, data and fitting procedure

The adaptive tau-leap algorithm developed by Cao et al. 
(2006) was used to run the model in R version 3.5.0 (R 
Core Team 2018) using the AdaptiveTau package with an 
error control parameter of � = 0.01 . AML incidence was 
calculated using 100 and 10 million in silico mice per dose 
following LD ( D ≤ 0.2 Gy) and HD exposure respectively. 
All model results were plotted in MATLAB R2018a.

Fit parameters � , � , �del2 , b and �Sfpi1 were determined by 
minimizing a residual sum of squares cost function using 
data on the mean AML onset time in weeks after 4.5 Gy 
exposure ( � ) and rAML incidence measurements (A) fol-
lowing 0.75, 1.5, 3, 4.5 and 6 Gy X-ray exposure in CBA/H 
mice (Major 1979; Mole et al. 1983). Incidence percentages 

(11)rIp,M(t) = �Sfpi1Ip(t),
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were weighted ( � ) by multiplying each residual with the 
corresponding fraction of mice used per measurement. 
The residual sum of squares cost function for a vector of fit 
parameters � is given by:

where Â(i,�) is the modeled percentage of rAML incidence 
corresponding to data point i out of the n = 20 data points 
for parameters � , and 𝜏(�) is the mean rAML onset time 
model estimate in weeks following 4.5 Gy exposure. Note 
that the residual 𝜏 − 𝜏(�) of the rAML onset time was scaled 
by the average weighted percentage of rAML incidence and 
divided by � to correct for the dimensions and thus include 
both quantities in the fitting procedure. 

The parameter space was initially explored by minimizing 
the cost function through a simulated annealing algorithm 
with 10,000 iterations (R package: GenSA), using 1000 in 
silico mice per data point and initial educated guess values 
listed in Table 1. The optimal solution found with simu-
lated annealing was then fed into the Nelder-Mead method 
for local optimization (R package: dfoptim) using 100,000 
in silico mice per data point. Given the best-fit parameters 
and residuals, parameter uncertainty was determined by fol-
lowing a non-parametric residual-based bootstrap method 
proposed by Dogan (2007), in which 5000 Nelder-Mead fit-
ting procedures (1000 in silico mice per data point) were 
performed on simulated data sets generated from the best-fit 
model output and the sampled residuals. Table 1 contains the 
bias-corrected 95% percentile bootstrap confidence intervals 
(Efron and Tibshirani 1986; Dogan 2007) calculated from 
the bootstrap samples. The number of in silico mice used 
per data point in a given fitting procedure was based on a 
balance between accuracy and computation time.

Approximating model solutions and the LDEF

Numerical model solutions were approximated with simple 
analytical expressions to study properties of dose- and time-
dependent rAML onset. The LD response curve for rAML 
incidence was approximated using an LQ model as well as a 
dose-dependent function in which incidence was taken to be 
proportional to the average number of del2 cells formed in 
a single mouse following exposure (Eq. 8). Note that an LQ 
model for the LD response-curve ( �D + �D2 ) should not be 
confused with the LQ model for cell survival (Eq. 1). It was 
further assessed how well an LQ model can be used to infer 
model-derived LD rAML incidence ( D ≤ 0.20 Gy) after fit-
ting its parameters to model-derived HD rAML incidence 

(12)

C(�) =

n
�

i=1

w(i)

�

A(i) − Â(i, �)

�2

+

�
∑n

i=1
w(i)A(i)

n𝜏

�

𝜏 − 𝜏(�)
�

�2

,

estimates between 0.25–1.00 Gy. A linear model ( �LD ) was 
additionally fitted to the same HD rAML estimates to evalu-
ate how well an LDEF improves LD extrapolations made 
with a linear model. The LDEF is calculated in dose Dx = 1 
Gy through: LDEF = 1 + (�∕�)Dx (Rühm et  al. 2016), 
where � and � are the LQ model parameters.

The numerical solution for time of rAML diagnosis was 
estimated using a normal cumulative distribution func-
tion (CDF) in which the mean and SD were modeled with 
third-order polynomials ( 

∑3

k=0
ckD

k ). A third-order polyno-
mial was chosen because it contains the minimum number 
of parameters required to sufficiently describe the model 
solutions.

The parameters for the aforementioned functions were 
determined through a nonlinear least-squares method using 
the nls function of the stats package in R. For LD rAML 
incidence, the curves were fitted with(out) log transform-
ing incidence estimates to study the effect of transformation 
on the predictive value. The residual sum of squares of log 
transformed rAML incidence values ( RSSlog ) was used as a 
measure for LD fit quality.

Results

Response of bone marrow cells to IR exposure

Loss of clonal potential of HSC target cells was described 
through the LQ model (Fig. 2a), yielding model predictions 
that are in line with gamma-irradiated Slam-HSC (LSK, 
 Flk2-,  CD150+,  CD48-) survival data (Mohrin et al. 2010) 
not included in the fitting procedure. Figure 2b shows the 
simulated response of bone marrow cell populations in 
a single in silico mouse following 3 Gy exposure. Inter-
mediate cells I (blue) are formed due to IR-induced del2-
mediated Sfpi1 copy loss. Over time, intermediate cells I 
are selected from the stem cell pool into the proliferating 
compartment Ip (black), resulting in malignant cell forma-
tion at time tM=1 (vertical purple line) due to occurrence of 
the R235 point mutation. Time of diagnosis was found by 
registering the time at which the first malignant cell came 
into existence and adding time lag Tlag (vertical red line). 
Diagnosis only took place if a mouse did not die from other 
causes during the time lag ( tS , vertical green line), that is, 
tAML = tm=1 + Tlag ≤ ts.

Induction of del2

One of the two key steps required to explain murine 
rAML is the interstitial deletion on chromosome 2 with 
Sfpi1 copy loss. Dose-dependent del2 induction follow-
ing IR exposure was modeled by deriving estimates for 
the mean Poisson distributed number of healthy (Eq. 7) 
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and intermediate (Eq. 8) target cells present per mouse. 
Figure 3a shows a nonlinear dose-dependent increase in 
the mean percentage of del2 target cells (black), dark and 
light shaded regions respectively contain 50% and 95% of 
all model predictions. Shown CBA/H mouse data repre-
sents background corrected X-ray-induced relative del2 
formation among LSK cells, which are comprised of about 
10% HSCs, following in vitro (filled circle) and in vivo 
(open circle) exposure (Olme et al. 2013a). To compare 
these data points with the presented model solution it is 
assumed that del2 formation in LSK cells is similar to 
that in HSCs. The mean number of viable IR-induced del2 
cells increases rapidly with dose until a maximum of about 
280 cells are formed following 2.6 Gy exposure (Fig. 3b). 

Further increasing the dose results in enhanced cell kill-
ing, thus driving the total number of del2 cells towards 
zero.

Dose‑ and time‑dependent rAML onset

The survival time post-IR exposure was found to decrease 
in a dose-dependent manner, as shown by the drop in mean 
survival time (solid curve) from 98 to 82 weeks when the 
dose was increased from 0 to 6 Gy (Fig. 4a). The modeled 
mean survival time ± SD (dotted) is similar to experimental 
observations of X-ray irradiated male CBA/H mice (filled 
circles: mean; open circles: mean ± SD) from Major (1979), 
with a slight underestimation following 3 and 4.5 Gy expo-
sure. The blue data points represent more recent survival 

Fig. 2  Clonal survival and bone marrow leukemogenesis. a HSC tar-
get cell survival is described through the linear-quadratic model. Data 
adapted from Mohrin et  al. (2010) is shown with mean ± standard 
deviation (n = 3) of gamma-ray irradiated SLAM-HSC derived from 
C57BL/6 mice. b Following 3 Gy exposure, surviving bone marrow 
intermediate cells I carrying del2 (blue) are selected to enter prolif-

erating compartment Ip (black). The vertical purple line indicates the 
time at which the first malignant cell M is formed from Ip due to the 
occurrence of the R235 point mutation, this in silico mouse will be 
diagnosed with rAML Tlag days later (vertical red line). The vertical 
green line depicts the time at which this mouse would have died from 
another cause

a b

Fig. 3  Formation of radiation-induced intermediate del2 cells pre-
sent directly after exposure. a Mean percentage of del2 target cells 
is shown by the black curve and shaded areas represent 50% (dark 
shades) and 95% (light shades) of all model predictions. Data points 
represent in vivo (open circle) and in vitro (filled circle) measure-

ments of relative del2 formation among X-ray irradiated LSK cells 
(Olme et  al. 2013a). b The dose-response curve for the number of 
radiation-induced del2 cells reaches a maximum following 2.6 Gy 
exposure. Further increasing the dose results in more cell death, 
hence explaining the decrease in del2 cell formation
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time measurements of 3 Gy X-ray irradiated male CBA/H 
mice (Olme et al. 2013b).

A similar pattern was observed for the mean (filled cir-
cles) ± SD (open circles) time of rAML diagnosis, which 
decreased from 81 to 71 weeks when the dose was increased 
from 0 to 6 Gy (Fig. 4b). The model predictions (filled/open 
black circles) could be adequately described with dose-
dependent third-order polynomials for the mean time of 
rAML onset ( �tAML

(D) , solid) ± SD ( �tAML
(D) , dotted), fit-

ted constants can be found in Table 2. Red and blue circles 
respectively correspond to experimental observations from 
Mole et al. (1983) and Olme et al. (2013b). Note that the 
rAML onset times following 1 Gy and 2.5 Gy exposure were 
based on pooled observations over the range of 0.25–1.50 
Gy and 2–3 Gy irradiated CBA/H mice correspondingly.

Predicted cumulative rAML incidence following 2.5 Gy 
(blue) and 4.5 Gy (red) exposure is in line with experimen-
tal observations of X-ray irradiated CBA/H mice following 
2–3 Gy (dashed blue stairs) and 4.5 Gy (dashed red stairs) 

exposure (Mole et al. 1983, Fig. 4c). Figure 4d shows that 
dose- and time-dependent cumulative rAML model predic-
tions can be adequately approximated by a normal CDF with 
the aforementioned functions for the mean ( �tAML

(D) ) and the 
SD ( �tAML

(D) ). The 2.5th, 25th, 50th, 75th and 95th rAML 
onset time percentile contours are shown as a function of 
dose and time for the normal CDF (solid curve) and the 
actual model predictions (dotted). The shown percentiles 
decrease in a nonlinear fashion with dose.

The linear‑quadratic rAML dose‑response curve

The dose-response for murine rAML was calculated by 
scoring all the cases observed after running the model 
100 million times for each dose up to 0.2 Gy and 10 mil-
lion times for any other dose of interest (black curve, 
Fig. 5a). Model results are in line with data used in the 
fitting procedure derived from four independent experi-
ments (filled circles) in which male CBA/H mice were 

Fig. 4  Dose- and time-dependent rAML onset. a Mean mouse sur-
vival time ± standard deviation (SD) is shown to decrease as a func-
tion of dose for model predictions (mean: solid curve; mean ± SD: 
dotted curve) and experimental observations (mean: filled circles; 
mean ± SD: open circles). Mean ± SD (black circles) are based on 
40 to 61 CBA/H mice per dose and over 800 mice for the control 
(Major 1979), blue circles represent measurements from Olme et al. 
(2013b). b Model predictions (black) for the dose-dependent decrease 
in mean time to rAML onset (filled circles) ± SD (open circles) are 
shown with third-order polynomial fits (mean: solid curve; mean ± 

SD: dotted curve). Blue and red data points respectively correspond 
with the time of rAML onset from experiments conducted by Olme 
et  al. (2013b) and Mole et  al. (1983). c Cumulative time-dependent 
rAML incidence following 2.5 (blue) and 4.5 (red) Gy exposure is 
in line with data from CBA/H mice irradiated with 2–3 Gy (dashed 
blue stairs) or 4.5 Gy (dashed red stairs) X-rays (Mole et  al. 1983). 
d Percentiles for cumulative rAML incidence can be described in a 
dose- and time-dependent manner through a normal cumulative dis-
tribution function (CDF, solid) used to approximate the model solu-
tions (dotted)
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exposed to various X-ray doses (Major and Mole 1978; 
Mole et  al. 1983). Open circles represent data points 
from Mole et al. (1983) not included in the fit due to the 
absence of replicates. Peak rAML incidence of about 22% 
was observed following 2.6 Gy exposure, which is similar 
to the dose required to reach maximum del2 formation 
(Fig. 3b). Further increasing the absorbed dose decreased 
rAML onset due to depletion of del2 cells and competing 
causes of death. Note that the relatively high rAML inci-
dence following 3 Gy exposure is directly responsible for 
the slight underestimation of CBA/H mouse survival time 
post-irradiation shown in Fig. 4a. The purple, red and blue 

curves respectively correspond to the rAML incidence 
diagnosed 50, 75 and 100 weeks after exposure, reveal-
ing that approximately 50% of the maximum incidence 
is diagnosed around 75 weeks post-IR, which is expected 
based on the median time of rAML onset shown in Fig. 4d.

Figure 5b shows that the LD rAML model solution (open 
circles) can be accurately described using an LQ model (red, 
� = 3.63  Gy-1, � = 10.1  Gy-2) with parameters derived from 
a fitting procedure with logarithmic transformed LD inci-
dence estimates, yielding RSSlog = 0.0001 . It was addition-
ally assessed how well this LQ LD response curve can be 
reproduced when only HD rAML model solutions (black-
filled circles) between 0.25 and 1.00 Gy were made available 
in the fitting procedure to extrapolate from. Slight overesti-
mation of LD rAML was then found through the LQ model 
(blue, � = 4.70  Gy-1, � = 6.51  Gy-2, RSSlog = 0.53 ). The LD 
rAML model solution can be described more accurately 
when rAML is assumed to be proportional to the mean num-
ber of viable del2 cells I present per mouse after IR exposure 
(purple, Eq. 8), yielding RSSlog = 0.10 for a proportionality 
constant of 0.107. Inferior results were found when trying to 
reconstruct LD rAML incidence through HD rAML model 
solutions without application of a logarithmic transforma-
tion in the curve fitting procedure, leading to RSSlog values 
of 1.57 and 0.23 for the LQ model ( � = 5.44  Gy-1, � = 5.48 
 Gy-2) and the del2 induction function respectively.

As expected, overestimation of the LD rAML model 
solution occurs when inferring possible incidence with 
linear models acquired through a fitting procedure with 
( �L = 8.61  Gy-1; RSSlog = 8.61 ) and without ( �L = 9.81  Gy-1; 
RSSlog = 12.4 ) log transforming the HD rAML model solu-
tion. These results could subsequently be improved by divid-
ing the LD extrapolations, made with the linear models, by 

Fig. 5  The rAML dose-response curve for X-ray irradiated CBA/H 
mice. a The modeled high-dose rAML incidence curve (black) 
describes the available data quite well: filled circles represent mean± 
standard deviation of 4 experiments conducted by Major (1979) and 
Mole et al. (1983); open circles represent data points from Mole et al. 
(1983) not included in the fitting procedure. Cumulative rAML per-
centage calculated in week 50, 75 and 100 are respectively depicted 

by the purple, red and blue curves. b The low-dose rAML estimates 
calculated with the model (open circles) increased linear-quadrati-
cally (LQ) with dose (red). Low-dose rAML model predictions can be 
estimated quite well by the LQ model (blue) and in terms of del2 for-
mation I (purple) when only high-dose rAML estimates (black-filled 
circles) were made available in the fitting procedure to subsequently 
extrapolate from

Table 1  Best-fit rAML model parameters reported with a bias-cor-
rected 95% bootstrap confidence interval and the starting values used 
in the simulated annealing fitting procedure

Constant Units Start Best-fit values

� Gy-1 0.01 0.0402 (0.0068; 0.181)
� Gy-2 0.01 0.122 (0.0779; 0.163)
�del2 - 0.01 0.0498 (0.013; 0.388)
�Sfpi1 day-1 24⋅10-7 2.26⋅10-6 (3.91⋅10-7; 7.04⋅10-6)
b day-1 24⋅10-4 2.05⋅10-3 (9⋅10-4; 6.35⋅10-3)

Table 2  Third-order polynomial fit parameters for the dose-depend-
ent normal cumulative distribution function of the mean ( �

t
AML

 ) and 
standard deviation ( �

t
AML

 ) of rAML onset times in weeks

Function c
0

c
1

c
2

c
3

�tAML
(D) 80.8 −4.44 0.801 −0.0553

�tAML
(D) 25.1 −1.23 0.206 −0.0143
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the LDEF estimated in 1 Gy, producing RSSlog values of 1.61 
(LDEF= 2.39) and 0.44 (LDEF = 2.01) respectively. In the 
case of a log transformation, the LDEF of 2.39 produces a 
transformed slope parameter of �L∕LDEF = 3.60 Gy -1, note 
that this is approximately equal to the aforementioned true 
LD slope parameter � = 3.63  Gy-1. Obviously, a linear model 
lacks a quadratic component with a beta-coefficient, result-
ing in an increasingly severe underestimation of true rAML 
incidence when increasing the dose from 0 to 0.20 Gy. 
Hence explaining the relatively large RSSlog value of 1.61. 
Without log transforming the HD rAML model solution, the 
LDEF of 2.01 yields a transformed linear slope parameter of 
�L∕LDEF = 4.88  Gy-1. This is an overestimation of the true 
LD slope parameter � , resulting in a relatively small RSSlog 
value of 0.44 because the quadratic component of the true 
dose-response curve is now only slightly underestimated for 
doses between 0.14–0.20 Gy (results not shown).

Discussion

The mathematical two-hit model of murine leukemogen-
esis presented here is a more realistic extension of a previ-
ous modeling effort by Dekkers et al. (2011). The model 
was extended by explicitly including cell survival and del2 
induction in terms of the LQ model and by coupling bone 
marrow leukemogenesis to a survival model in which mice 
can die from other causes than rAML. Obtained results on 
cell survival, del2 formation, survival time and rAML inci-
dence/onset are in good agreement with experimental obser-
vations (Mole et al. 1983; Major 1979; Olme et al. 2013a; 
Mohrin et al. 2010). Note, however, that the presented model 
is mostly based on historical CBA/H mouse data (Major 
1979; Mole et al. 1983) because of the availability of dose-
dependent rAML incidence and survival time data. This 
resulted in relatively high rAML incidence and late rAML 
onset times when compared to recent experiments also con-
ducted with CBA/H mice and the same radiation quality 
(Olme et al. 2013a; Verbiest et al. 2018b). This disparity 
could possibly be attributed to differences in housing condi-
tions, rAML diagnosis protocol and (humane) endpoints for 
sacrificing laboratory animals.

Even though the model can be used to reproduce experi-
mental observations this does not necessarily signify that the 
underlying model assumptions are correct, since it remains 
a simplified representation of murine rAML, as illustrated 
by the following three examples. Firstly, similarly to Dek-
kers et al. (2011), it was assumed here that HSCs are the 
target cells at risk for bringing about rAML. However, it 
is possible that the actual target cells are from a different 
HSPC subpopulation. If this is indeed the case, then the 
model can still be applied to murine rAML by adjusting the 
initial number of healthy target cells H and repeating the 

parameter fit analysis. The survival curve for HSCs is quite 
similar to HSPCs (Mohrin et al. 2010), indicating that an 
adjustment of LQ survival parameters might not be neces-
sary. Secondly, it was assumed that in vitro HSC survival, 
described through the LQ model, is a good predictor for 
in vivo loss of clonogenic potential. As a consequence it was 
automatically assumed that cell survival under normoxic 
conditions ( pO2 ≈140 mmHg) is similar to bone marrow 
conditions ( pO2 ≈ 22 mmHg, Spencer et al. 2014). This is 
supported by the observation that cellular radiosensitivity 
remains relatively unchanged as a result of such a difference 
in oxygen tension (Stewart et al. 2011; Hall and Giaccia 
2011). Finally, Yates et al. (2017) discussed that Gillespie’s 
algorithm is often used improperly to describe processes, 
such as cell proliferation, for which the inter-event time does 
not follow an exponential distribution. Relatively short gen-
eration times can then be sampled from the exponential dis-
tribution, resulting in overestimation of the expected number 
of cells compared to what one should observe based on an 
exponential growth model. It is noted that in the present 
study an adaptive tau-leap algorithm developed by Cao et al. 
(2006) was used that only switches to Gillespie’s algorithm 
when few cells are present. To test whether low cell counts 
associated with LD exposure affected the rAML incidence, 
the switch to Gillespie’s algorithm was disabled such that 
there was no deviation from the expected exponential growth 
curve. From this it is concluded that one could use the much 
faster adaptive tau-leap algorithm because the results were 
identical in both implementations.

Not only was it possible to confirm previously made 
observations indicating that the latency between irradiation 
and observable rAML decreases with the absorbed dose 
(Major 1979; Upton et al. 1958), but also to describe dose-
dependent rAML onset time through a simple normal CDF. 
In the model used here, the mean time to rAML onset ini-
tially reduced with dose due to a large increase in the total 
number of cells harboring the interstitial deletion with Sfpi1 
loss; therefore increasing the pool of pre-leukemic cells that 
have the potential to become leukemogenic. Although fur-
ther increasing the dose resulted in a decrease of the number 
of viable del2 cells, this did not translate to higher average 
rAML onset times. Instead, the mean time to rAML diag-
nosis kept on decreasing because the murine survival time 
decreased with dose and, as a result, the mice that were diag-
nosed with rAML had to develop the malignant cell trans-
formation early on.

The numerical solutions of the model presented here 
were the result of time consuming simulations during which 
millions of in silico mice were irradiated. Numerical solu-
tions were approximated with simple functions to allow for 
easy comparison and to study the possible form of the dose 
response curve. An LQ function was found to accurately 
describe the LD rAML response curve calculated with the 



58 Radiation and Environmental Biophysics (2021) 60:49–60

1 3

CBA/H male mouse model. It was further tested how well 
functions can accurately reconstruct LD model incidence 
when only the HD model solution was made available to 
extrapolate from. An LQ model and a function for describing 
rAML in terms of the number of IR-induced del2 cells per 
mouse were considered, both were able to quite accurately 
reproduce LD rAML incidence with the latter slightly out-
performing the former. Suggesting that the first hit in the 
two-hit model of rAML is largely responsible for determin-
ing the form of the LD response curve. Verbiest et al. (2015) 
discussed the differences between human primary AML and 
murine rAML, describing that heterozygous mutations in 
the human analogue of murine Sfpi1 are rare (Mueller et al. 
2002; Bonadies et al. 2010). The dose-dependent expression 
for IR-induced del2 formation function should therefore not 
be applied to human rAML.

Although epidemiological studies have shown that the 
rAML dose-response curve is probably nonlinear (Preston 
et al. 1994; Richardson et al. 2009; Hsu et al. 2013), the 
assumption of linearity remains practical for the purpose of 
radiation protection (Boice 2017). The LDEF allows one to 
account for the possible overestimation of risk when using 
a linear model for a dose-response curve that might actually 
be linear-quadratic in radiation dose (SSK 2014). Here, the 
LDEF was applied to a linear dose-response line fitted to 
model-derived HD incidence estimates between 0.25 and 1 
Gy to perform a simple examination of how well this factor 
facilitates LD extrapolation. In general, the LD rAML inci-
dence curve derived from the presented mathematical model 
could be better approximated when model parameters were 
derived from a fitting procedure with log transformed inci-
dence estimates. This improvement was obtained because 
a logarithmic transformation reduces the weight of larger 
incidence values in a curve fitting procedure. As one might 
expect, a linear model is not suitable for describing model-
derived LD rAML incidence. The actual LD response curve 
could be described more accurately with a linear model after 
dividing the LD extrapolations with the LDEF, estimated at 
1 Gy. Although an improvement was obtained, utilization of 
the LDEF additionally resulted in the (slight) underestima-
tion of model-derived rAML incidence over a specific dose 
range. The dose range over which one might underestimate/
overestimate true rAML incidence is dependent on used data 
transformations and the chosen reference dose for estimating 
the LDEF. Although an LQ model is more difficult to use 
in radiation protection compared to a linear model with an 
LDEF. The LQ model should ideally be used when one is 
interested in describing LD incidence when only HD data 
are available to extrapolate from and when there are indica-
tions that the LD curve might be LQ in radiation dose. It 
should be noted that the presented LDEF analysis is limited 
due to the use of noise-free model-derived rAML estimates.

Hsu et al. (2013) conducted a comprehensive epidemio-
logical study on the mortality from various forms of leuke-
mia among Japanese atomic bomb survivors dependent on 
factors such as dose, age at exposure and sex. A purely quad-
ratic function was used as the preferred model to describe 
excess absolute/relative rAML risk over a wide dose-range. 
A similar finding for excess relative rAML risk was found 
by Richardson et al. (2009), revealing that the addition of 
a linear term to a purely quadratic dose-response function 
contributed little to the model fit. The model presented 
here is based on the known murine two-hit rAML path-
way in which only male CBA/H mice of the same age were 
exposed. The modeling effort described in the present paper 
can complement epidemiological studies by translating the 
(limited) understanding of leukemogenesis into a simpli-
fied mathematical model to subsequently study the possible 
dose-response curve. Although the present two-hit model 
results are in good agreement with the data, the obtained LQ 
dose-response curve follows from the made assumptions, 
and thus, might be incorrect. For example, a quadratic dose-
response curve can be obtained with the model if the Sfpi1 
point mutation rate is made proportional to dose without 
an offset, making the occurrence of rAML following LD 
exposure rare due to a small dose-dependent mutation rate. 
An LQ curve is again obtained when the offset is not exactly 
zero. Thus, the dose-response curve found here should there-
fore be interpreted in light of the model assumptions that 
had to be made due to the many unknown factors possibly 
affecting murine rAML.

Murine rAML can largely be explained by the two-hit 
model of leukemogenesis, which is supported by the find-
ing from Metcalf et  al. (2006) that approximately 95% 
of C57BL mice surviving conditional-knockout of both 
Sfpi1 alleles developed AML. Furthermore, Finnon et al. 
(2012) found that about 77% of the rAML cases (n=30) in 
CBA/H and CBA/H x C57BL mice tested positive for del2. 
Of these mice, approximately 83% carried the R235 point 
mutation. Flt3-ITD mutations without Sfpi1 involvement 
were found in 10% of the rAML cases, indicating the exist-
ence of another possible murine rAML pathway. Recently, 
O’Brien et al. (2020) analyzed 123 murine rAML samples 
and revealed new rAML pathways involving Kras mutations 
and Sfpi1 promoter methylation. It was further confirmed 
that the Sfpi1 deletion followed by an R235 point mutation 
is the most common pathway (64% of rAML cases). Interest-
ingly, about 4% of the rAML cases showed the Sfpi1 R235 
mutation without a detectable deletion. The dose-response 
curve obtained here assumes that all rAML cases result from 
the major pathway of leukemogenesis. However, different 
disease pathways will probably have distinct dose response 
curves, with the overall form being a weighted average, 
which might differ across gender (Verbiest et al. 2018a; 
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O’Brien et al. 2020). Further research is required to investi-
gate the possibility of including multiple pathways.

The model presented here is a step towards quantifying 
possible murine rAML incidence dependent on dose-rate 
and various dose fractionation schedules. By incorporating 
these modes of IR exposure one can calculate dose- and 
dose-rate-dependent effectiveness functions relevant as a 
possible tool for predicting LD (rate) effects given the avail-
ability of only HD (rate) data. These functions could then 
possibly be used within the context of murine rAML to shed 
more light on the ongoing discussion surrounding the usage 
of reduction factors such as the LDEF, DREF and DDREF.
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