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Abstract
The scientific community faces important discussions on the validity of the linear no-threshold (LNT) model for radiation-
associated cardiovascular diseases at low and moderate doses. In the present study, mortalities from cerebrovascular diseases 
(CeVD) and heart diseases from the latest data on atomic bomb survivors were analyzed. The analysis was performed with 
several radio-biologically motivated linear and nonlinear dose–response models. For each detrimental health outcome one 
set of models was identified that all fitted the data about equally well. This set was used for multi-model inference (MMI), 
a statistical method of superposing different models to allow risk estimates to be based on several plausible dose–response 
models rather than just relying on a single model of choice. MMI provides a more accurate determination of the dose response 
and a more comprehensive characterization of uncertainties. It was found that for CeVD, the dose–response curve from 
MMI is located below the linear no-threshold model at low and medium doses (0–1.4 Gy). At higher doses MMI predicts a 
higher risk compared to the LNT model. A sublinear dose–response was also found for heart diseases (0–3 Gy). The analyses 
provide no conclusive answer to the question whether there is a radiation risk below 0.75 Gy for CeVD and 2.6 Gy for heart 
diseases. MMI suggests that the dose–response curves for CeVD and heart diseases in the Lifespan Study are sublinear at 
low and moderate doses. This has relevance for radiotherapy treatment planning and for international radiation protection 
practices in general.

Keywords  Ionizing radiation · Cardiovascular diseases · Atomic bomb survivors · Risk assessment · Linear no-threshold 
model · Nonlinear dose–response

Introduction

High doses of ionizing radiation (IR) can cause non-cancer 
diseases including cardiovascular-related detrimental health 
outcomes. Such evidence stems from analyzing cohorts of 
radiotherapy patients (Darby et al. 2013) and animal experi-
ments (Stewart et al. 2006). One cohort that is very impor-
tant for IR-associated risk analyses and radiation protection 
is the Life Span Study (LSS). It includes information on 
high-, medium- and low-dose exposed atomic bomb survi-
vors. For cardiovascular diseases (CVD) there are a range 
of findings including detrimental effects (Preston et al. 
2003; Shimizu et al. 2010; Little et al. 2012; Azizova et al. 
2012, 2014, 2015a, b; Moseeva et al. 2014; Ozasa et al. 
2012, 2017; Gillies et al. 2017), indications for threshold-
doses from analyzing LSS data (Schöllnberger et al. 2012) 
and experimental evidence for anti-inflammatory effects 

Electronic supplementary material  The online version of this 
article (https://doi.org/10.1007/s00411-017-0722-5) contains 
supplementary material, which is available to authorized users.

 *	 Helmut Schöllnberger 
	 hschoellnberger@bfs.de; 

schoellnberger@helmholtz‑muenchen.de

1	 Department of Radiation Sciences, Institute of Radiation 
Protection, Helmholtz Zentrum München, Ingolstädter 
Landstrasse 1, 85764 Neuherberg, Germany

2	 Department of Radiation Protection and the Environment, 
Federal Office for Radiation Protection, Ingolstädter 
Landstrasse 1, 85764 Neuherberg, Germany

3	 Department of Statistics, Radiation Effects Research 
Foundation, Hiroshima, Japan

4	 Institute of Pathology, Städtisches Klinikum München 
and Technical University of Munich, Munich, Germany

http://orcid.org/0000-0002-4398-6565
http://orcid.org/0000-0003-0249-3710
http://orcid.org/0000-0003-4816-3514
http://orcid.org/0000-0003-0359-2251
http://crossmark.crossref.org/dialog/?doi=10.1007/s00411-017-0722-5&domain=pdf
https://doi.org/10.1007/s00411-017-0722-5


18	 Radiation and Environmental Biophysics (2018) 57:17–29

1 3

(Mitchel et al. 2007, 2011, 2013; Rödel et al. 2012a, b; Frey 
et al. 2015; Mathias et al. 2015; Le Gallic et al. 2015).

With respect to cancer the linear no-threshold (LNT) 
model is applied in international radiation protection prac-
tices. This has been challenged and the discussions continue 
for CVD. As for cancer, these debates relate to the questions 
which dose–response models should be applied to radio-epi-
demiological cohorts, whether they should include threshold 
and other nonlinear models and whether risk increases lin-
early from lowest doses (such as those occurring due to envi-
ronmental exposures) up to the high doses applied in radio-
therapy (Little et al. 2012, 2013; Schöllnberger and Kaiser 
2012; Schöllnberger et al. 2013). Ongoing discussions reflect 
the controversial nature of this issue (Little 2016). The ques-
tion of IR-induced risks for CVD is of great importance 
to the societies given the widespread and increasing use of 
medical applications such as CT scans and radiotherapy as 
well as in the context of nuclear energy production and acci-
dent related long-term risks.

In the present study, the latest publically available LSS 
mortality data for two important detrimental health out-
comes (cerebrovascular diseases (CeVD) and heart dis-
eases) were analyzed with several radio-biologically moti-
vated nonlinear dose–response models in addition to the 
LNT model. Multi-model inference (MMI) (Burnham and 
Anderson 2002; Claeskens and Hjort 2008) techniques were 
applied to obtain more realistic risk predictions. This sto-
chastic technique has been introduced to radiation epidemi-
ology by Walsh and Kaiser (2011) who also discuss MMI 
applications in other fields of research. It has also been used 
in subsequent radio-epidemiological studies (Kaiser et al. 
2012; Schöllnberger et al. 2012; Kaiser and Walsh 2013; 
Simonetto et al. 2015). The present study extends the analy-
sis of Shimizu et al. (2010) in an important manner because 
MMI provides both a more accurate determination of the 
dose response and a more comprehensive characterization of 
model uncertainties by accounting for a possible bias from 
model selection. Our MMI approach aims to detect nonlin-
earities in the dose response by extensive analysis applying 
biologically plausible dose–response models. For CVD it 
has been applied to the Mayak workers cohort (Simonetto 
et al. 2015) and an earlier LSS data set (Schöllnberger et al. 
2012). Our approach can be considered complementary to 
the meta-analysis of Little et al. (2012) and Little (2016) 
who relied on studies with LNT as a foregone conclusion.

Materials and methods

Two detrimental health outcomes of the latest publically 
available data of the atomic bomb survivors were analyzed 
with a larger set of linear and nonlinear dose–response 

models with the aim of improved understanding of poten-
tial risks (or benefits) at low and moderate doses of ionizing 
radiation.

Study population

The LSS cohort consists of 86,611 atomic bomb survivors 
whose individual radiation doses were estimated using the 
DS02 dosimetry system, considering the location and shield-
ing of each survivor at the time of the nuclear explosions. It 
includes a large proportion of the survivors who were within 
2.5 km of the hypocentres at the time of the bombings and 
still resided in Hiroshima or Nagasaki in 1950, plus a ran-
dom age- and sex-matched sample of people 2.5–10 km from 
the hypocentres who sustained small to negligible radiation 
doses. This study population was of all ages and both sexes 
at the time of the bombings (Shimizu et al. 2010). As in the 
primary analysis (Shimizu et al. 2010), all analyses of the 
present study were performed using weighted colon doses 
in Gy, i.e. sum of the γ-ray dose estimate plus 10 times the 
neutron dose estimate. The person-year weighted mean dose 
within the whole cohort is 0.116 Gy and the person-year 
weighted mean dose of the mortality cases is 0.111 Gy. The 
doses range from 0 to 4 Gy (Shimizu et al. 2010; Preston 
et al. 2003). As it is visible from Table S1 of the Online 
Resource, the cohort covers a wide range of doses but is 
weighted towards low doses, which indicates that it has 
considerable capability to examine risks at low doses and 
to examine the shape of the dose–response curve (Shimizu 
et al. 2010).

The follow-up of the vital status took place from October 
1 1950 until the end of 2003. As in the study by Shimizu 
et al. (2010), the data set with the full follow-up period 
(1950–2003) was analyzed including distal and proximal 
survivors (who were within a radius of 3 km from the hypo-
centers at the time of bombings). This amounted to 86,611 
individuals (35,687 men and 50,924 women). During the 
follow-up period 9622 persons died from CeVD and 8463 
died from heart diseases. The number of person-years con-
tained in the data is 3,294,282 (1,280,797 and 2,013,485 for 
males and females, respectively). Data pertaining to men and 
women were fitted jointly.

The data are categorized by city, sex, age at exposure, 
attained age, calendar time and DS02 weighted colon dose. 
They are provided within a detailed summary table that con-
tains for each available combination of categories the num-
ber of subjects, the number of person-years at risk, person-
year weighted mean age at exposure, person-year weighted 
mean attained age, person-year weighted colon dose and 
the number of cases of death for the different detrimental 
health outcomes. In the present study, the mortality data that 
have CeVD and CVD excluding CeVD (generally referred 
to as heart diseases) as the underlying cause of death were 
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analyzed, corresponding to the main analysis from Shimizu 
et al. (2010). CeVD are defined by ICD-9 codes 430–438 
and comprise hemorrhagic and ischemic diseases (CeVD 
are often referred to as stroke). CVD excluding CeVD are 
defined by ICD-9 codes 393–429 (excluding 401, 403, 
and 405). They contain chronic rheumatic heart diseases, 
hypertensive and ischemic heart diseases, diseases of pul-
monary circulation and other forms of heart diseases. The 
data-set represents the latest publically available grouped 
LSS data (Shimizu et al. 2010; data file lsscvd10.dat avail-
able at http://www.rerf.jp/library/dl_e/lsscvd10.html). For a 
more detailed data classification the reader is referred to the 
Online Resource, Table S1.

In the primary analysis (Shimizu et al. 2010), the data had 
been analyzed using a stratified baseline model (in opposi-
tion to our approach of a parametric baseline, a stratified 
baseline contains one free parameter for each combination 
of available categories in the data) combined with LNT, Q 

and linear-threshold (LTH) models as excess relative risk 
(ERR) models.

Risk models

The data were analyzed with parametric baseline models that 
were combined with 13 different dose–response models as 
ERR model and excess absolute risk (EAR) model. The gen-
eral form of an ERR model is h = h0 × (1 + ERR(D, s, a, e)) 
where h is the total hazard function, h0 is the baseline model 
and ERR(D, s, a, e) describes the change of the hazard func-
tion with weighted colon dose D allowing for dose-modifica-
tion by sex (s), attained age (a) and age at exposure (e). It is 
ERR(D, s, a, e) = err(D) × ε(s, a, e). Here, err(D) represents 
one of the dose–response models from Fig. 1 and ε(s, a, e) 
contains the dose–effect modifiers (DEMs) sex, attained age, 
and age at exposure. The general form of an EAR model is 
h = h0 + EAR(D, s, a, e) with EAR(D, s, a, e) = ear(D) × ε(s, 

Fig. 1   Typical shapes of the functions that were used to analyze the 
dose responses. 1st row: LNT model, quadratic (Q), linear-quadratic 
(LQ); 2nd row: linear-exponential (LE), linear-threshold (LTH), step-
model; 3rd row: smooth step, step-linear, sigmoid; 4th row: hockey 

stick (J-shaped model), hormesis, two-line spline, categorical model. 
Additional dashed lines show the flexibility of some of the models. 
The mathematical equations for all of these models are provided on 
pages 6–8 of the Online Resource

http://www.rerf.jp/library/dl_e/lsscvd10.html
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a, e). Here, ear(D) represents one of the models from Fig. 1. 
For the parametric baseline model the same functional form 
has been applied that had been introduced by Preston et al. 
(2003) and applied by Schöllnberger et al. (2012). For math-
ematical details see Online Resource, Eq. (S1) and page 6. 
The models from Fig. 1 are motivated by various results 
from radiobiological studies including findings that indicate 
protective effects (i.e. U-shaped or J-shaped dose–responses; 
Mitchel et al. 2011, 2013; Le Gallic et al. 2015; Mathias 
et al. 2015) as well as supra-linear responses indicating that 
the radiation may have acted stronger than predicted by the 
LNT model. Models such as the LTH and two-line spline 
models are frequently used within radio-epidemiological 
studies (e.g. Preston et al. 2003; Shimizu et al. 2010; Ozasa 
et al. 2012; Kaiser and Walsh 2013, Hsu et al. 2013; Taka-
hashi et al. 2017; Grant et al. 2017). The dose–response 
models were chosen to reflect many biologically plausible 
shapes for dose–responses which are deemed adequate to 
describe the dose response. Generally, both supra-linear and 
sub-linear models are considered. Naturally, this selection is 
subjective but it is motivated in part by possible underlying 
radio-biological mechanism. This closer link to radiobiology 
cannot be provided by a purely mathematical exploration of 
the dose responses using penalized B-splines (Eilers and 
Marx 1996) or fractional polynomials (Faes et al. 2007).

The threshold-dose parameter (Dth) contained in some 
models (LTH, step, smooth step, step-linear, sigmoid, 
hockey stick, hormesis, two-line spline) was allowed to be 
free during the model fits, i.e. Dth was estimated during the 
model fits by allowing it to be optimized. The step model 
(Fig. 1) with its steep slope usually provides a good esti-
mate of a possible threshold-dose that was then analyzed 
further with other models (Simonetto et al. 2014). The three 
step models (step, smooth step and step-linear) were imple-
mented as modified hyperbolic tangent functions, which 
can accommodate various different shapes. With this func-
tion, a step is not imposed a priori but results from fitting 
that model to data. The mathematical equations for all 13 
dose–response models are provided on pages 6–8 of the 
Online Resource.

Multi‑model inference

MMI is a statistical method of mathematically superpos-
ing different non-nested models that all describe a cer-
tain data set about equally well (Burnham and Anderson 
2002; Claeskens and Hjort 2008). The term MMI has been 
coined by Burnham and Anderson (2002) for the frequen-
tist approach of model averaging and is consistently used 
for its application in radiobiology. In contrast to Bayesian 
model averaging (BMA) (Hoeting et al. 1999), which is 
based on the evaluation of model-specific marginal likeli-
hood functions to determine a model average, MMI relies on 

AIC-based model weights. BMA is computationally more 
demanding and has not yet been applied in radio-epidemi-
ology. We chose MMI over BMA in the present study to 
be consistent with our previous work (Schöllnberger et al. 
2012) to avoid a dependence of our results on the applied 
methodology.

Both BMA and MMI apply the concept of Occam’s group 
(Madigan and Raftery 1994; Hoeting et al. 1999; Noble et al. 
2009; Kaiser and Walsh 2013) where a group of models 
deemed adequate for averaging is selected from a much 
larger group of candidate models (see Fig. 1). The method 
of picking models for Occam’s group can vary. For exam-
ple, Walsh and Kaiser (2011) selected all published models, 
which had been applied to the same LSS data set for the 
same endpoint (all types of leukaemia), whereas Kaiser and 
Walsh (2013) developed a rigorous selection process based 
on likelihood ratio tests (LRTs), which is also applied in the 
present study.

Model selection

At first, the full Preston baseline model was combined with 
the LNT model and fitted as an ERR-LNT model to the data 
for CeVD, yielding a final deviance (dev) of 13,409.43. This 
model contains 30 parameters (29 baseline parameters plus 
the slope of the LNT model). Subsequently, all baseline 
parameters were tested for their significance using the LRT 
(a model is considered an improvement over a nested model 
with a 95% probability, if the deviance is lowered by at least 
3.84 points after adding of one parameter): each baseline 
parameter was set to 0 and all other model parameters were 
refitted. Rigorous testing led to a new set of statistically sig-
nificant baseline parameters with 14 parameters less than the 
full Preston baseline model (see Online Resource, Table S3). 
This streamlined baseline model was combined with the 
dose–response models from Fig. 1 as ERR models and fitted 
to the data. The same selection protocol involving the LRT 
was then applied to compare nested dose–response models 
with each other and to eliminate those nested models with 
inferior deviance values (see pages 11 and 12 of the Online 
Resource together with Figure S1 and Table S2 for details). 
For each surviving dose–response model, the three DEMs 
(sex, attained age and age at exposure) were tested for sta-
tistical significance. Subsequently, the full Preston baseline 
model was combined with an LNT model and implemented 
as EAR-LNT model yielding dev = 13407.44. The stream-
lining process led to a baseline model with 12 parameters 
less than the full Preston baseline model. This streamlined 
baseline model was combined with the models from Fig. 1 as 
EAR models and fitted to the data (see page 12 of the Online 
Resource for details). This selection protocol leads to a set of 
final non-nested models that have been used for MMI. This 
group of models is generally referred to as Occcam’s group 
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(Madigan and Raftery 1994; Hoeting et al. 1999; Kaiser and 
Walsh 2013). Based on the rather rigorous selection protocol 
the models of Occam’s group all provide a parsimonious 
description of the data. This cannot be guaranteed by simply 
ranking all candidate models by their AIC.

For heart diseases, the procedure was analogous. When 
the full Preston baseline model was combined with the 
LNT model and fitted as an ERR-LNT model to the data, it 
yielded a final deviance of 13,148.55. This model contains 
30 parameters (29 baseline parameters plus the slope of the 
LNT model). Subsequently, all baseline parameters were 
tested for their significance using the LRT. Rigorous testing 
led to a new set of statistically significant baseline param-
eters with nine parameters less than the full Preston baseline 
model (see Online Resource, Table S7). This streamlined 
baseline model was combined with the dose–response mod-
els from Fig. 1 as ERR models and fitted to the data. The 
same selection protocol involving the LRT was then applied 
to compare nested dose–response models with each other 
and to eliminate those nested models with inferior deviance 
values (see pages 18 and 19 of the Online Resource together 
with Figure S1 and Table S5 for details). For each surviving 
dose–response model, the three DEMs (sex, attained age 
and age at exposure) were tested for statistical significance. 
Subsequently, the full Preston baseline model was combined 
with an LNT model and implemented as EAR-LNT model 
yielding dev = 13,155.96. The streamlining process led to 
the same baseline model as the one obtained in combination 
with the ERR-LNT model (see Online Resource, Table S7). 
Then this streamlined baseline model was combined with 
the models from Fig. 1 as EAR models and fitted to the data. 
Pages 19 and 20 of the Online Resource together with Figure 
S1 and Table S6 provide all necessary details related to the 
selection of the final non-nested EAR models. Altogether, 
these selections lead to a set of final non-nested models that 
have been used for MMI.

Statistical analyses

The MECAN software (Kaiser 2010) was applied to fit the 
EAR and ERR models to the data, using Poisson regression 
to estimate the values of the adjustable model parameters by 
fitting the model to the grouped data. For the minimization 
of the deviance, MECAN applies the MINUIT package for 
function minimization (Moneta and James 2010). The ERR 
and EAR estimates are calculated directly from h and h0. 
Confidence intervals (CI) for the ERR and EAR estimates 
(both, for the final non-nested models that are included into 
Occam’s group and for MMI) were simulated using multi-
variate normal distributions for parameter uncertainties that 
obey the parameter correlation matrix (Kaiser and Walsh 
2013). For a risk variable such as ERR, a probability density 
distribution of 104 realizations is generated, which is used to 

estimate 95% CI. Central risk estimates were calculated from 
the maximum likelihood estimates (MLEs) of the model 
parameters. The MECAN package and all model-related 
input and result files are available from the authors.

Specifically, for each final non-nested model the Akaike 
Information Criterion (AIC) (Akaike 1973, 1974) is cal-
culated: AIC = dev + 2 × Npar, where Npar is the number 
of model parameters. Models with smaller values of AIC 
are favored based on fit (via dev) and parameter parsimony 
(models with more parameters get punished by the factor 
2 × Npar) (Walsh 2007). The AIC is essential for MMI: For 
a set of final non-nested models, the AIC-weights are calcu-
lated, which are proportional to exp(− 0.5 AIC), i.e. models 
with smaller AIC are assigned a larger weight (see Online 
Resource, page 10). The resulting weights, multiplied by a 
factor of 104, give the number of samples for risk estimates 
to be generated by uncertainty distribution simulations. 
Then, the created model-specific probability density func-
tions are merged. The resulting probability density distribu-
tion represents all uncertainties arising from the different 
models and their superposition. Central risk estimates from 
MMI are calculated from the AIC-weighted MLEs for single 
risk models. 95% CI are derived from the final merged MMI 
probability density distribution.

Results

Cerebrovascular diseases

For mortalities from CeVD three non-nested ERR models 
survived the selection protocol: the ERR-LNT, ERR-Q and 
ERR-two-line spline models. They were used for MMI. 
None of the DEMs were significant. For these three models 
Table 1 provides all essential information obtained by fitting 
them to the data. For the related model parameters (baseline 
and radiation-associated), their MLEs and symmetric, Wald-
type standard errors, see Table S3 in the Online Resource. 
Figure 2 shows the dose–responses for ERR for the three 
models and the dose–response curve from MMI together 
with point estimates and related 95% CI from a categori-
cal ERR model. The three models were stable under cross-
validation (Stone 1977; Kohavi 1995) using 10, 20, 40 and 
80 folds. For the ERR-two-line spline model some of the 
cross-validations may have led to ERR < − 1 (which implies 
negative values for the hazard) so that this model showed a 
somewhat reduced stability under cross-validations. For risk 
values at various preselected values of age at exposure and 
attained age, see Online Resource, Table S4.

For doses smaller than approximately 1.4 Gy the MMI 
predicts a risk lower than the one based on the LNT model 
(Fig. 2). The potentially protective effects visible in Fig. 3 
stem from the 18% contribution of the two-line spline model, 
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which contains an inflection point at 0.14 Gy (see Table 1 
and Online Resource, Table S3). The protective effects 
are, however, not statistically significant because the upper 

bounds of the 95% CI for MMI include zero risk. The results 
from MMI imply that up to 0.75 Gy no inference can be 
drawn about the radiation risk because the MMI-related 95% 

Table 1   For both detrimental 
health outcomes (mortality 
from CeVD and heart diseases) 
the final non-nested models 
that are included into Occam’s 
group are shown with their final 
deviances (dev), difference in 
final deviances (Δdev) with 
respect to the model with the 
smallest final deviance, number 
of model parameters (Npar), 
AIC-values, difference in AIC-
values (ΔAIC) with respect to 
the model with the smallest 
AIC-value, and AIC-weights

The Akaike Information Criterion is denoted by AIC (AIC = dev + 2 × Npar). For CeVD, the deviance 
related to MMI is 13,415.46. As a comparison, the results from fitting the streamlined baseline models are 
also provided
a Contains an age-dependent dose–effect modifier
b See Online Resource, page 10, for an explanation why for heart diseases models with AIC-weights < 0.05 
were included into the set of non-nested models that was used for MMI

dev Δdev Npar AIC ΔAIC AIC-weight

CeVD (ICD-9 430–438)
 Streamlined baseline model 13,422.27 15 13,452.27
 ERR-LNT model 13,417.53 3.38 16 13,449.53 1.76 0.2412
 ERR-Q model 13,415.77 1.61 16 13,447.77 0 0.5823
 ERR-two-line spline model, Dth = 0.14 Gy 13,414.15 0 18 13,450.15 2.39 0.1765

Heart diseases (ICD-9 393–429, excluding 401, 403, 405)
 Streamlined baseline model 13,163.17 20 13,203.17
 ERR-LNT model 13,152.52 1.29 21 13,194.52 0 0.3089
 ERR-Q model 13,154.54 3.32 21 13,196.54 2.02 0.1123
 ERR-smooth step model, Dth = 1.52 Gy 13,153.66 2.44 23 13,199.66 5.14 0.0236b

 EAR-LNT modela 13,151.22 0 22 13,195.22 0.71 0.2171
 EAR-Q modela 13,151.78 0.55 22 13,195.78 1.26 0.1647
 EAR-LTH model, Dth = 2.36 Gy 13,152.29 1.07 22 13,196.29 1.78 0.1271
 EAR-smooth step model, Dth = 2.54 Gy 13,152.31 1.09 23 13,198.31 3.79 0.0464b

Fig. 2   ERR for mortality from CeVD versus weighted colon dose 
(full dose range) for the three final non-nested ERR models and the 
simulated dose–response curve from MMI. The shaded area repre-
sents the 95% CI region for the MMI. For AIC-weights see insert. 
The dotted line shows the prediction from Shimizu et  al. (2010). 
Point estimates and related 95% CI from the fit of a categori-
cal ERR model that divides the dose range into the following cat-
egories (D < 0.005 Gy, 0.005 Gy ≤ D < 0.1 Gy; 0.1 Gy ≤ D < 0.5 Gy, 
0.5  Gy ≤ D < 1.5  Gy, and D ≥ 1.5  Gy) are shown. In the categorical 
fit, zero risk was assigned to the dose range D < 0.005 Gy. The point 
estimates from the categorical model are provided for comparison. 
The figure is valid for men and women of both cities. Online version 
contains color

Fig. 3   ERR for mortality from CeVD versus weighted colon dose 
(lower dose range) for the three final non-nested ERR models and 
the simulated dose–response curve from MMI. The shaded area rep-
resents the 95% CI region for the MMI. For AIC-weights see insert. 
The dotted line shows the prediction from Shimizu et  al. (2010). 
Point estimates and related 95% CI from the fit of a categorical 
ERR model that divides the dose range into the following catego-
ries (D < 0.005  Gy, 0.005  Gy ≤ D < 0.1  Gy; 0.1  Gy ≤ D < 0.5  Gy, 
0.5 Gy ≤ D < 1.5 Gy, and D ≥ 1.5 Gy) are shown (the dose categories 
are indicated by horizontal dashed lines). In the categorical fit, zero 
risk was assigned to the dose range D < 0.005 Gy. The point estimates 
from the categorical model are provided for comparison. The figure is 
valid for men and women of both cities. Online version contains color
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CI include zero risk up to that dose (Fig. 2). For doses larger 
than 1.5 Gy the LNT model underestimates the risk com-
pared to the dose response from MMI (Fig. 2). This is also 
visible from Table 2, which shows the radiation-associated 
excess cases calculated according to the three final non-
nested models and according to MMI. At higher doses the 
LNT model predicts a lower number of excess CeVD cases 
compared to MMI.

Heart diseases

For heart diseases, the final non-nested models in Occam’s 
group consisted of ERR models (LNT, Q, smooth step) 
and EAR models (LNT, Q, LTH, smooth step). They were 
used for MMI. For these seven models Table 1 provides all 
essential information obtained by fitting them to the data. 
For the related model parameters (baseline and radiation-
associated), their MLEs and symmetric, Wald-type stand-
ard errors, see Online Resource, Table S7. The fit with the 
smallest AIC (i.e. ΔAIC = 0) was achieved by the ERR-LNT 
model (Table 1). The EAR-LNT and EAR-Q models con-
tain age-dependent DEMs (see Online Resource, Table S7). 
Figure 4 shows the dose–responses for ERR for the seven 
non-nested models and the dose–response curve from MMI 
together with point estimates and related 95% CI from a 
categorical ERR model. The EAR versus dose is provided in 
Fig. 5. The seven models were stable under cross-validation 
using 10, 20, 40, and 80 folds. For risk values at various 
preselected values of age at exposure and attained age, see 
Online Resource, Table S8.

The dose responses from MMI contain mostly contribu-
tions from the linear and quadratic models (Table 1). Up to 
2.58 Gy no conclusive prediction can be given about the 

radiation risk because the MMI-related 95% CI include 
zero risk up to that dose (Figs. 4, 5). The ERR-LNT model 
overpredicts the risk compared to the prediction from MMI 
(Figs. 4, 5). This is also visible from Table 3, which shows 
the radiation-associated excess cases calculated according to 
the seven final non-nested models and according to MMI. 
Up to 2.5 Gy the ERR-LNT model predicts a higher number 
of excess cases from heart diseases compared to MMI.

Discussion

In the present study the cohort of the latest LSS data for 
CVD was analyzed including the full follow-up period 
from 1950 to 2003 with proximal and distal survivors, in 
line with the comments by Little et al. (2013) and the find-
ings by Schöllnberger et al. (2015) related to the absence 
of a healthy survivor selection effect for CeVD and heart 
diseases in these data. For each detrimental health out-
come one set of final non-nested models was found that all 
describe the data approximately equally well (Table 1). The 
variety of dose–responses in these two sets may reflect the 
heterogeneity of the diseases subsumed under CeVD and 
heart diseases. For such situations MMI can be applied with 
some confidence as long as the candidate models have been 

Table 2   Radiation-associated excess cases for CeVD according to the 
three final non-nested models and MMI

Negative “excess” cases indicate a protective effect

Dose-bin ERR-LNT ERR-Q ERR-two-line 
spline model

MMI

0–0.005 Gy 0.3 0 − 1.4 − 0.2
0.005–0.06 Gy 4.9 0.1 − 20 − 2.3
0.06–0.1 Gy 3.5 0.2 − 14.1 − 1.5
0.1–0.25 Gy 11.8 1.4 − 35.7 − 2.6
0.25–0.5 Gy 15.9 4 − 8.2 4.7
0.5–1 Gy 19.8 9.9 11.6 12.6
1–1.5 Gy 12 10.4 13 11.2
1.5–2 Gy 5.5 6.7 7 6.5
2–2.5 Gy 5.3 8.6 7.5 7.6
2.5–3 Gy 3.1 5.8 4.5 4.9
3 Gy– 0.1 0.1 0.1 0.1
Sum 82.2 47.2 − 35.7 41.0

Fig. 4   ERR for mortality from heart diseases versus weighted colon 
dose for the seven final non-nested ERR and EAR models and for 
the simulated dose–response curve from MMI. The shaded areas 
represent the 95% CI region for the MMI. For AIC-weights see 
insert. Also provided are point estimates and related 95% CI from 
the fit of a categorical ERR model that divides the dose range into 
the following categories (D < 0.005  Gy, 0.005  Gy ≤ D < 0.75  Gy; 
0.75 Gy ≤ D < 1.5 Gy, 1.5 Gy ≤ D < 2.25 Gy, and D ≥ 2.25 Gy) with 
zero risk assigned to the dose range D < 0.005  Gy. The point esti-
mates from the categorical model are provided for comparison. The 
figure is valid for males from Hiroshima. The preselected values for 
age at exposure and attained age are 30 and 70 years, respectively. 
For correction factors for city and females, see Table S8 in the Online 
Resource. Online version contains color
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chosen with care, reflecting as many biologically plausible 
shapes for dose–responses as possible. Here, linear, supra-
linear and sublinear models were allowed for (Fig. 1) so 
that it can be expected that MMI was a suitable method in 
the current analysis. This is in accordance with the findings 
of Furukawa et al. (2015) who simulated various data sets 

using one specific dose–response. For all solid cancers they 
found that MMI performed well when the model that had 
been used to simulate the data sets was also included in the 
candidate models. As in the present study, the endpoint of all 
solid cancers comprises several (organ-specific) endpoints 
with potentially different dose responses. In that context it 
is interesting to note that for CeVD with its lower number of 
aggregated diseases compared to heart diseases MMI finds 
only three final non-nested models compared to the seven 
for heart.

For CeVD, the ERR-Q model provides the best fit 
(Table 1), as already found by Shimizu et al. (2010). The 
two other models fit the data almost equally well (Table 1) 
and are also included in the MMI, resulting in an upwardly 
curved dose–response with a shallow dip below zero risk at 
low doses (Figs. 2, 3). This area of negative risk stems from 
the 18% contribution of the two-line spline model. This pro-
tective effect is, however, not statistically significant because 
the 95% CI for the MMI include zero risk.

While the dose–response from MMI is consistent with 
a threshold-dose of 0.2 Gy (Fig. 3), the upper bound of 
the related 95% CI includes positive values. Given that 
the lower bound of the 95% CI includes zero risk up to a 
dose of 0.75 Gy (Fig. 2), our findings imply that it cannot 
be concluded whether there is a risk up to that dose. The 
result from applying the ERR-two-line spline model finds 
confirmation by a fit with a categorical model (Figs. 2, 3). 
It is interesting to note that the dose–response from the two-
line spline model (after exhibiting the minimum at 0.14 Gy, 
it crosses the x-axis at 0.46 Gy) is consistent with Dth = 
0.48 Gy from the ERR-LTH model and with the findings 
from testing the ERR-hormesis model. The latter, like the 
ERR-LTH model not statistically significant, exhibits its no-
observed-adverse-effect level (NOAEL) (Duffus et al. 2007) 
at 0.55 Gy.

Fig. 5   EAR for mortality from heart diseases versus weighted colon 
dose for the seven final non-nested ERR and EAR models and for 
the simulated dose–response curve from MMI. The shaded areas 
represent the 95% CI region for the MMI. For AIC-weights see 
insert. Also provided are point estimates and related 95% CI from 
the fit of a categorical EAR model that divides the dose range into 
the following categories (D < 0.005  Gy, 0.005  Gy ≤ D < 0.75  Gy; 
0.75 Gy ≤ D < 1.5 Gy, 1.5 Gy ≤ D < 2.25 Gy, and D ≥ 2.25 Gy) with 
zero risk assigned to the dose range D < 0.005  Gy. This EAR-cate-
gorical model contains an age-dependent DEM. The point estimates 
from the categorical model are provided for comparison. The figure 
is valid for males from Hiroshima. The preselected values for age 
at exposure and attained age are 30 and 70 years, respectively. For 
correction factors for city and females, see Table  S8 in the Online 
Resource. Online version contains color

Table 3   Radiation-associated excess cases for heart diseases according to the seven final non-nested models and MMI

Dose-bin ERR-LNT ERR-Q ERR-smooth step EAR-LNT EAR-Q EAR-LTH EAR-smooth 
step

MMI

0–0.005 Gy 0.5 0 0 0.4 0 0 0 0.2
0.005–0.06 Gy 7.2 0.1 0 5.7 0 0 0 3.5
0.06–0.1 Gy 5 0.2 0 3.9 0.1 0 0 2.4
0.1–0.25 Gy 17.1 1.6 0 13.1 1 0 0 8.5
0.25–0.5 Gy 23.1 4.5 0 18.2 3 0 0 12.1
0.5–1 Gy 28.5 10.9 0 23.9 8.1 0 0 16.5
1–1.5 Gy 17.7 11.6 1 14.8 8.7 0 0 11.4
1.5–2 Gy 7.7 7 12.1 6.8 5.7 0 0 5.9
2–2.5 Gy 7.7 9.3 10.2 7 7.7 0 0.1 6.5
2.5–3 Gy 4.5 6.3 5.1 4 5.2 4.9 6.1 4.8
3 Gy– 0.1 0.1 0.1 0.1 0.3 1.5 0.8 0.3
Sum 119.10 51.60 28.50 97.90 39.80 6.40 7.00 72.2
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In Table 2 the radiation-associated cases are provided for 
the three final non-nested models and MMI, which leads 
to some negative “excess” cases at low doses, indicating a 
small protective effect in accordance with the dose–response 
in Figs. 2 and 3. Altogether, MMI predicts only approxi-
mately half as many deaths as the LNT model (Table 2). 
That is consistent with Fig.  2, which shows that up to 
approximately 1.4 Gy the LNT model predicts a higher risk 
than the dose–response from MMI and because most cases 
are associated with lower doses up to 0.25 Gy. Mitchel et al. 
(2011) report low-dose induced protective anti-inflammatory 
effects in atherosclerosis prone ApoE−/− mice that were con-
firmed by other researchers (Le Gallic et al. 2015; Mathias 
et al. 2015). Mitchel et al. (2011) state that their results were 
distinctly non-linear with dose with maximum protective 
effects tending to occur at 25 or 50 mGy.

For heart diseases, a mixture of ERR and EAR models 
contributes to MMI with the strongest contributions from 
LNT (53%) and Q models (28%) (Table 1). Consequently, 
the dose–response from MMI is approximately linear-quad-
ratic and predicts a lower risk over the whole dose range 
compared to the ERR-LNT model (Figs. 4, 5). This finds 
confirmation by the results in Table 3: For each dose-seg-
ment MMI predicts a lower number of excess cases than 
the LNT model. Interestingly, the lower bound of the MMI-
related 95% CI is zero up to 2.58 Gy, implying that it cannot 
be concluded whether there is a risk up to that dose.

The risk predictions for the EAR-LTH and the EAR-
smooth step models in Fig.  5 are independent of the 
attained age. The EAR-LNT and EAR-Q models, however, 
contain attained age dependent DEMs. Risk predictions of 
age-independent EAR models are strongly influenced by 
younger ages. For attained ages < 70 years the EAR-LNT 
and EAR-Q models are multiplied by a factor < 1 due to 
the attained age-dependent DEM (see Online Resource, 
Table S7). The EAR-predictions in Fig. 5 for the three ERR 
models are valid for an attained age of 70 years because 
EAR = h0 ERR; for ages < 70 years the age-dependent base-
line hazard h0 decreases and so do the EAR-predictions. The 
curves in Fig. 5 are, therefore, consistent with each other. 
Analogous considerations apply for Fig. 4. We hypothesize 
that the different shapes visible in Figs. 4 and 5 reflect the 
large biological differences in endpoints subsumed under 
“heart diseases” (refer to “Materials and methods” section). 
The EAR-LTH model, e.g. predicts only six excess cases, 
while according to the ERR-LNT model there should be 119 
radiation-associated cases (Table 3). It is anticipated that 
the different dose responses each describe one subgroup of 
endpoints within the heart diseases. For CeVD, Table 2 pro-
vides the radiation-associated excess cases predicted by the 
different final models and by MMI. Because most cases are 
located at rather low doses (mean dose of cases = 111 mGy), 
where the two-line spline model exhibits its dip below zero 

risk (Fig. 3), it is plausible that this model predicts a nega-
tive number of “excess cases” (Table 2). The ERR-Q model 
predicts a very small excess risk for CeVD mortality at low 
doses (Fig. 3 and Online Resource, Table S4). Consequently, 
fewer excess cases are associated with that model compared 
to the ERR-LNT model (47 versus 82, Table 2).

Additional analyses with altered data sets that contain 
smaller dose-bins revealed that the nonlinearities of the final 
non-nested models do not depend on the dose stratification 
of the grouped LSS data.

When applying the Bayesian information criterion (BIC) 
(Claeskens and Hjort 2008) to calculate the BIC-weights 
(analogous as in Eq.  (S2) of the Online Resource) one 
obtains the following values: 0.2929 (ERR-LNT model), 
0.7070 (ERR-Q model) and 0.000165 (ERR-two-line spline 
model). It is BIC = dev + Npar × ln(n), where Npar is the num-
ber of model parameters and n is the number of observa-
tions, i.e. CeVD mortality cases: n = 9622. The reason for 
the very small BIC-weight for the two-line spline model is 
the well-known feature of the BIC to penalize additional 
parameters stronger than the AIC as long as the number of 
observations is large. The two-line spline model with its 
additional two parameters (Table 1) consequently performs 
worse under this criterion compared to its performance 
under the AIC. The resulting dose–response from MMI is 
essentially a linear-quadratic model with the strongest con-
tribution from the ERR-Q model (result not shown). Simi-
lar results are obtained for heart diseases (BIC-weights for 
the ERR-LNT and ERR-Q models are 0.708 and 0.2574, 
respectively).

Additional analyses showed that our results are fairly 
independent of the chosen baseline model. When the full 
Preston baseline model in combination with the different 
dose–response models was applied to the data for CeVD, 
very similar values for the AIC-weights were found com-
pared to those reported in Table 1. For heart diseases, small 
differences in the values of Δdev and ΔAIC were detected, 
resulting in small differences in the AIC-weights of a few 
percent. We prefer parsimonious models because they are 
more stable, lead to less uncertainty in the risk estimates and 
contain less parameter correlations compared to models with 
a larger number of parameters.

The present study extends the analysis of Shimizu et al. 
(2010) for the same data set in an important manner. They 
tested four ERR models (LNT, Q, LQ, LTH) that were com-
bined with a stratified baseline model. Here, a further eight 
dose–response models were tested (Fig. 1) allowing for vari-
ous nonlinear dose–responses. All models were applied as 
ERR and EAR models in combination with a parametric 
baseline model. The most important innovation relates to 
the description of the dose–response with several models 
in contrast to relying on a single model of choice. MMI 
allows dose–response relationships to be weighted averages 
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of different underlying mathematical functions. Given the 
grouping of multiple endpoints under CeVD and heart dis-
eases, real dose–responses might not be exactly linear. On 
the other hand, MMI might not cover important features 
of the dose–response, if the “true” model is very differ-
ent from the candidate models (Furukawa et al. 2015). We 
tried to control for this case by applying a large number 
of plausible candidate models. For CeVD, Shimizu et al. 
(2010) applied the LNT model for their risk predictions and 
obtained ERR = 0.09 (0.01, 0.17) per Gy. This is consist-
ent within the reported errors with the risk prediction from 
MMI at 1 Gy: ERR = 0.0669 (0.0074, 0.14) (see Online 
Resource, Table S4). Our risk prediction is somewhat lower 
mostly because of the 58% contribution from the ERR-Q 
model (Fig. 2). Yet, the most important difference appears 
at lower doses: Here, the MMI-based analysis implies that 
it cannot be concluded whether there is a risk up to 0.75 Gy 
(Fig. 2). Shimizu et al. (2010) did not find evidence for a 
threshold: Their best estimate and 95% CI of a threshold-
dose for CeVD was 0.5 Gy (≤ 0, ∼ 2). For heart diseases, 
Shimizu et al. (2010) report that a linear model fitted the 
data better than a dose-squared model. Their risk predic-
tion of ERR = 0.14 (0.06, 0.23) is consistent within the 
reported errors with the risk prediction from MMI at 1 Gy: 
ERR = 0.08 (0, 0.20) (see Table S8 in the Online Resource). 
The lower bound of the 95% CI, however, is zero up to a dose 
of 2.6 Gy (Figs. 4, 5). For both aggregate detrimental health 
outcomes MMI implies a borderline significance for the risk 
below doses of 0.75 and 2.6 Gy, respectively. In marked 
contrast, risk coefficients from LNT models are determined 
mainly by effects at higher doses but inevitably predict sig-
nificant risk increases even at lowest doses. It is interesting 
to note that Dr. Furukawa has recently analyzed the data 
by Shimizu et al. (2010) using a Bayesian semiparametric 
approach as in his analysis of all solid cancers (Furukawa 
et al. 2015). For both detrimental health outcomes (CeVD 
and heart diseases) he found very similar dose–responses 
compared to the dose–responses from MMI in Figs. 2 and 4 
(personal communication of coauthor Dr. J.C. Kaiser with 
Dr. K. Furukawa).

The current study also poses a major enhancement com-
pared to Schöllnberger et al. (2012) who analyzed a smaller 
cohort with follow-up from 1968 to 1997 restricted to proxi-
mal survivors. The updated cohort includes approximately 
twice as many deaths from CeVD and heart diseases and 
almost three times as many person-years. To avoid unrealis-
tic steep slopes and sharp edges the current study applied a 
range of biologically realistic smooth dose responses includ-
ing a hormesis model (Fig. 1), which had been introduced by 
Brain and Cousens (1989) to describe stimulation of plant 
growth after low-dose herbicide exposures. Motivation for 
allowing a larger range of different dose responses can be 
found in the biological literature. Dose responses that allow 

for protective effects at low doses such as the LQ model, 
hockey-stick, hormesis and two-line spline models can be 
justified from the work of Mitchel et al. (2011, 2013). These 
authors found U-shaped and J-shaped dose–responses in 
mice for endpoints associated with CVD. Anti-inflammatory 
effects that play an important role in that context are cur-
rently intensely studied (see, e.g. the reviews by Rödel et al. 
(2012a, b)) and have been reported by Le Gallic et al. (2015) 
and Mathias et al. (2015). Earlier, Mitchel et al. (2007) 
showed that low doses of γ-radiation delivered at low dose 
rates exhibit a protective effect related to chronic ulcera-
tive dermatitis, an inflammatory skin reaction, in C57BL/6 
mice, decreasing both disease frequency and severity and 
extending the life span of older animals. LTH models are 
another realistic possibility for dose responses related to 
radio-epidemiological cohorts given the findings of Mitchel 
et al. (2011, 2013) and Le Gallic et al. (2015) on low-dose 
induced protective anti-inflammatory effects. Mathias et al. 
(2015) provided evidence for anti-inflammatory effects after 
low-dose exposure but also found some pro-inflammatory 
responses. In such a situation a LTH model may describe a 
data set better than the LNT model. This finds confirmation 
in the study by Mitchel et al. (2007) who state that their 
dermatitis data indicate that low doses may generally pro-
duce either no effect or protective effects with respect to 
this autoimmune- and age-related non-cancer disease in 
mice. The findings of anti-inflammatory protective effects 
at low doses and detrimental effects at moderate (0.3 Gy) 
and higher doses (6 Gy) (Mancuso et al. 2015) provide the 
biological context for applying the smooth step and the 
step-linear models (Fig. 1). A step-type response (with a 
steep slope, Fig. 1) may reflect the distinct dose at which 
protective mechanisms are lost. Different tissues and differ-
ent individuals can be expected to have different threshold-
doses, leading to an overall smooth transition. While at low 
doses it is feasible that risk increase may be balanced by a 
protective decrease as in the LTH model, a smooth transi-
tion zone may exist where risk increases steadily, followed 
by a linear increase in risk at even higher doses, as in the 
step-linear model.

For CeVD, the ERR-two-line spline model crosses the 
x-axis at 0.46 Gy. This together with the fact that up to 
0.75 Gy no reliable conclusions can be drawn about the 
radiation risk (Figs. 2, 3) is overall consistent with the result 
by Schöllnberger et al. (2012). At 1 Gy, however, risk esti-
mates are about 2.5 times smaller compared to our previous 
study due to the exclusion of the biologically implausible 
step model. While the results for heart diseases are overall 
consistent with the results from Schöllnberger et al. (2012), 
the new results are more reliable because of the much larger 
number of cases in the Shimizu et al. (2010) data and due 
to the applied smooth dose–response models. Sublinear 
dose–responses have also been found for other cohorts, such 
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as, e.g. for CeVD incidence in the Mayak Workers Cohort 
(Simonetto et al. 2015) and for ischemic heart diseases in the 
Canadian Fluoroscopy Cohort Study (Helmut Schöllnberger, 
Jan Christian Kaiser, Markus Eidemüller, Lydia Zablotska. 
Dose–responses for mortality from ischemic heart diseases 
in the Canadian Fluoroscopy Cohort: 1950–1987. In prepa-
ration). Takahashi et al. (2012) found a threshold-dose of 
1.3 Gy for female A-bomb survivors in the Adult Health 
Study.

The aggregate detrimental health outcomes analyzed in 
the present study could in principle be separated into sin-
gle data sets, each of them related to one single disease. 
One could then test the 13 dose–response models that were 
applied in the present study on these data sets separately 
and obtain single dose–responses, one for each disease. 
From these single dose–responses a case-weighted mean 
dose–response could be calculated. Such an analysis is out 
of the scope of the present study but the result should be 
close to the dose–responses from MMI depicted in Figs. 2, 
3, 4 and 5. The technique of MMI is an elegant and efficient 
way to perform such analyses.

Recent analyses highlight the controversial nature of 
ongoing discussions related to the shape of dose responses 
for CVD (Little 2016). Our analyses lead to sublinear dose 
responses and tendentially to lower risk predictions at low 
doses compared to the study by Little (2016). We advocate 
careful analyses of each single cohort in contrast to meta-
analyses under the assumption of LNT dose responses (Little 
et al. 2012; Little 2016). This recommendation also holds for 
other detrimental health effects such as cancer.

Conclusions

The present analysis shows a sublinear dose–response 
for mortalities from CeVD at low and medium doses 
(0–1.4 Gy). At higher doses the LNT model underestimates 
the risk compared to the dose response from MMI. Similarly, 
for heart diseases, a sublinear dose–response was found as 
well (0–3 Gy). Our analysis appeals to the more complex 
picture that arises from analyzing aggregate endpoints 
and their possibly different radiobiological mechanisms. 
Together with the sublinearity this may be a hint that differ-
ent biological mechanisms may operate at low and medium 
doses compared to high doses. Our study provides an ele-
gant way to analyze radioepidemiological data sets, which 
comprise a number of similar end points. The MMI method 
can similarly be applied to other aggregate health outcomes 
with aggregated endpoints such as all solid cancers or all 
leukaemias. Because the internationally applied guidelines 
for radiation protection largely rely on analyses of the LSS 
data and the LNT model, our findings have important impli-
cations for risk assessment of IR in the context of medical 

applications (such as CT scans, radiotherapy and low-dose 
anti-inflammatory radiotherapy), nuclear energy production 
and accident related long-term risks.
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