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Abstract
A detailed mineral-scale study was conducted on pumices of the latest, dominantly explosive eruption epoch (56–30 ka) of 
Ciomadul, the youngest, long-dormant volcano in eastern-central Europe for characterizing the magma storage system and for 
understanding better the changes in eruption style from effusive to explosive. The mineral cargo of dacitic pumices enables 
us to constrain the conditions of the pre-recharge crystal mush, the recharge magmas and the post-recharge magma prior to 
eruptions. A careful evaluation of the results yielded by various thermometers, barometers, oxybarometers, chemometers 
and hygrometers as well as direct comparison with experimental data were necessary to select the appropriate techniques and 
therefore to constrain the conditions for the Ciomadul magmatic system. Beneath the volcano, a felsic crystal mush body is 
inferred at 8–12 km depth comprising slightly oxidized (0.5–1.6 ∆NNO), low-temperature (680–750 °C), highly crystalline 
magma. This zone is underlain by a deep magma storage zone with less evolved, hot (> 900 °C) magma at 16–40 km depth. 
The dominantly explosive volcanism after the effusive eruptions (160–90 ka) can be explained by the ascent of distinct 
recharge magmas. They contained high-Mg (MgO > 18 wt%) amphibole, which could have crystallized from ultrahydrous 
 (H2O > 8 wt%) magma at near-liquidus conditions. The rates of amphibole overgrowth and microphenocryst formation require 
weeks to months for the magma mixing and the eruption events. The hybridized melt became more oxidized and contained 
dissolved water in around 5.5 wt% at temperature of 790–830 °C calculated from the re-equilibrated Fe-Ti oxides. These 
magma properties along with the degree of crystallinity (27–38 vol% crystals) favored rapid magma ascent and an explosive 
style eruption. Thus, the strongly hydrous nature of the recharge magma in addition to the crystallinity and  H2O content of 
the pre-eruption magma plays an important role in controlling the eruption style.

Keywords Geothermobarometry · Oxybarometry · Pre-eruptive conditions · Eruption style · Recharge magma · Magma 
reservoir · Ciomadul

Introduction

Eruption of volcanoes—irrespective of their magnitude—
poses a significant, but often underrated risk on modern soci-
ety. This requires an improvement of knowledge of when, 
why and how volcanoes erupt and how such events can be 

forecasted (e.g., Sparks 2003; Cashman and Sparks 2013; 
Newhall et al. 2018; Papale and Marzocchi 2019; Poland and 
Anderson 2020; Mani et al. 2021; Cassidy and Mani 2022). 
The potential for an eruption, as well as the style of the vol-
canic activity, i.e., effusive or explosive, primarily depend on 
the physicochemical state of the subvolcanic magma storage 
system, the eruption trigger mechanism and its timescale 
(Cassidy et al. 2018; Costa et al. 2020; Popa et al. 2021a, 
b; Chakraborty and Dohmen 2022; Giordano and Caricchi 
2022; Mangler et al. 2022). They can be inferred from the 
volcanic products of past eruptions, therefore petrology 
plays a crucial role in eruption forecasting and mitigation 
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(Saunders et al. 2012; Gansecki et al. 2019; Nurfiani et al. 
2021; Bindeman et al. 2022; Pankhurst et al. 2022).

Most volcanoes are underlain by complex trans-crustal 
magma storage systems with two major parts (Annen et al. 
2006; Bachmann and Huber 2016): (1) a lower crustal hot 
zone, where mafic magmas are accumulated and evolve to 
lower density intermediate magma, which can intrude into 
the upper crust to build (2) an upper crustal felsic magma 
reservoir, which consists mostly of physically un-erupt-
ible highly crystalline mush formed by repetitive magma 
recharge from which occasionally eruptible magma batches 
develop. While the felsic magma reservoirs can have a pro-
longed lifetime of several 10’s to 100’s thousand years, 
rejuvenation leading to eruption is a fast process lasting 
only weeks to years (e.g., Morgan et al. 2006; Burgisser and 
Bergantz 2011; Druitt et al. 2012; Matthews et al. 2012; 
Cooper and Kent 2014; Cooper 2019; Sundermeyer et al. 
2019; Conway et al. 2020). This holds also for long-dormant 
volcanoes, which are in an apparent quiescent state for hun-
dreds to even several tens of thousands years before rapid 
reawakening (e.g., Chaitén, Chile, Pinatubo, Philippines; 
Castro and Dingwell 2009; Burgisser and Bergantz 2011). 
Long volcano dormancy decreases awareness, although 
existence of a melt-bearing subvolcanic magma reservoir 
enables potential reactivation of an otherwise un-eruptible 
mushy magma body (crystal mush). For such seemingly 
inactive volcanic systems showing no signs of unrest for 
over ten thousand years but with indication for melt-bearing 
magma storage beneath, Harangi et al. (2015a, b) suggested 
the term PAMS volcano, i.e., a volcano with potentially 
active magma storage.

To predict whether a highly crystalline magma body 
beneath a PAMS volcano is capable of rejuvenation and if 
so, what kind of eruption can be expected, remains a chal-
lenging task with an impact to local and global society. 
Constraining pre-eruptive magma storage conditions of 
past eruptions, particularly those following long dormancy, 
can help to understand better the behavior of such volcanic 
systems and to identify early warning signs for reactivation. 
Pre-eruption physicochemical parameters, such as magma 
temperature (T), pressure (P), redox state (fO2), water  (H2O) 
concentration as well as crystallinity strongly influence the 
trigger and style of eruptions (e.g., Nagasaki et al. 2017; 
Cassidy et al. 2018; Popa et al. 2019, 2021a, b). To con-
strain these parameters for pre-eruptive and long-term stor-
age conditions, results of phase equilibrium experiments 
can be directly used or several mineral ± melt chemom-
eters, thermometers, barometers and oxybarometers can be 
employed. Accessory minerals, such as zircon and titanite 
are typically low-temperature (< 800 °C) phases, which are 
stable in the crystal mush for prolonged periods, whereas 
Fe-Ti oxides re-equilibrate rapidly in a matter of days (Ven-
ezky and Rutherford 1999; Morgado et al. 2019; Prissel 

et al. 2020; Hou et al. 2021) and therefore reflect closely the 
post-rejuvenation magma condition. Other phases, such as 
Ca-amphiboles, pyroxenes, and plagioclase can be used to 
constrain both magma storage states that of the long-lived 
mush storage and that immediately prior to eruption. A vast 
number of chemometer, thermometer, barometer and oxy-
barometer calibrations exists, which have been defined for 
different conditions, compositional systems or phase assem-
blages and at highly variable accuracy. Careful selection is 
required to employ appropriate methods that derive robust 
and accurate estimates for a particular magmatic system.

In this study, we constrain the pre-eruptive and long-term 
magma storage conditions for the youngest (56–30 ka), dom-
inantly explosive eruption period of Ciomadul volcano (Car-
pathian–Pannonian Region, Romania; Szakács et al. 1993, 
2015; Harangi et al. 2015a, b, 2020; Karátson et al. 2019; 
Lahitte et al. 2019; Laumonier et al. 2019; Molnár et al. 
2019; Lukács et al. 2021). Combined geophysical, petrologi-
cal, and thermal modelling results indicate that a melt-bear-
ing magma body can still exist in the upper crust beneath 
the volcano (Szakács et al. 2002; Popa et al. 2012; Harangi 
et al. 2015b; Laumonier et al. 2019; Lukács et al. 2021). 
Therefore, rejuvenation of the volcanic activity remains a 
possibility and volcanic hazard cannot be ignored (Szakács 
and Seghedi 2013) in spite of the long, 30 ka dormancy 
of the volcano. Zircon-based eruption chronology studies 
(Molnár et al. 2018, 2019) have pointed out that during the 
lifetime of Ciomadul volcano, reawakening after several 10’s 
and even > 100 ka long quiescence period occurred several 
times. The mineral assemblage of the Ciomadul high-K dac-
ite is suitable to evaluate critically the pre-eruption condi-
tions of the volcano, providing new constraints for hazard 
assessment and monitoring.

Geological background

Ciomadul (Fig. 1) is located in eastern-central Europe, in the 
eastern part of the Carpathian–Pannonian Region, which has 
experienced volcanic activity for the last 20 Ma in response 
to the formation of the Pannonian Basin with lithospheric 
thinning as well as subduction and collision along the Car-
pathians (Szabó et al. 1992; Seghedi et al. 1998; 2004, 2019; 
Harangi 2001; Konečný et al. 2002; Harangi and Lenkey 
2007; Seghedi and Downes 2011). Ciomadul is associated 
with a post-collisional setting, where most of the volcanic 
eruptions occurred well after the collision of the Tisza-Dacia 
block with the East European Platform at around 11 Ma 
(Maţenco and Bertotti 2000) along a former retreating sub-
duction boundary (Royden et al. 1982). The volcanic com-
plex developed on a fold-and-thrust belt of Cretaceous flysch 
nappes, which form an arcuate belt along the outer foreland 
of the Carpathian orogen (Roure et al. 1993). The volcano 
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is located in a geodynamically still active area, close (ca. 
70 km) to the Vrancea zone, one of the most active seis-
mic zones in Europe, where a near-vertical descending slab 
causes frequent earthquakes with deep hypocentres (Wenzel 
et al. 1998).

Ciomadul is the southernmost eruptive system of the 
Călimani–Gurghiu–Harghita andesitic-dacitic volcanic 
chain, which extends over 160 km in NW–SE direction 
along the Eastern Carpathians (Romania; Mason et al. 
1995, 1996; Szakács et al. 2015). It represents the lat-
est manifestation of the volcanism, which shows gradual 
younging towards the southeast from 11 to 0.03 Ma (Péc-
skay et al. 2006). In addition, Ciomadul generated the 
youngest eruptions in the entire Carpathian–Pannonian 

Region and in eastern-central Europe, where the latest 
eruption occurred at ~ 30 ka (Harangi et al. 2010, 2015b, 
2020; Lahitte et al. 2019). Ciomadul comprises a volcanic 
dome field with a massive volcanic complex in its centre 
(Szakács et al. 2015; Karátson et al. 2016, 2019; Molnár 
et al. 2018, 2019). The peripheral dacitic, andesitic, and 
shoshonitic lava domes formed episodically between 1 Ma 
and 300 ka, during the Old Ciomadul Eruptive Period 
(OCEP; Molnár et al. 2018). The central volcanic complex 
is composed mostly by amalgamated lava domes with a 
volume of ca. 10  km3 (Szakács et al. 2015; Karátson et al. 
2019) and is developed within the last 160 ka during the 
Young Ciomadul Eruptive Period (YCEP; Molnár et al. 
2019). During the evolution of Ciomadul, long (several 

Fig. 1  Geological map and eruption history of the Ciomadul vol-
canic complex, Eastern Carpathians (Romania), showing our sam-
pling localities (Ee5/1tf, Ee5/1mo, Ee5/1kh, Ee5/2bx). Modified 

after Lukács et al. (2021) and based on Seghedi et al. (1987). Sample 
details are summarized in Table 1
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10’s of ka) quiescent periods occurred (Molnár et  al. 
2019), that were usually longer than the elapsed time since 
the youngest eruption (~ 30 ka) of the volcanic complex. 
Eruptions of the YCEP occurred in two epochs (Molnár 
et al. 2019). From 160 to 90 ka, several dacitic lava extru-
sions formed a southwest-northeast trending, elongated 
dome complex. From 56 to 30 ka, after a prolonged quies-
cence period, volcanic activity recommenced with mostly 
explosive eruptions (Vulcanian to sub-Plinian), which 
formed two deep craters, now filled by the Mohoş peat bog 
and the St. Ana crater lake (Szakács and Seghedi 1989; 
Vinkler et al. 2007; Karátson et al. 2016, 2019; Szakács 
et al. 2015; Harangi et al. 2020).

Several lines of evidence suggest a potentially active 
magma storage beneath Ciomadul (Popa et  al. 2012; 
Harangi et al. 2015a, b; Laumonier et al. 2019; Lukács 
et al. 2021), thus classifying it as a characteristic “PAMS” 
volcano. First, zircon dates are consistent with prolonged 
(several 100’s of thousand year long) existence of crystal 
mush storage and repeated rejuvenations (Harangi et al. 
2015a; Lukács et al. 2021). Second, geophysical anomalies 
(i.e., low electrical resistivity and seismic wave attenua-
tion) suggest the existence of a melt-bearing subvolcanic 
plumbing system with calculated average melt fractions 
of ~ 5–15 vol% (Popa et al. 2012; Harangi et al. 2015b), 
but locally perhaps up to ~ 40–50 vol% (Laumonier 
et al. 2019). The active character of the volcanic center 
is moreover underscored by significant, ongoing diffuse 
 CO2-emanations, which comprise a strong magmatic com-
ponent (Kis et al. 2017, 2019). Eruptions of Ciomadul 
are fed by compositionally homogeneous, high-K dacitic 
magmas (Molnár et al. 2018, 2019) with notably high Sr/Y 
(Fig. 1; Szakács et al. 1993; Seghedi et al. 1987, 2023; 
Molnár et al. 2018, 2019). The magmas are crystal-rich 
(25–40 vol%), containing plagioclase, calcic amphibole, 
and biotite phenocrysts and zircon, apatite, titanite, and 
Fe-Ti oxides as accessories (Vinkler et  al. 2007; Kiss 
et al. 2014). High-Mg minerals (clinopyroxene, orthopy-
roxene, olivine) occur often in various amounts either 
within amphibole phenocrysts or as crystal clots. Felsic 
crystal clots of plagioclase, amphibole, biotite, accessory 
phases, and intercrystalline glass are ubiquitous. Quartz 
and K-feldspar are found occasionally in some of the older 
(130–100 ka) lava dome rocks (Kiss et al. 2014). Amphi-
bole is ubiquitous in the dacites and shows complex zon-
ing patterns and chemical variability (Kiss et al. 2014; 
Harangi et al. 2015a; Laumonier et al. 2019), resembling 
amphibole populations reported for Mt. Pinatubo (Pallister 
et al. 1996), Soufriére Hills (Murphy et al. 2000), Mt Pelée 
(Pichavant et al. 2002), Unzen (Sato et al. 2005), Mt St. 
Helens (Thornber et al. 2008) and Redoubt (Coombs et al. 
2013) volcanoes, among others.

Samples

Within the latest eruptive period of Ciomadul (Eruptive 
Epoch 5; Ee5, Molnár et al. 2019), two eruptive episodes—
denoted as Ee5/1 (56–44 ka) and Ee5/2 (34–30 ka)—were 
distinguished based on combined (U-Th)/He and U-Th ages 
(Harangi et al. 2015a, 2020; Molnár et al. 2019). The vol-
canic products are mostly pumiceous pyroclastic deposits 
formed by Vulcanian and sub-Plinian eruptions and ash 
beds of phreatomagmatic events with a single identified lava 
dome of the 48 ka Piscul Pietros (Szakács and Seghedi 1989; 
Vinkler et al. 2007; Szakács et al. 2015; Karátson et al. 2016, 
2019; Molnár et al. 2019; Harangi et al. 2020). The abun-
dance of cracked, glassy volcanic blocks found in ravines 
and in pyroclastic flow deposits nevertheless implies multi-
ple lava dome extrusions, which were destroyed entirely by 
subsequent explosive eruptions. Exposures are limited in 
the strongly vegetated area, but pyroclastic beds are locally 
well-exposed (Fig. 1, Fig. S1). In this study, we focus on 
the Vulcanian to sub-Plinian pumiceous explosive eruption 
products. Based on a thorough petrological and geochemi-
cal characterization, ten samples from three eruption units 
were selected for a more detailed study. Sample localities 
and outcrop details are shown in Fig. 1 and Figure S1 (in 
Electronic Supplementary Material 1; ESM 1), respectively.

Six of our samples are from Eruptive episode 5/1 (Ee5/1) 
and four samples are from Eruptive episode 5/2 (Ee5/2). 
An up to 3 m thick, medium to well-sorted pyroclastic unit 
composed of pumice lapilli around the Mohoş crater (Fig. 1) 
represents the first explosive eruption event, which was dis-
charged after a long (35–40 ka) quiescence period of Cio-
madul. The lapilli bed is exposed at the lower part of the 
Covasna-Harghita frontier outcrop (unit Ee5/1kh_A; same 
locality as MK-4 of Harangi et al. 2015a, Bolondos outcrop, 
BOL-1 of Karátson et al. 2016, and KH of Molnár et al. 
2019) and in the recently excavated Mohoş roadcut (unit 
Ee5/1mo_A; same locality as Mohoş, Vârful Mohoş, MOH-
VM of Karátson et al. 2016 and locality-226 of Molnár et al. 
2019). Zircon from both localities shows the same (U-Th)/
He age of 56 ± 4 ka (Molnár et al. 2019), and we therefore 
group them as the Ee5/1–56 eruption unit. Pumices from 
the upper part of a series of lapilli beds (unit Ee5/1tf_A), 
occurring beneath massive pyroclastic flow and phreatomag-
matic units exposed in the abandoned Băile Tuşnad quarry 
(Vinkler et al. 2007; Szakács et al. 2015) at the western 
segment of the volcano (Fig. 1), represent a 50.3 ± 1.3 ka 
explosive eruption event (Harangi et al. 2015a). This local-
ity is denoted as Tuşnad by Vinkler et al. (2007), MK-3 by 
Harangi et al. (2015a), and BTS-1 by Karátson et al. (2016). 
We refer to this unit as Ee5/1–50.

The youngest, 5/2 eruptive episode consists of 
Vulcanian and sub-Plinian pumiceous deposits and 
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phreatomagmatic beds occurring in ravines and as dis-
tal tephra beds around the volcano (Vinkler et al. 2007; 
Harangi et al. 2015a, 2020; Karátson et al. 2016; Mol-
nár et al. 2019). For this study, we selected pumice sam-
ples from the most extensively studied block-and-ash 
flow deposit (Vinkler et al. 2007; Harangi et al. 2010, 
2015a), exposed at the Bixad-Balvanyos roadcut at the 
southern slope of the volcano (unit Ee5/2bx). This out-
crop was sampled as locality MK-5 by Harangi et  al. 
(2015a) and as BIX-1 by Karátson et al. (2016). The erup-
tion age is constrained by radiocarbon dates on charcoal 
fragments and zircon (U-Th)/He dates giving an age of 
31.05–31.94 ka cal BP and 32.6 ± 1.0 ka, respectively 
(Harangi et al. 2010; 2015a), thus we refer to the unit as 
Ee5/2–32.

The studied samples are dacitic pumices and their main 
features are summarized in Table 1. The pumice lapilli and 
blocks contain euhedral to anhedral macrocrysts (> 500 μm 
size) and mesocrysts (100–500 μm size; cf. terminology 
proposed by Zellmer 2021), felsic ± mafic crystal clots in a 
glassy, microlite-bearing (~ 1–14 vol%), strongly vesiculated 
matrix. Vesicles are irregular to elongate. The microcrysts 
(1–100 μm size) and macrocrysts make up 8–19 vol%, com-
prising plagioclase and amphibole, as well as minor amounts 
of biotite (Table 1). Felsic crystal clots (~ 0.5–2 vol%), 
comprising plagioclase, amphibole, biotite, and accessory 
apatite, titanite, zircon, and Fe-Ti oxides, occur in various 
amounts. Mafic crystal clots (0.1–3 vol%) of orthopyroxene 
and/or clinopyroxene overgrown by amphibole, occur exclu-
sively in pumice of unit Ee5/1–56.

Methods and used data

Petrological characterization of the studied samples was 
performed by combined application of optical and scanning 
electron microscopy at the Department of Petrology and 
Geochemistry, Eötvös Loránd University, Budapest, Hun-
gary. Back-scattered electron (BSE) images were produced 
by an AMRAY 1830 I/T6 scanning electron microscope 
using the following conditions: 20 kV accelerating voltage, 
1 nA beam current, and 1 s acquisition time. Crystal content 
(vol%; crystallinity; Popa et al. 2020) was estimated by point 
counting of macrocrysts using optical and back-scattered 
electron images from representative thin sections of each 
eruption unit. We used the JMicroVision v1.3.4 software 
for this purpose (Roduit 2022). Minor to accessory Fe-Ti 
oxides, zircon, and titanite are important for our study, there-
fore they were recovered from mineral separates prepared 
following standard heavy mineral separation methods (see 
details in Harangi et al. 2015a; Molnár et al. 2019). Crystals 
were fixed on double-sided adhesive tape and then embed-
ded in 25 mm diameter epoxy mounts. Crystal mounts were Ta
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lapped by 2500 mesh SiC paper and polished by diamond 
suspensions.

Chemical composition of minerals and glasses selected 
by the preliminary petrologic study was quantitatively 
determined by electron probe microanalysis (EPMA) using 
WDS detectors. Most of the analyses were conducted using a 
JEOL JXA 8900 RL electron microprobe at the Geozentrum, 
Georg-August University, Göttingen, Germany. Analyses of 
amphibole, plagioclase, glass, and Fe-Ti oxides were per-
formed at 15 kV and 15  nA, using a defocused beam with a 
diameter ranging from 2 to10  µm. For glass measurements, 
the NMNH111240-52, VG-2 Smithsonian Microbeam 
Standard were used with 0.02 wt%  H2O content. During the 
glass session, F and Cl were also measured. This data set 
was complemented by analytical results obtained using a 
CAMECA SX100 electron microprobe at the Department 
of Lithospheric Research, University of Vienna, Austria. 
Analyses of amphibole, plagioclase, and glass was per-
formed at 15 kV and 20  nA, using a defocused beam of 
3–5 µm, respectively. Additional analyses were performed 
with a Cameca SX Five electron microprobe at the Insti-
tut des Sciences de la Terre d’Orléans—Centre National de 
la Recherche Scientifique (ISTO-CNRS), Orléans, France. 
Analyses of plagioclase, amphibole, orthopyroxene, and 
clinopyroxene were performed at 15 kV and 15  nA, using a 
defocused beam of ~ 10 µm. Repeating analyses on selected 
crystals were used to ascertain inter-laboratory correlation. 
Synthetic and natural minerals and synthetic glasses were 
used as standards. Amphibole  Fe3+ value was estimated 
based on the IMA recommendation (Leake et al. 1997; Schu-
macher 1997) what is consistent with the method suggested 
by Holland and Blundy (1994). In the text, we report glass 
data normalized to 100% on an anhydrous basis.

Trace element compositions of accessory minerals (zir-
con and titanite) were determined by laser ablation induc-
tively coupled mass spectrometry (LA-ICP-MS). Zircon 
trace element compositions are those already published by 
Lukács et al. (2021), which were measured at the Geochro-
nology laboratory, ETH Zürich, Switzerland. We used the 
published data for new oxybarometric calculations. Titanite 
(sphene) trace element compositions were analyzed at the 
Göochron Laboratories, University of Göttingen, Germany. 
A ThermoScientific Element 2 sector field ICP-MS was cou-
pled to a RESOLution S-155 (Resonetics) 193 nm excimer 
laser (CompexPro 102) equipped with a two-volume abla-
tion cell (Laurin Technic). The sample cell was flushed with 
high purity He (600 ml/min), whereas Ar was employed as 
the plasma carrier gas (0.985 l/min). Single spot analyses 
were conducted with a laser beam diameter of 33 µm and a 
crater depth of approximately 10 µm. The laser was fired at 
a repetition rate of 5 Hz and at an energy density of ~ 2.5 J/
cm2 on the sample surface. Analyses were performed both 
on titanite cores and rims. NIST 612 glass was used as the 

primary reference material to calculate elemental concen-
trations and to correct for instrumental drift. Silicon (29Si) 
was used as the internal standard for reference materials and 
unknowns, where we assumed an Si content of 14.3 wt% 
for titanite. This first step of data reduction was performed 
using the Iolite software (Paton et al. 2011) and the final 
concentrations were calculated by an in-house spreadsheet. 
Results of the LA-ICP-MS measurements are presented in 
the ESM 2.

Using the EPMA and LA-ICP-MS compositional data, 
we then employed commonly used mineral ± melt ther-
mometers, barometers, oxybarometers and chemometers as 
detailed in the ESM 1 (those of Watson and Harrison 1983; 
Andersen and Lindsley 1985; Holland and Blundy 1994; 
Anderson and Smith 1995; Ferry and Watson 2007; Ander-
son et al. 2008; Ghiorso and Evans 2008; Hayden et al. 2008; 
Ridolfi et al. 2010; Ridolfi and Renzulli 2012; Krawczyn-
ski et al. 2012; Waters and Lange 2015; Mutch et al. 2016; 
Putirka 2016; Arató and Audétat 2017a, b, c; Erdmann et al. 
2019; Loucks et al. 2020; Ridolfi 2021; Crisp and Berry 
2022; Higgins et al. 2022; Médard and Le Pennec 2022). 
The state of equilibrium between phases was evaluated by 
textural investigation and/or geochemical tests. The input 
data and the uncertainties of the results for each method are 
summarized in the ESM 1.

Results

Plagioclase

Plagioclase makes up 5 to 11 vol% of the studied samples of 
the Ee5/1–56 and Ee5/2–32 units respectively, and 7 vol% of 
the Ee5/1–50 unit (Table 1). Crystals range in size from 50 
to 3500 μm in length. In the Ee5/1–56 and Ee5/2–32 pum-
ice, i.e., in the youngest and the oldest investigated eruption 
products, plagioclase macrocrysts show often medium-to-
coarse grained spongy cellular texture and oscillatory zon-
ing in their interiors overgrown by 10–200 μm thick, typi-
cally euhedral and inclusion-free outermost rim (Fig. 2b–c). 
Amphibole and biotite as well as titanite, apatite, or zircon 
commonly form inclusions. In contrast, plagioclase crystals 
in the Ee5/1–50 pumices do not have spongy texture, they 
are inclusion-free to inclusion-poor (Fig. 2f). They show 
normal zoning occasionally with oscillatory zoned core 
without evidence of resorption. Inclusions of amphibole, 
biotite and the accessory minerals occur rarely. Amphibole 
inclusions are less common than in plagioclase from the 
Ee5/1–56 and Ee5/2–32 pumice and can be found mostly 
near the crystal rims.

Plagioclase cores and rims of each investigated explo-
sive eruption unit show a relatively restricted composi-
tional range (Figs. 2 and 3). In eruption units Ee5/2–32 and 
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Ee5/1–56, the majority of plagioclase cores and rims have 
an An content between ~ 40 and 50 mol% with few core com-
positions extending to > 60 mol%. The FeO content varies 
between 0.1 and 0.4 wt%, showing a slightly positive cor-
relation with An content (Fig. 3f). The rim composition is 
relatively homogeneous with An = 40–50 mol% and 0.2–0.3 
wt% FeO content. In eruption unit Ee5/1–50, plagioclase 
core and rim compositions are significantly more evolved 
than in the other two eruption units, with An content mostly 
between 20 and 30 mol% (Fig. 3b, e). Their FeO content is 
between 0.1 and 0.4 wt% (Fig. 3e). Comparison with pla-
gioclase from the older lava dome dacite can be found in 
the Table S2.

Amphibole

Amphibole is the most common mafic mineral phase in 
the studied samples, constituting 3–6 vol% (Table 1) in the 
pumices of the Ee5/1–56 and Ee5/2–32 units and ~ 1 vol% 
(Table 1) in the studied pumices of the Ee5/1–50 unit. Most 
of the crystals have euhedral shape, although they show 
various zoning types, i.e., complex normal (Fig. 4b, f), 
complex reverse (Fig. 4a, h), oscillatory (Fig. 4e, i), com-
plex patchy (Fig. 4d) zoning, but also homogeneous crystals 
occur (Fig. 4c). Most commonly they are normally zoned 

with irregular resorbed, and occasionally patchy cores and 
thin, euhedral outer rims (Fig. 4b). In the Ee5/1–56 and 
the Ee5/2–32 pumices, i.e., in the oldest and the youngest 
investigated explosive eruption products, the amphibole 
cores often show coarse, vermicular resorption structure 
(Fig. 4a, d, h). In the Ee5/1–50 pumice, amphibole crystals 
equally show normal, occasionally slightly oscillatory zoned 
cores with resorbed margins overgrown by thin euhedral 
rims (Fig. 4f), and homogeneous, unzoned crystals often 
intergrown with biotite (Fig. 4g). Amphibole coexists with 
plagioclase either as inclusions or in intergrowth (Figs. 2a, 
c, d and 4c).

In contrast to the plagioclase, amphibole shows signifi-
cant compositional variation in each investigated explo-
sive eruption unit, often in single crystals (Fig. 4). Crys-
tal composition is classified as magnesio-hornblende and 
pargasite/Mg-hastingsite based on the IMA classification 
scheme as described by Hawthorne et al. (2012) and Locock 
(2014) (Fig. S2). The compositional variation is illustrated 
in the  Al2O3 vs. MgO diagram (Fig. 5), where five main 
groups can be distinguished: (1) low-Al, low-Mg amphi-
bole  (Al2O3 = 6.0–9.5 wt%, MgO < 14 wt%; Fig. 5), which 
forms mostly cores of reverse zoned crystals (Fig. 4a) and 
homogeneous macrocrysts often with biotite inclusions 
(Fig. 4d, g). They are relatively rare except for the Ee5/1–50 

Fig. 2  Back-scattered electron images of the most frequent plagio-
clase types in a–e the Ee5/2–32 and the Ee5/1–56 eruption units; and 
f in the Ee5/1–50 unit. a Plagioclase macrocryst with oscillatory nor-
mal zoning at the interior overgrown by a more calcic thin rim. b–c 
Large, spongy textured plagioclase macrocrysts with amphibole and 

biotite inclusions occurring typically in these eruption units. d Coex-
isting amphibole and plagioclase. e Normal zoned plagioclase and 
reverse zoned amphibole. f Plagioclase macrocryst with biotite inclu-
sions in the core. An indicates anorthite end-member (in mol%)
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pumices. Noteworthy, they have also elevated MnO content 
(MnO > 0.4 wt%). (2) High-Al, high-Mg  (Al2O3 > 9 wt%, 
MgO > 16 wt%) amphibole (Figs. 4b, e, h, i and 5), which 
are irregularly resorbed, occasionally oscillatory cores of 
normal zoned macrocrysts. These crystals have typically low 
MnO (< 0.2 wt%). They are present only in the Ee5/1–56 and 
Ee5/2–32 pumices. (3) Low-Al, high-Mg amphibole, which 
has a unique, distinct compositional group  (Al2O3 = 5–7 
wt%, MgO = 19–21 wt%; Figs. 4f and 5). Remarkably, these 
amphiboles are characterized by high  Cr2O3 content (0.3–1.3 
wt%), while all the other amphibole types have  Cr2O3 < 0.3 
wt%. They occur exclusively in the pumices of the Ee5/1–50 
unit and form the irregularly resorbed core of normal zoned 
macrocrysts (Figs. 4f and 5). Occasionally, they show slight 
oscillatory zoning. (4) High-Al, moderate-Mg amphibole 
(transitional type,  Al2O3 = 9.5–11.5 wt%, MgO = 13–16 
wt%; Figs. 4b, c and 5), which typically represents the 
rim composition of the macrocrysts in the Ee5/1–56 and 
Ee5/2–32 pumices and not found in the Ee5/1–50 pumices. 
(5) Low-Al, moderate-Mg amphibole (transitional type, 
 Al2O3 = 7.5–9.0 wt%, MgO = 14–16 wt%), which forms 
rim of macrocrysts exclusively in the Ee5/1–50 pumices 
(Fig. 4f). The group (1) amphibole can be found also in the 
older lava dome samples (Kiss et al. 2014), whereas all the 
other amphibole groups differ from those found in the lava 

dome rocks (Fig. S3). Transect line profiles of amphibole 
crystals are in the ESM 2 and in Fig. S4.

Fe‑Ti oxides

Ti-magnetite and ilmenite are both 50–200 µm in size and 
have a dominant rounded shape with glass embayments, 
indicating partial resorption (Fig. 6). Occasionally, they 
host apatite or biotite inclusions. Most of the crystals are 
embedded in the matrix, as observed in thin section and 
as shown by attached glass rims around Fe-Ti oxide grain 
separates. Noteworthy, the attached glass as well as the glass 
embayments have compositions slightly enriched in Fe and 
Ti, most probably caused by the rapid diffusion of these ele-
ments. Both BSE images and microprobe traverse analyses 
confirm homogeneous composition of the titanomagnetite 
and ilmenite crystals (Fig. 6, Fig. S5, ESM 2). As for pla-
gioclase and amphibole, the calculated Fe-Ti oxide end-
member compositions are closely comparable for crystals 
in the Ee5/2–32 and Ee5/1–56 units, but distinct for crys-
tals in the Ee5/1–50 pumice. Titanomagnetite and ilmenite 
from the Ee5/1–56 and the Ee5/2–32 units have composi-
tions with 12–18 mol% ulvöspinel (Usp) and 78–84 mol% 
ilmenite (Ilm), respectively, while in the Ee5/1–50 unit a 
slightly lower Usp (10.0–16.5 mol%) and significantly lower 

Fig. 3  Plagioclase An contents of the studied explosive eruption 
units. Plagioclase in the a Ee5/2–32 and c Ee5/1–56 units has closely 
comparable compositional maxima and compositional range, whereas 

plagioclase in the b Ee5/1–50 pumice have considerably more 
evolved composition. Arrows show the core-rim directions in the pla-
gioclase crystals in pumices from the Ee5/1–56 and Ee5/2–32 units
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Ilm components (70–75 mol%) are observed. Furthermore, 
Ti-magnetite of the Ee5/1–50 pumice contains less  V2O3 
(0.12–0.35 wt%) than crystals in the other two eruption 
units, which have  V2O3 between 0.2 and 0.5 wt%.

Zircon

Zircon crystals are euhedral to anhedral, oscillatory zoned 
crystals, having a maximum size of 300 μm. They rarely 
enclose apatite and/or opaque minerals in the core. Zircon 
commonly forms euhedral inclusions within amphibole 

and plagioclase crystals or appears in the groundmass. 
Their trace element compositions were presented by 
Lukács et al. (2021). In the three studied eruption units, 
zircon shows very similar texture and composition. Zircon 
Hf content is in the range from 9200 to 10,700 ppm, Yb/Dy 
varies between 5 and 8, whereas Ce, Th, and U concentra-
tions are 30–90 ppm, 200–1400 ppm, and 400–2000 ppm 
(Th/U = 0.5–1.0), respectively (ESM 2). The chondrite-
normalized rare earth element patterns show a slightly 
negative Eu-anomaly (Eu/Eu* = 0.60–0.85).

Fig. 4  Back-scattered electron images of characteristic amphibole 
types. a Low-Al, low-Mg patchy core in reverse zoned amphibole. 
The rim has high-Mg amphibole composition. b Normal zoned 
amphibole: high-Mg core with irregular, resorbed margin overgrown 
by an amphibole of transitional composition. c Amphibole with tran-
sitional composition coexistent with plagioclase. d Unzoned, spongy, 
patchy amphibole with transitional composition. e Oscillatory zoned 
amphibole with high-Mg amphibole composition and transitional 
type rim. f Normal zoned crystal with slightly patchy inner zone 
with low-Al, high-Mg amphibole composition and thin overgrowth 

of lower Mg and higher Al composition. g Unzoned low-Al, low-Mg 
amphibole intergrown with biotite. h Complexly zoned amphibole 
crystal with high-Mg, high-Al core showing irregular margin over-
grown by a low-Mg amphibole zone and an outer rim of transitional 
composition.  i Oscillatory zoned amphibole with high-Al, high-Mg 
core and transitional type outer rim. a, b, d, e Amphiboles are from 
the Ee5/1–56 pumice samples; f–g Typical amphibole types in the 
Ee5/1–50 pumice; c, h, i Amphiboles are from the Ee5/2–32 pumice 
samples
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Titanite

Titanite is always present in the Ciomadul dacites but occur 
in various amounts. In the Ee5/2–32 and Ee5/1–56 eruption 
units, titanite is particularly rare (< 0.1 vol%), found mostly 
in the heavy mineral separates and is typically < 450 μm in 
size. It most commonly forms inclusions in low-Al, low-Mg 

amphibole. In the Ee5/1–50 pyroclastic unit, titanite is also 
rare (< 0.5 vol%), forming mesocrysts with sizes of up to 
750 μm. It is usually euhedral, forming single crystals in 
the groundmass, inclusions in amphibole or intergrown with 
amphibole. The zoning is similar to the other two units, but 
the resorption boundary between the core and rim is stronger 
(Fig. S7).

Fig. 5  Variation of amphibole chemical compositions (core and 
rim) of the studied pumice samples. The defined amphibole groups 
are indicated by grey areas: Group 1: Low-Al, low-Mg amphibole 
 (Al2O3 = 6.0–9.5 wt%, MgO < 14 wt%); Group 2: High-Al, high-Mg 
 (Al2O3 > 9 wt%, MgO > 16 wt%); Group 3: Low-Al, high-Mg amphi-
bole  (Al2O3 = 5–7 wt%, MgO = 19–21 wt%); these amphibole groups 

represent crystal cores. Group 4: High-Al, moderate-Mg amphibole 
(transitional type,  Al2O3 = 9.5–11.5 wt%, MgO = 13–16 wt%); Group 
5: Low-Al, moderate-Mg amphibole (transitional type,  Al2O3 = 7.5–
9.0 wt%, MgO = 14–16 wt%; these latter two amphibole groups are 
found as crystal rim and microcrysts

Fig. 6  Back-scattered electron (BSE) images of titanomagnetite (a–c) 
and ilmenite (d–f) crystals separated from the Ee5/2–32 (a–b, d, f) 
and the Ea5/1–56 (c, e) eruption units. Note the rounded, strongly 

resorbed crystals with homogeneous compositions. Abbreviations: ap 
apatite, bt biotite, gs glass, mi silicate melt inclusion, mt titanomag-
netite, ilm ilmenite
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Titanites of the three studied eruption units have remark-
ably uniform composition. Their  Al2O3 content varies 
between 1.2 and 1.4 wt%, whereas their  Fe2O3 content is 
between 1.3 and 1.6 wt%. Most crystals show composite 
zoning patterns (Fig. S7), although they do not coincide with 
significant variation in major elements, but rather in rare 
earth elements. In general, oscillatory zoned crystal cores 
have less Fe and REE than the rim. On the other hand, a 
large variation in REE content is observed with a total rare 
earth element abundance from 10,000 to 18,000 ppm. The 
chondrite normalized rare earth element patterns are charac-
terized by light REE-enrichment with respect to heavy REE 
(Ce/YbN = 4.5–10.5) with a slight negative Eu-anomaly (Eu/
Eu* = 0.75–0.90).

Glass

Glass composition was determined to complete the exist-
ing data set for the glassy matrix (which has up to 14 vol% 
microlites in the Ee5/2–32 and Ee5/1–56 pumice and 1–2% 
in the Ee5/1–50 pumice), for glassy silicate melt inclusions 
in amphibole and plagioclase, and for irregular, vermicular 
glass embayments in amphibole and Fe-Ti oxide crystals. 
In case of glassy matrix, measurements were performed 
in microlite free spots, usually next to crystal rims. The 
new results are interpreted with previously published data 
(Karátson et al. 2016; Laumonier et al. 2019; Harangi et al. 
2020). The matrix glass and melt inclusion compositions 
in the Ee5/1–50 pumices have similar and fairly homoge-
neous composition between  SiO2 = 75.0–76.5 wt% and 

 Al2O3 = 13.5–14.5 wt% in anhydrous basis. In contrary, 
glasses from the two other units have a wider compositional 
range  (SiO2 = 70.5–73.5 wt% and  Al2O3 = 14.2–16.8 wt%) 
that strikingly differs from the Ee5/1–50 glasses as already 
pointed out already by Vinkler et al. (2007), Karátson et al. 
(2016) and Harangi et al. (2020). This wide compositional 
range is partly due to the different compositions of glass 
inclusions of various mineral phases and avoiding the more 
evolved and less evolved glass inclusion data, the glasses 
are characterized with more homogeneous  SiO2 = 71.5–72.5 
wt% and  Al2O3 = 15.5–16.0 wt% compositions. The esti-
mated  H2O content of the glasses (calculated by difference 
method; Devine et al. 1995) varies significantly, between 
0.5 and 7 wt%.

Discussion

Origin of the crystal cargo

The Ciomadul dacitic pumices contain very similar min-
eral assemblage, however, their chemical compositions, 
particularly those of amphibole show a great range. 
Remarkably, the compositional variation of amphibole in 
the 56–32 ka Ciomadul pumices is one of the largest com-
pared to several examples of similar andesitic to dacitic 
systems (Fig. 7; e.g., Fish Canyon Tuff, Colorado, USA, 
Bachmann et  al. 2002; Savo, Solomon Islands, Smith 
2014; Mt St. Helens, Washington, USA, Thornber et al. 
2008; Shiveluch, Kamchatka, Russia, Goltz et al. 2020; 

Fig. 7  Tetrahedral Al  (AlIV) vs. Mg# [Mg/(Mg +  Fetot)] composi-
tions for the Ciomadul amphibole groups. For comparison, amphi-
bole compositional fields for several andesitic-dacitic volcanic rocks 
are also presented. Ciomadul (Ld = lava domes, Kiss et  al. 2014); 
FCT: Fish Canyon Tuff (Bachmann et al. 2002); MSH: Mt St. Helens 
(Thornber et  al. 2008); Shiveluch (Kamchatka, Goltz et  al. 2020; 
Gorbach et  al. 2020); Shasta (California, USA, Grove et  al. 2003); 

Methana (Greece, Popa et al. 2020); Philippines and Baja California 
(Ribeiro et  al. 2016). In addition, amphibole cumulate composition 
from Adamello (Tiepolo et al. 2011) are shown as it represents high 
pressure and high temperature phases and the amphibole compo-
sitional data field for ultramafic xenoliths from Avacha, Kamchatka 
(Ionov 2010) are also indicated, which are similar to the unique low-
Al, high-Mg amphiboles of the Ee5/1–50 unit
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Gorbach et al. 2020; Longaví, Andean Southern Volcanic 
Zone, Central Chile, Rodríguez et al. 2007; Lamington, 
Papua New Guinea, Humphreys et  al. 2019; Methana, 
Greece, Popa et al. 2020; Philippines and Baja Califor-
nia, Ribeiro et al. 2016). Kiss et al. (2014) pointed out 
that low-Al, low-Mg amphiboles from the older Ciomadul 
lava domes represent a shallow felsic magma reservoir that 
existed for several 100’s of thousand years before erup-
tions occurred (Lukács et al. 2021). Reactivation of this 
highly crystalline mush occurred repeatedly by magma 
recharges transporting high-Mg amphibole as well as 
olivine and clinopyroxene to the felsic magma storage. 
Comparing to the lava dome rocks, a striking difference 
in the explosive volcanic products studied in this paper is 
that no olivine and clinopyroxene are found with excep-
tion for sporadic mafic crystal clots with amphibole and 
more notably, the amphibole compositional range is dif-
ferent. Thus, the following main components of the Cio-
madul magma reservoir system have to be considered as 
playing role in the magma evolution and eruption trigger: 
(1) long-standing evolved felsic crystal mush body in the 
shallow crust; (2) recharge magmas and (3) post-recharge, 
pre-eruption magma batch. Each of these magmatic com-
ponents could have its own characteristics reflected in the 
mineral chemistry and texture. Therefore, first, we inter-
pret the origin of the crystal cargo, followed by a care-
ful evaluation of the crystallization conditions in order to 
reconstruct the nature and dynamics of the trans-crustal 
magma storage system.

In the three studied explosive eruption units, five com-
positionally different amphibole types have been identi-
fied. Normal zonation is the most common (characteristic 
of ~ 55% relative abundance within the amphibole crystals 
in the Ee5/1–56 and Ee5/2–32 pumices and ~ 44% in the 
Ee5/1–50 pumice), where the inner crystal cores are Mg- 
and Al-rich (MgO > 16 wt%,  Al2O3 = 10–12 wt%) in case 
of the Ee5/1–56 and Ee5/2–32 pumices, however, Mg-rich 
and Al-poor (MgO = 19–21 wt%,  Al2O3 = 6–7 wt%) in case 
of the Ee5/1–50 pumice. In all eruption products, these 
crystal cores are characterized by slight oscillatory zoning 
or patchy textures and have irregularly resorbed outer mar-
gins and glass embayments (Fig. 4b, e, f, h, i). Occasion-
ally, the high-Mg, high-Al amphibole forms mafic crystal 
clots accompanied with ortho- and clinopyroxene, while 
plagioclase is notably absent from this assemblage (Cserép 
et al. in prep). These high-Mg amphiboles are clearly not 
in equilibrium with the dacitic magma and could have 
been transported into the felsic magma reservoir via more 
mafic recharge magma. Thus, they are classified as ante-
crysts, which provide insights into the deeper part of the 
magma reservoir. Compared to the Mg-rich amphibole 
from older dome-forming eruptions (Kiss et al. 2014), they 

have higher Mg and lower Al content suggesting distinct 
type of recharge magma.

The low-Al, low-Mg amphiboles  (Al2O3 = 6–9 
wt%, MgO < 14 wt%; Ee5/1–56 and Ee5/2–32: ~ 15%; 
Ee5/1–50: ~ 24% of the total amphibole crystals) are pre-
sent in all the three studied eruption units, where they occur 
in notably lower amounts than in the older lava dome rocks 
(Kiss et al. 2014). This amphibole type occurs as large 
unzoned, strongly resorbed (spongy) macrocrysts typically 
with biotite inclusions (Fig. 4d, e) and forms also cores of 
reversely zoned crystals (Fig. 4a, g). They occasionally form 
also felsic crystal clots with large plagioclase and biotite, 
apatite, Fe-Ti oxides, titanite and zircon. In the older lava 
dome rocks, these crystal clusters are associated with quartz 
and K-feldspar, but these two phases have not been identi-
fied in the studied pumices. The low-Al, low-Mg amphibole 
has the same chemical composition as the hornblende group 
in the lava dome rocks (Fig. 7) and is interpreted to rep-
resent the pre-recharge, shallow felsic crystal mush (Kiss 
et al. 2014). Their strongly resorbed appearance indicates 
that they are not in equilibrium with the erupted magma. 
Therefore, they are considered also as antecrysts, i.e., they 
crystallized in the same magma reservoir but from differ-
ent melt along with biotite, plagioclase, apatite, titanite and 
zircon and possibly also with quartz and K-feldspar, well 
before the eruptions. We use their compositions, along with 
the coexisting phases, to determine the intensive parameters 
of the long-lived shallow magma reservoir.

The high-Al,  moderate-Mg amphibole type 
 (Al2O3 = 10–12 wt%, MgO = 14–16 wt%; ~ 30% of the total 
amphibole crystals in the Ee5/1–56 and Ee5/2–32) and 
the low-Al, moderate-Mg amphibole  (Al2O3 = 8–9 wt%, 
MgO = 14–15 wt%; Ee5/1–50: ~ 32%) have transitional 
compositional character. They mostly represent the thin 
rim on the normal and reverse zoned crystals (Fig. 4e, f), 
although they occur also as homogeneous, euhedral micro-
phenocrysts. These amphiboles often form equilibrium pairs 
with plagioclases (Fig. 4c). The narrow rim (Ee5/2–32: 
6–71 μm; Ee5/1–50: 6–45 μm; Ee5/1–56: 15–65 μm) and 
euhedral shape suggest that overgrowth crystallization 
occurred after the rejuvenation event in equilibrium with 
the host melt represented by the groundmass glass. Using 
compositions of this assemblage, constraints on intensive 
parameters immediately before the eruption can be obtained. 
Fe-Ti oxides in particular re-equilibrate rapidly, within hours 
to days (Venezky and Rutherford 1999; Morgado et al. 2019; 
Prissel et al. 2020; Hou et al. 2021) and they therefore typi-
cally record this post-recharge to syn-eruptive condition.

In the Ciomadul pumices, plagioclase shows much less 
compositional variation compared to the amphibole popula-
tion. In the Ee5/1–56 and Ee5/2–32 units, they range in An 
between 30 and 60 mol%, although the rim compositions 
are narrow, between 40 and 50 mol%. Microphenocrysts 
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(micro- and mesocrysts), which are often intergrown with 
transitional type amphibole have the same composition as 
the macrocryst rims. Thus, they may have crystallized from 
the post-recharge hybrid magma, and their compositions are 
therefore used as an equilibrium pair with the transitional 
type (high-Al, moderate-Mg) amphibole for thermobaromet-
ric estimation (ESM 1, Fig. S8). A characteristic plagioclase 
type (~ 25% of the total plagioclase crystals) in these units 
are large (usually > 1 mm) macrocrysts with spongy-cellu-
lar texture (e.g., Fig. 2b, c). They have An = 25–35 mol% 
composition (used with the low-Al, low-Mg amphibole 
for thermobarometric estimation; ESM 1, Fig. S8) similar 
to plagioclase of the felsic crystal clots in the older lava 
domes (Kiss et al. 2014). Therefore, we interpret them as 
antecrysts derived from the felsic crystal mush, which were 
partly resorbed during entrainment and magma recharge. 
An overgrowth with higher An (An = 40–50 mol%) and 
FeO composition (Fig. 3) formed on these crystals prior to 
eruption.

There is no clear evidence that the recharge magma trans-
ported plagioclase into the felsic magma reservoir as shown 
for instance by Popa et al. (2020) in case of the Methana 
volcanic rocks. The mafic crystal clots in the Ciomadul pum-
ice do not contain plagioclase with high-Ca cores, typical of 
early-formed plagioclases in arc-magmas (e.g., Melekhova 
et al. 2015; Klaver et al. 2017; Popa et al. 2020), except 
for a single case in the Ee5/2–32 unit. The suppression of 
plagioclase stability in the deep mafic magma reservoir can 
be explained by hydrous conditions (> 6 wt%; Pichavant 
and Macdonald 2007; Melekhova et  al. 2015). Never-
theless, the normal zoned plagioclase crystal cores with 
An = 48–60 mol% (e.g., Fig. 2a, e) might have crystallized 
from the recharge magma en route to the shallow magma 
reservoir and then, they were also overgrown by the typical 
An = 40–50 mol% post-recharge rim.

Plagioclase from pumice of the Ee5/1–50 unit has dis-
tinct composition as was shown already by Harangi et al. 
(2020). In these rocks, no sieve-textured macrocrysts occur. 
The crystals are inclusion-free or -poor, showing only sub-
tle inner oscillatory compositional variation (crystal cores: 
An = 30–50 mol%; crystal rims: An = 20–30 mol%). This 
indicates that recharge affected another, more evolved part 
of the crystal mush and that the recharge melt did not cause 
much compositional variation of the melt fraction.

The groundmass glass of the studied pumices poten-
tially represents the post-recharge melt composition of the 
erupted magmas. It formed by hybridization of melt from 
the felsic crystal mush and melt from the recharge magma 
as well as melt derived from the remelted crystal assem-
blage. The groundmass glass contains various plagioclase 
microlites, particularly in the Ee5/1–56 and Ee5/2–32 
samples that formed during magma ascent (e.g., Andrews 
and Gardner 2010) and can obscure the original glass 

composition. Taking into account only the microlite-free 
glass data, glasses have relatively homogeneous, evolved 
composition, which can reflect the melt fraction of the 
erupted magma where the post-recharge crystal phases were 
equilibrated. This melt composition strikingly differs in the 
Ee5/1–56, Ee5/2–32 and the Ee5/1–50 samples, respec-
tively  (SiO2 = 71.5–72.5 wt%,  Al2O3 = 15.5–16.0 wt% and 
 SiO2 = 75.0–76.5 wt%,  Al2O3 = 13.5–14.5 wt% in anhydrous 
basis) and implies that distinct parts of the shallow magma 
reservoir were potentially affected during the reactivation.

Intensive parameters of Ciomadul’s magma system

A large number of potential thermobarometers, oxygen 
barometers, and chemometers exist (e.g., Putirka 2008; 
Wieser et al. 2022a, b), yet they commonly provide disparate 
results, and many have high uncertainties. This is primarily 
due to the experimental condition used for calibration and 
the applied regression strategy (linear vs. non-linear). Thus, 
in the following sections, we critically discuss the results 
obtained by various calibrations (ESM 1) and present our 
best estimates for the Ciomadul magma system. We also 
directly consider constraints from phase equilibrium experi-
ments on dacitic magmas from Scaillet and Evans (1999), 
Pichavant et al. (2002), Prouteau and Scaillet (2003), and 
Costa et al. (2004).

Pressure

Crystallization pressure is an important parameter since it 
provides information about the depth of magma storage and 
the architecture of trans-crustal magma systems. The Al 
content of amphibole is pressure-sensitive (Hammarstrom 
and Zen 1986; Hollister et al. 1987; Johnson and Ruther-
ford 1989a; Schmidt 1992; Anderson and Smith 1995), 
where increasing pressure favors Al-Tschermak substitu-
tion. In the Ciomadul pumice, amphibole  AlIV (tetrahe-
dral Al) and  AlVI (octahedral Al) correlate with each other 
(Fig. S9). The high-Al, high-Mg and the transitional type 
amphiboles have typically variable, high  AlVI, implying 
crystallization at various pressures, although temperature 
(Blundy and Holland 1990) and particularly magma com-
position also, and probably more sensitively, control the Al 
content in the amphibole (Erdmann et al. 2014; Kiss et al. 
2014; Putirka 2016). Amphibole barometers without addi-
tional constraints on other intensive parameters therefore 
have significant uncertainties (Table S3), and they cannot 
resolve crustal magma storage depths. Yet, Al-in-amphibole 
barometers calibrated for specific mineral assemblages, gra-
nitic magma compositions, and near-solidus temperatures 
(≤ 800 °C)—as those of Johnson and Rutherford (1989a), 
Mutch et al. (2016) and Médard and Le Pennec (2022)—may 
yield reliable constraints. To be applicable, the barometers 
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require an assemblage of amphibole, plagioclase, biotite, 
quartz, K-feldspar, ilmenite/titanite, magnetite, and apatite 
and a melt composition close to the haplogranitic solidus. 
The studied Ciomadul pumice samples lack quartz and 
K-feldspar in their assemblage. The required barometer min-
eral assemblage is, however, observed in the 160–90 ka lava 
dome rocks of Ciomadul, where it is interpreted to represent 
low-temperature crystal mush (Kiss et al. 2014; Laumonier 
et al. 2019), and pressure therefore can be estimated for the 
dome rocks and their crystal mush fragments. In the studied 
pumices, the composition of low-Al, low-Mg amphibole and 
other co-existing phases is notably similar to those found in 
the lava dome rocks (Fig. S3). This could indicate that the 
crystal mush fragments were close to quartz and alkali feld-
spar saturation and quartz and alkali feldspar were consumed 
during mush rejuvenation by magma recharge. We therefore 
cautiously apply the Al-in-amphibole barometers to the low-
Al amphibole compositions of the Ciomadul pumice, and 
will further discuss the possible limitations of the pressure 
estimate.

The calculated pressure values for the low-Al, low-Mg 
amphibole are between 200 and 330 MPa using the equation 
given by Mutch et al. (2016), between 160 and 295 MPa 
using the calibration of Médard and Le Pennec (2022), and 
between 241 and 296 MPa using the barometer of Anderson 
et al. (2008). The barometers of Ridolfi et al. (2010), Ridolfi 
and Renzulli (2012) and Higgins et al. (2022) were cali-
brated without consideration of a specific magma composi-
tion or equilibration assemblage, but differ from each other 
in the applied regression strategy as well as the considered 
experimental data set. The former two barometers calcu-
late pressures of < 130 MPa, whereas the latter one gives 
300–450 MPa. Following others (e.g., Erdmann et al. 2014; 
Kiss et al. 2014; Putirka 2016), we interpret these results 
as relative under- and overestimates for the crystallization 
pressure of the low-Al, low-Mg amphibole, but highlight 
that all calculated values concur within the uncertainty of 
the estimates.

Titanite is a common mineral in the Ciomadul dacites 
and is considered to have crystallized in the evolved felsic 
crystal mush (Kiss et al. 2014). It has a relatively low  Al2O3 
content showing limited variance (~ 1.4–1.6 wt%). Applying 
the Al-in-titanite barometry of Erdmann et al. (2019), a nar-
row pressure range between 190 and 215 MPa was obtained. 
As for the near-solidus amphibole barometers, the titanite 
barometer should only be applied to assemblages compris-
ing quartz and K-feldspar. However, as we argued above, 
the felsic crystal mush presumably contained these mineral 
phases before the magma recharge. Titanite is a characteris-
tic low-temperature crystal mush mineral and its barometer 
can provide reliable results for the Ciomadul rocks. Nota-
bly, the calculated pressure range fits well within uncertain-
ties with the crystallization pressures estimated using the 

Anderson et al. (2008), Mutch et al. (2016), and Médard and 
Le Pennec (2022) equations for the low-Al, low-Mg amphi-
bole population. Therefore, we conclude that a felsic crystal 
mush body, where low-Al and low-Mg amphibole and titan-
ite were stable resided in a pressure range between 200 and 
300 MPa (Fig. 8d) what is consistent also with experimental 
data (Fig. 8b). Using a 2.5 g/cm3 average density value for 
the upper crust, the calculated amphibole and titanite pres-
sure range corresponds to a depth of ~ 8–12 km, which is 
consistent with the location of the presumed upper crustal 
magma reservoir inferred from an electrical conductivity 
anomaly beneath Ciomadul (Harangi et al. 2015b; Laumo-
nier et al. 2019).

In contrast to the low-Al, low-Mg amphibole popula-
tion, the crystallization pressure of the high-Al amphibole 
groups is difficult to constrain because of a lack of well-
constrained experimentally determined compositions and 
the relatively large uncertainties of the applicable geoba-
rometers (up to ± 160 MPa). The high-Al amphibole groups 
typically have higher octahedral and tetrahedral Al than the 
low-Al amphibole group (Fig. S9) and their octahedral and 
tetrahedral Al concentrations are positively correlated, sug-
gesting crystallization at variable pressure, although melt 
composition could also be varied (Ridolfi et al. 2010; Kraw-
czynski et al. 2012; Kiss et al. 2014). In case of the 133 ka 
Ciomadul Mic lava dome rocks, Kiss et al. (2014) pointed 
out (based on textural observations) that high-Al and high-
Mg amphibole could have crystallized at low pressure from 
mafic magma (they form rim on low-Al, low-Mg amphibole 
core). In contrast, in the studied pumice, this amphibole 
type forms cores of the macro- and mesocrysts, often with 
resorbed outer boundaries. We interpret them as crystalli-
zation product from distinct magma, presumably at higher 
temperature and higher pressure, thus, they were transported 
by recharge magma from deeper zones into the shallow felsic 
magma reservoir. However, the machine learning method of 
Higgins et al. (2022) and the Ridolfi et al. (2010) geobarom-
eter calculate pressure values, between 174 and 540 MPa, 
partly overlapping with that obtained for the felsic crystal 
mush body, although we note that these results need to be 
considered with caution.

The high-Al amphibole in the Ciomadul pumices has 
high Mg# (> 0.78), which is relatively rare in calc-alkaline 
magmas, but characteristic mostly of amphibole found in 
high-Mg andesites (e.g., Shasta, USA; Grove et al. 2003; 
Phillippines and Baja California; Ribeiro et  al. 2016; 
Fig. 7), is interpreted to have crystallized from the recharge 
magmas prior to mixing with upper crustal crystal mush. 
Krawczynski et al. (2012) demonstrated experimentally that 
there is a narrow stability field where olivine and high-Mg 
amphibole may coexist in andesites and the Mg-value of 
the first appearing amphibole can be used to constrain pres-
sure. There are petrological observations for the high-Mg 
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amphiboles in the studied Ciomadul pumices (e.g., mafic 
crystal cumulates with olivine or pyroxene in the core sur-
rounded by amphibole corona and lacking plagioclase) indi-
cating that they crystallized before plagioclase and coexisted 
with olivine, orthopyroxene, and clinopyroxene. Thus, the 
empirical geobarometer provided by Krawczynski et al. 
(2012) can be potentially applied to the Mg-rich amphi-
bole compositions with Mg# between 0.74 and 0.84. The 
obtained pressure values are in the range of 400–570 MPa. 
It is noted that in the Ciomadul pumices, there are amphi-
boles with Mg# even higher than 0.84, but they are out of 
the calibration range.

In order to further constrain the pressure of the high-Al, 
high-Mg amphibole population in the Ciomadul pumices, 
we considered phase-equilibrium experiments, which fit 

the best with the conditions of the Ciomadul magmatic sys-
tem (Scaillet and Evans 1999; Prouteau and Scaillet 2003; 
Costa et al. 2004). These experiments run between 200 and 
1000 MPa, where high-Al2O3 (> 10 wt%) amphibole was 
exclusively produced at > 400 MPa (Fig. 8b), in equilib-
rium with ortho-and clinopyroxene, olivine or plagioclase. 
In addition, these amphiboles have compositions similar 
to the high-Mg amphiboles considered as high pressure 
(1000 MPa) cumulates found in hornblendites and horn-
blende gabbros of the Mt Mattoni section of the Adamello 
intrusive complex (Tiepolo et al. 2011; Fig. 7). In summary, 
we conclude that the high-Al, high-Mg amphibole group 
presumably formed between 400 and 1000 MPa (Fig. 8d), 
which corresponds to a depth range between 16 and 40 km 
(crust-mantle boundary zone beneath Ciomadul). Magmas 

Fig. 8  Thermobarometric and chemometric results for the 56–30  ka 
Ciomadul magma system. a Comparison of amphibole composition 
from the Ciomadul pumices with experimental data of Scaillet and 
Evans (1999), Prouteau and Scaillet (2003), and Costa et  al. (2004) 
for Ti vs. Mg#  (Mg2+/Mg2+ +  Fetot) space. b Comparison of the  Al2O3 
content of the studied Ciomadul amphibole with the composition of 
amphibole crystallized over a range of pressure in the experiments of 
Scaillet and Evans (1999), Prouteau and Scaillet (2003), and Costa 
et  al. (2004). c Chemometric results to constrain the melt composi-
tion in equilibrium with the amphibole compositions using the Hig-
gins et  al. (2022) method. Note the excellent fit with the glass data 
in the pumice. d Summary diagram for the estimated crystallization 

temperatures and pressures (hbHB94: amphibole-plagioclase ther-
mometry by Holland and Blundy 1994; zrL20: zircon thermometry 
by Loucks et al. 2020; tiH08: Zr-in-titanite thermometry by Hayden 
et  al. 2008; hbM16: hornblende barometry by Mutch et  al. 2016; 
hbML22: Médard and LePennec 2022; tiE19: Al-in-titanite barom-
etry by Erdmann et  al. 2019; oxAL85: Fe-Ti oxide thermometry by 
Andersen and Lindsley 1985; hbHi22: amphibole thermometry and 
barometry by Higgins et  al. 2022; hbPu16: amphibole thermometry 
by Putirka 2016; amKr12: amphibole  AlVI barometry by Krawczynski 
et  al. 2012; exp: direct comparison of experimental data) to recon-
struct the plumbing system and processes beneath Ciomadul during 
the youngest (56–30 ka), explosive eruption period
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carrying these amphibole crystals ascended and intruded 
into the upper crustal felsic magma reservoir and remobi-
lized a portion of the felsic crystal mush. Amphibole with 
high-Al and moderate-Mg composition (transitional type) is 
inferred to have crystallized at this stage just prior to erup-
tion from a hybrid magma after mixing between the recharge 
magma and a smaller amount of the residing crystal-rich 
felsic magma. They form always rim of the macro- and 
mesocrysts as well as meso- and microcrysts, which occur 
occasionally with plagioclase. Applying the geobarometer 
of Médard and Le Pennec (2022), a little bit higher pressure 
values (300–400 MPa; Fig. S10) were obtained than for the 
crystal mush amphibole. Although, the results have to be 
accepted with caution, they could fit the environment where 
the magma mixing occurred.

In conclusion, the pressure estimates, although with rela-
tively large uncertainty, indicate a magma reservoir system 
beneath Ciomadul with a prominent lower crustal hot zone 
and a mid-crustal, shallower felsic magma storage zone.

Temperature

Compositional variation of amphibole depends strongly 
on crystallization temperature (Blundy and Holland 1990; 
Holland and Blundy 1994; Bachmann et al. 2002). This is 
primarily recorded by the edenite and, to a lesser amount, 
by the Ti-Tschermak exchange. For the Ciomadul amphibole 
compositions, high regression coefficients of 0.93 and 0.88 
were obtained for correlation between  AlIV and (Na + K)A 
and  AlIV and Ti, respectively, suggesting amphibole crys-
tallization at a range of temperatures. However, determi-
nation of crystallization temperature is not straightforward 
as shown by variable temperature estimates from published 
amphibole thermometers (e.g., Blundy and Holland 1990; 
Holland and Blundy 1994; Anderson et al. 2008; Ridolfi 
et al. 2010; Ridolfi and Renzulli 2012; Molina et al. 2015; 
Putirka 2016; Ridolfi 2021; Higgins et al. 2022; ESM 1). 
The main reason for the variation is that the thermometers 
were calibrated on various sets of experimental data and 
with different regression methods (Higgins et al. 2022). A 
common feature to all amphibole thermometers is that they 
use experimental amphibole compositions that crystallized 
mostly at > 800 °C; therefore, they usually yield temperature 
overestimates for amphiboles formed < 800 °C (e.g., Ridolfi 
et al. 2010; Putirka 2016). However, amphibole-plagioclase 
thermometry of Holland and Blundy (1994) provides reli-
able results between 700 and 900 °C for calc-alkaline mag-
matic systems. An independent test of the reliability of 
the amphibole thermometry is the direct comparison with 
experimental results obtained for dacitic magmas similar to 
those of Ciomadul (e.g., Scaillet and Evans 1999; Prouteau 
and Scaillet 2003; Costa et al. 2004) in Fig. 8a.

Amphibole is often intergrown with plagioclase in the 
studied pumices, therefore amphibole-plagioclase thermom-
etry (Blundy and Holland 1990; Holland and Blundy 1994; 
Anderson et al. 2008) is suitable to estimate the thermal 
condition of the Ciomadul magma reservoir. The thermom-
eter can be applied to both the low-Al, low-Mg amphibole 
and low-An (25–30 mol%) plagioclase pairs as well as to 
the transitional amphibole and higher-An (40–50 mol%) 
plagioclase pairs, which represent the crystal mush and the 
pre-eruptive magma conditions. For the low-Al, low-Mg 
amphibole and low-An plagioclase pairs, both the edenite-
richterite thermometer (which does not require quartz in the 
assemblage) and the edenite-tremolite thermometer (requir-
ing the presence of quartz) were applied, calculating a tem-
perature range between 680 and 760 °C. These estimates are 
in close agreement with the temperature estimates published 
by Kiss et al. (2014) for the 133 ka Ciomadul Mic lava dome 
rocks. Thus, this low-temperature range characterizes the 
shallow crustal felsic crystal mush. A similar temperature 
range (i.e. 700–800 °C) was calculated for amphibole from 
shallow, dacitic crystal-rich mush reservoirs that erupted the 
Fish Canyon Tuff (Bachmann et al. 2002), at Mt St Helens 
(Thornber et  al. 2008), Savo (Smith 2014), Lamington 
(Humphreys et al. 2019) and Methana (Popa et al. 2020), 
among other eruption centers. In contrast, higher tempera-
ture values (typically 850–900 °C) are obtained for the low-
Al, low-Mg amphibole population of Ciomadul pumices 
using the thermometer of Putirka (2016) equation and also 
by the thermometer of Higgins et al. (2022), which we con-
sider as overestimates reflecting their higher temperature 
(> 800 °C) amphibole compositional calibration data set.

The low temperature (< 760 °C) magma storage of crystal 
mush in Ciomadul’s shallow (at 8–12 km depth) plumb-
ing system is corroborated by estimates using the zircon 
and titanite compositions and thermometry. Lukács et al. 
(2021) calculated temperature values of 670–730 °C with an 
uncertainty of ± 25 °C using the Ferry and Watson (2007) 
Ti-in-zircon thermometry at a Ti activity of 0.6 and Si activ-
ity of 1. These estimated temperature values are in agree-
ment with those obtained using Zr-in-titanite thermometry 
(690–720 °C; Hayden et al. 2008) and this suggests crystal-
lization presumably at or near the  H2O-saturated solidus. 
Trace element composition, notably the depletion in Zr in 
the low-Al amphibole from the older lava dome rocks (Kiss 
et al. 2014) indicates zircon fractionation before/during 
low-Al and low-Mg amphibole crystallization. The coeval 
amphibole and zircon crystallization is supported also by 
the wide range of Yb/Dy ratio in zircon. The calculated zir-
con saturation temperatures can be another constrain for the 
zircon crystallization. The Watson and Harrison (1983) and 
Crisp and Berry (2022) methods give similar result between 
750 and 780 °C, which is considered as the maximum tem-
perature for zircon crystallization. This is consistent with the 
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geochemical observation, i.e., zircon crystallization could 
start even before the onset of low-Al amphibole crystalliza-
tion and could continue along with it down to the eutec-
tic temperature. Thus, the upper crustal, highly crystalline 
felsic magma mush beneath Ciomadul before reactivation 
is inferred to have been at a temperature between 670 and 
780 °C, but crystallization occurred mostly below 760 °C 
(Fig. 8d).

Crystallization temperature of the high-Al and high-Mg 
amphibole forming the cores of normally zoned phenocrysts 
can be estimated only using single-amphibole thermometry 
because they lack coexisting plagioclase. All amphibole-
only thermometers (Ridolfi et al. 2010; Ridolfi and Renzulli 
2012; Putirka 2016; Ridolfi 2021; Higgins et al. 2022) give 
temperature values above 880 °C (880–980 °C), suggest-
ing that the amphibole crystallized from less evolved, hot-
ter melt. This is consistent with the geobarometry results 
discussed in the previous section placing the origin of these 
magnesian amphiboles mostly to the lower crustal hot zone. 
The inference is also supported by phase equilibrium experi-
ments on dacitic magmas (Scaillet and Evans 1999; Prouteau 
and Scaillet 2003; Costa et al. 2004), where the composition 
of the high-Mg amphiboles from the Ciomadul pumice over-
laps with experimental amphibole produced between 850 
and 1000 °C (Fig. 8a).

The amphibole crystals in the Ciomadul dacitic pumice 
have variable zoning patterns, but remarkably, they usually 
have euhedral shape and a narrow outer rim. The amphi-
bole rims have similar chemical composition  (Al2O3 = 10–11 
wt%; Fig. 5) both on low- and high-Al cores. The crystal 
cores are therefore inferred to record crystallization at vari-
ous stages and from compositionally different magmas prior 
to the recharge event, whereas the outer rims crystallized 
shortly prior and during eruption from variably mixed and 
equilibrated melts.

Fe-Ti oxides with fast re-equilibration behavior can be 
potentially used to constrain the final physicochemical 
condition in the magma reservoir prior to eruption and 
serve as independent check of the thermometry results for 
amphibole rim compositions. In each sample, we detected 
Ti-magnetite-ilmenite pairs in equilibrium as confirmed by 
the Bacon and Hirschmann (1988) test. Different tempera-
tures were calculated using the Ghiorso and Evans (2008) 
and Andersen and Lindsley (1985) thermometers, respec-
tively. In general, significantly lower temperatures were 
obtained by the Ghiorso and Evans (2008) geothermom-
eter than by the Andersen and Lindsley (1985) method 
(Fig. S11). Average pre-eruptive temperatures, accord-
ing to the calculations of the Ghiorso and Evans (2008) 
thermometer range between 720 and 745 °C, whereas the 
Andersen and Lindsley (1985) method yields calculated 
temperatures between 780 and 820 °C. Such a tempera-
ture difference (average Δ50–90 °C) between the results 

of the two thermometers is not unique. Similar differences 
were observed in the case of Pinatubo (previous thermo-
barometric studies: Pallister et al. 1996; Rutherford and 
Devine 1996), Mt St. Helens (Blundy et al. 2008), or the 
Fish Canyon Tuff (Whitney and Stormer 1985; Johnson 
and Rutherford 1989b) where the Ghiorso and Evans 
(2008) method always provides significantly lower tem-
peratures (ca. Δ50–120 °C) than the Spencer and Lind-
sley (1981) or the Andersen and Lindsley (1985, 1988) 
thermometers. A common feature of all these volcanic 
systems, including Ciomadul, is that they had a relatively 
high oxidation state (ΔNNO > 1; see next section). In 
contrast, no differences in the temperature estimates were 
observed using these two methods in the case of Santorini 
(Cadoux et al. 2014) and the Bishop Tuff (Evans et al. 
2016), which are characterized by comparatively reduced 
redox state (ΔNNO = − 0.9 to 0.5). Thus, it appears that 
the Ghiorso and Evans (2008) method potentially under-
estimates the pre-eruptive temperature of relatively oxi-
dized magmas (cf. Loucks et al. 2018), whereas its results 
are consistent with those of the Andersen and Lindsley 
(1985, 1988) methods in the case of relatively reduced 
(ΔNNO < 1) magmas. The calculated temperature from 
the Ti-magnetite and ilmenite thermometry is compared 
with that calculated for the transitional type amphibole 
 (Al2O3 = 9–11 wt%) and plagioclase (An = 40–45 mol%) 
pairs. For this, we used the edenite–richterite formulation 
(Holland and Blundy 1994; Anderson et al. 2008) because 
quartz is absent from the assemblage, and calculated tem-
peratures between 790 and 830 °C (ESM 2). These calcu-
lated amphibole-plagioclase temperatures perfectly match 
those of the magnetite-ilmenite thermometry using the 
Andersen and Lindsley (1985) method for the Ee5/1–56 
and Ee5/2–32 samples.

The amphibole zoning patterns clearly reflect a change 
in the magmatic conditions just before the eruption, which 
is likely to have caused re-equilibration of Ti-magnetite 
and ilmenite. In the studied pumice samples, both mag-
netite and ilmenite have resorbed margins and the sur-
rounding glass is relatively enriched in Fe and Ti. This 
may record the pre-eruptive increase in temperature and/
or change of the surrounding melt composition. Based 
on this observation, we suspect heating due to recharge 
by hot magma, which carried the magnesian amphibole 
(with inferred crystallization temperature > 900 °C) into 
the shallow, low-temperature (< 760 °C) magma reservoir. 
This magma recharge and mixing may then have ultimately 
initiated the eruptions. Temperatures of 790–830 °C cal-
culated for magnetite-ilmenite pairs and amphibole-plagi-
oclase rims of the hybrid magma are interpreted to reflect 
the temperature state immediately prior to and during the 
eruption.
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Redox condition

The oxidation state of the magma reservoir is most com-
monly constrained by coexisting Ti-magnetite and ilmenite 
mineral pairs (Buddington and Lindsley 1964; Carmichael 
1967; Powell and Powell 1977; Spencer and Lindsley 1981; 
Andersen and Lindsley 1985, 1988; Andersen et al. 1993; 
Ghiorso and Sack 1991; Ghiorso and Evans 2008). More 
recently, magmatic fO2 is also commonly deduced using 
amphibole (Ridolfi et al. 2010; Goltz et al. 2022) and zircon 
(Loucks et al. 2018, 2020) as well as titanomagnetite-melt 
compositions (Arató and Audétat 2017a, b, c). Diffusion of 
main elements (e.g., Fe, Ti, Al, Mg, and Mn) occurs rela-
tively rapidly in Fe-Ti oxides (on the timescale of hours to 
months; Venezky and Rutherford 1999; Morgado et al. 2019; 
Prissel et al. 2020; Hou et al. 2021), particularly in oxidized 
condition (Van Orman and Crispin 2010). Therefore, their 
chemical composition typically reflects the ultimate equilib-
rium condition prior to eruption. In contrast, other, slowly-
equilibrating minerals (zircon, low-Al amphibole) can be 
used to constrain the long-term magma storage oxidation 
state.

In the Ciomadul dacitic pumices, Ti-magnetite and ilmen-
ite have compositions consistent with equilibrium state 
based on the Bacon and Hirschmann (1988) test (Fig. S6). 
Although there are different calibrations (e.g., Andersen and 
Lindsley 1985, 1988; Ghiorso and Evans 2008) to calculate 
the oxygen fugacity, they gave similar results. The average 
calculated ΔNNO values range between + 1.0 and + 1.5 for 
the Ee5/1–56 and Ee5/2–32 units, whereas slightly higher 
values (+ 1.4 to + 1.8) are calculated for the Ee5/1–50 unit 
(Fig. S11). These results suggest relatively oxidized condi-
tions for the Ciomadul magma reservoir just prior to erup-
tion. Arató and Audétat (2017a, b, c) put forward two addi-
tional potential oxybarometers, which can be used in the 
absence of ilmenite. One of them (Arató and Audétat 2017a, 
b) is based on the partitioning of vanadium between magnet-
ite and melt and can be applied within a wide temperature 
range for silicic magmas. The other one (FeTiMM; Arató 
and Audétat 2017c) uses Fe and Ti partitioning between 
magnetite and melt independent of temperature. Compar-
ing the results of these oxybarometers with those obtained 
from the magnetite-ilmenite methods, a fairly good match 
can be observed with the FeTiMM results, although they are 
systematically shifted to lower fO2 values by ca. 0.5 log units 
(ΔNNO values from the FeTiMM method are between + 0.6 
and + 1.2 for the magnetite of the Ee5/1–56 and Ee5/2–32 
units and from + 1.0 to + 1.6 in case of the Ee5/1–50 unit). 
On the contrary, the  Vmgt−melt oxybarometry gives signifi-
cantly higher ΔΝΝΟ values (+ 1.8 – + 2.4 for the Ee5/1–56 
and Ee5/2–32 eruption units). This might be due to the rela-
tively high V content of the groundmass glass. Vanadium 
in magnetite has slower diffusion coefficient, and therefore 

does not re-equilibrate as the major elements (Sievwright 
et al. 2020). The glassy groundmass of the pumices has a 
V concentration of 10–16 ppm, possibly due to the magma 
recharge, whereas the V content of the highly evolved melt 
in the crystal mush reservoir beneath Ciomadul is fairly low, 
around 5 ppm, as determined for intercrystalline glass in fel-
sic crystal clots of the older lava dome rocks. The  Vmgt−melt 
oxybarometry gives a perfect fit (ΔΝΝΟ =  + 1.0– + 1.5 for 
the Ee5/1–56 and Ee5/2–32 units) with that of the other 
techniques using the lower V content of the evolved glass 
(i.e., ~ 5 ppm), giving rise to a possible explanation that mag-
netite crystallized in the evolved crystal mush and re-equil-
ibrated during magma recharge. Because of the slow diffu-
sion of V, the  Vmgt−melt oxybarometry can be used to infer 
the pre-eruption low-temperature magma storage oxidation 
state with the V content of the evolved melt, whereas the 
other techniques based on the Fe–Ti distribution are more 
sensitive to the new equilibrium condition.

Following others, Loucks et al. (2018) suggested that the 
trace element composition of zircon also records the redox 
state of the magma reservoir. They proposed that zircon/
melt partition coefficients of Ce and U change reversely in 
response to the variation of magma redox state and therefore, 
that the U/Pr and the  Ce4+/Ce3+ ratios provide information 
about fO2 for low temperature mushy magma reservoirs. The 
Ciomadul zircon grains show high log U/Pr and log  Ce4+/
Ce3+ values (3.9–4.9 and 2.2–3.7, respectively; calculated as 
proposed by Loucks et al. 2018; Fig. S12, ESM 2) suggest-
ing oxidizing condition during zircon crystallization at low 
(680 to 790 °C) temperature. The calculated oxygen fugacity 
values (Loucks et al. 2020) are mostly between ∆NNO + 0.5 
and + 1.5 at temperatures (680–740 °C) calculated using the 
Ferry and Watson (2007) Ti-in-zircon-thermometry. These 
oxygen fugacity values are slightly lower than those obtained 
from Fe-Ti-oxides and amphibole at slightly higher pre-erup-
tive temperature (Fig. 9). The oxidized state of the Ciomadul 
magma reservoir is reflected also by the trace element con-
tent of accessory minerals. Both zircon and titanite show 
only small negative Eu-anomaly (Eu/Eu* = 0.60–0.85 and 
0.75–0.90, respectively) compared to those found in other 
silicic magma systems such as Kneeling Nun Tuff (Szyman-
owski et al. 2017) and Highland Range (Colombini et al. 
2011) even though plagioclase crystallization was ubiquitous 
in the shallow magmatic system.

Amphibole composition is also sensitive to magmatic 
redox state (Humphreys et al. 2006). Ridolfi et al. (2010), 
Ridolfi and Renzulli (2012), and Ridolfi (2021) proposed 
empirical equations to calculate oxygen fugacity relative to 
the NNO buffer. These equations calculate, however, dif-
ferent values for our amphibole composition. Tests using 
experimental amphibole compositions suggest that the 
Ridolfi et al. (2010) method yields the most reasonable esti-
mates to within ± 0.5 log units (Erdmann et al. 2014). Using 
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this oxybarometer, along with the temperature calculated 
from the Holland and Blundy (1994) thermometer the tran-
sitional amphibole group (mostly rim and microphenocryst 

core compositions that we interpret as pre-eruption amphi-
bole) gives ΔNNO + 1.0 to + 1.5, which is consistent with 
the results of the Fe-Ti oxide oxythermobarometer (Fig. 9). 
Although we could not calculate oxidation state for the 
magnesian amphibole cores, which can represent the mafic 
recharge magma, their composition is similar to the high-
Mg amphiboles of Shiveluch (crystallized at ~ ΔNNO + 2; 
Goltz et al. 2022), suggesting a high oxygen fugacity for the 
primitive melts.

In summary, we suggest that the oxygen fugacity and its 
variations in the Ciomadul magma plumbing system are 
robustly constrained by the different methods employed. We 
infer an oxidized state of ΔNNO + 1.0 to + 1.5 for the pre-
eruptive magma, which concurs with estimates for other arc 
volcanic systems (Fish Canyon Tuff, Whitney and Stormer 
1985; Johnson and Rutherford 1989b; Shiveluch, Hum-
phreys et al. 2006; Mt St. Helens, Pallister et al. 2008; Lon-
gavi, Rodríguez et al. 2007; Mt Shasta, Grove et al. 2005). 
Zircon and amphibole oxybarometry results might indicate 
a slightly less oxidized state for the shallow crustal, felsic 
magma reservoir, but a more oxidized state of the magnesian 
amphibole-bearing recharge magmas. An increase in oxida-
tion state is inferred from the magma mush to the reactivated 
pre-eruptive magma reservoir following magma mixing.

Melt compositions and H2O contents

Calcic amphibole can occur in wide range of magmas and 
its composition is sensitive to melt composition and vola-
tile content (e.g., Ridolfi et al. 2010; Ridolfi and Renzulli 
2012; Putirka 2016; Zhang et al. 2017; Higgins et al. 2022). 
Ridolfi and Renzulli (2012) provided a set of equations to 
calculate equilibrium melt major element contents from 
amphibole compositional data. Based on tests using experi-
mental amphibole and melt compositions, Erdmann et al. 
(2014) demonstrated the reliability of this calculation, par-
ticularly for melt  SiO2 content with an uncertainty of ± 4 
wt% for  SiO2. Zhang et al. (2017) extended the experimental 
calibration data set and used multiple regression analyses to 
find the best fit between the compositional relationships of 
amphibole and melt composition. More recently, Higgins 
et al. (2022) applied nonlinear regression in a machine learn-
ing approach to determine melt composition in equilibrium 
with amphibole. This new calibration resulted in better con-
straints for melts with < 65 wt%  SiO2, where the Ridolfi and 
Renzulli (2012) equation yields slight overestimates. In the 
case of the Ciomadul pumice samples, a good fit between the 
calculated equilibrium melt and the glass data is found using 
the Higgins et al. (2022) method, particularly for  SiO2 and 
 Al2O3 (Fig. 8c). However, the glass data for other elements 
show systematically slightly lower concentrations than the 
calculated compositions. The calculated melt compositions 
are in the range of 60 to 75 wt%  SiO2, showing an almost 

Fig. 9  Temperature (°C) vs. oxygen fugacity  (logfO2) plot for the 
three eruption units of Ciomadul a–c calculated by the following 
oxy- and thermobarometers: Andersen and Lindsley (1985) for Fe-Ti 
oxides (abbreviation: oxAL85); the combination of the Holland and 
Blundy (1994) thermometry and the Ridolfi et al. (2010) amphibole 
oxybarometry (abbreviation: hbHB94-R10), where amphiboles rep-
resenting the crystal mush (cm) and pre-eruption (pe) conditions, 
respectively, are shown with different symbols; the combination of 
Ti-in-thermometry of Ferry and Watson (2007) and oxybarometry of 
Loucks et al. (2020) for zircon (abbreviation: zrFW07L20)
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continuous trend, whereas the measured glass compositions 
are only between 70 and 77 wt%  SiO2. This suggests that the 
inferred melt compositions provide additional insight into 
the magma evolution, which is not recorded by the glass 
data, neither the melt inclusion nor the matrix data set as 
pointed out also by Higgins et al. (2022) for the St. Kitts 
volcanics.

Our chemometry calculations confirm that the low-Al, 
low-Mg amphibole population crystallized from a highly 
evolved silicic melt  (SiO2 = 74–77 wt%) consistent with a 
low-temperature, near solidus crystal mush magmatic envi-
ronment. The high-Mg amphibole group crystallized from 
less evolved melt  (SiO2 = 56–66 wt%) at higher temperature 
and greater depth as shown by the thermobarometric results. 
The transitional amphibole compositions of the phenocryst 
rims record final crystallization immediately prior to erup-
tion from a moderately evolved silicic melt with an  SiO2 
content of 68–70 wt%, which is the hybrid melt after reju-
venation and is represented by the groundmass glass of the 
Ee5/1–56 and Ee5/2–32 pumices, whereas the hybrid melt of 
the Ee5/1–50 pumice was more silicic  (SiO2 = 73–75 wt%; 
Fig. 8c).

The Ciomadul pumice samples have amphibole and bio-
tite in addition to plagioclase macrocrysts. This implies 
that the melts contained a significant amount of  H2O, which 
can be estimated applying the plagioclase-melt hygrometer 
based on the latest calibration of Waters and Lange (2015). 
We used pressure values of 200–400 MPa and the average 
temperature calculated by amphibole-plagioclase thermom-
etry (790–830 °C) in addition to plagioclase and inferred 
melt compositions as input parameters. The considered 
pressure variation does not significantly influence the cal-
culated melt  H2O content (by < 0.3 wt% at 200–800 MPa 
range), whereas temperature has a significant control. A 
30 °C change in the estimated temperature yields ± 1 wt% 
variation in the calculated melt  H2O content. Therefore, 
precise constraints on the thermal condition of the magma 
reservoir are very important and we can expect an uncer-
tainty from the temperature determination. Plagioclase of 
the Ee5/1–50 unit are more sodic than those found in pumice 
from the other two eruption units, and they are associated 
with glasses showing a more evolved compositional charac-
ter. Using an average calculated crystallization temperature 
of 730 °C, a fairly high melt  H2O content (6.9–7.1 wt%) is 
calculated. However, the result has to be considered with 
caution, since the inferred crystallization temperature is at 
the lower limit of the method (750 °C; Waters and Lange 
2015), therefore, the uncertainty is much larger in this 
case. The plagioclase rim, which has fairly homogeneous 
composition (An = 40–50 mol%) in the Ee5/1–56 and the 
Ee5/2–32 units and the associated groundmass glass com-
positions could represent the pre-eruption magma condition. 
A temperature range of 790–830 °C was calculated from 

amphibole-plagioclase and magnetite-ilmenite thermom-
eters. For an average temperature of 810 °C, the calculated 
melt  H2O content is between 5.4 and 5.9 wt%. Melt inclu-
sions in amphibole and plagioclase show a wide range of 
volatile contents calculated by difference method (Devine 
et al. 1995; from 1 to 5 wt%), whereas for the groundmass 
glass has 4.0–6.5 wt%  H2O in the Ee5/1–50 pumice and from 
0.5 to 6 wt%  H2O in the Ee5/1–56 and Ee5/2–32 pumice. 
This large range of estimated volatile (presumably mostly 
 H2O) content could record partial syn-eruptive degassing. 
Nevertheless, the upper values (5–6 wt%) are in agreement 
with the plagioclase-melt hygrometer results, suggesting a 
hydrous character of the pre-eruption Ciomadul magma. 
Rasmussen et al. (2022) demonstrated that magmatic water 
content controlled the pre-eruptive magma storage depth 
rather than neutral buoyancy. The presumed  H2O content 
of 5–6 wt% in the melt of the Ciomadul magma is slightly 
higher than found in most of the arc volcanoes compiled 
by Rasmussen et al. (2022). This infers a magma stalling 
depth between 8 and 12 km (based on Fig. 1 in Rasmussen 
et al. 2022), what fits well our calculated pressure values as 
well as the geophysical anomaly detected beneath Ciomadul 
(Popa et al. 2012; Harangi et al. 2015b).

The Ciomadul pumice contains high-Mg amphibole 
with high Mg#  (Mg2+/(Mg2+  +  Fetot) > 0.82), which are 
rarely reported from volcanic eruption products worldwide. 
Grove et al. (2003) and Krawczynski et al. (2012) pointed 
out that such amphibole can crystallize from ultrahydrous 
magma  (H2Omelt = 10–15 wt%) as shown by their experi-
ments using Mt Shasta magnesian andesite. More recently, 
Goltz et al. (2020) proposed that magmas erupted at Shive-
luch were recharged by extremely  H2O-rich mafic magma 
 (H2Omelt = 10–14 wt%). In their studied mafic enclaves, 
amphibole with Mg# of up to 0.82 occur associated with 
olivine.  H2O-saturated experiments (Grove et  al. 2003; 
Krawczynski et  al. 2012) carried out between 200 and 
800 MPa crystallize amphibole with a maximum Mg# of 
0.82 as a near-liquidus phase. In the studied Ciomadul pum-
ice, amphibole have Mg# often above 0.82, and this implies 
high dissolved melt  H2O content, comparable with that pro-
posed for the Mt Shasta as well as the Shiveluch high-Mg 
andesitic to dacitic magmas.

Pre‑eruptive magma conditions and recharge 
magma characteristics

Ciomadul is a typical long-dormant PAMS volcano, where 
a melt-bearing magma body is inferred to exist within the 
upper crust (Popa et al. 2012; Szakács and Seghedi 2013; 
Harangi et al. 2015b; Laumonier et al. 2019; Lukács et al. 
2021). A careful evaluation of the textural and compositional 
characteristics of the mineral assemblages and application 
of various thermometers, barometers, oxybarometers, and 
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chemometers enable us to reconstruct the magma evolution 
and to constrain the intensive parameters at various stages 
of the magma condition.

During the youngest eruption episode (Eruptive epoch 5, 
i.e., Ee5; Molnár et al. 2019) of Ciomadul, a magma reser-
voir system is revealed with an upper crustal, felsic crystal 
mush body (at ~ 200–300 MPa, i.e., 8–12 km depth; Fig. 8d), 
underlain by accumulation storage zone of less evolved mag-
mas at 400–1000 MPa (i.e., 16–40 km depth) as inferred 
also by Laumonier et al. (2019). The prolonged existence 
of felsic, near-solidus crystal mush body at the upper crust 
is inferred from zircon U-Th dates (Harangi et al. 2015a; 
Lukács et al. 2021) and from the presence of low-Al and 
low-Mg amphibole, sodic plagioclase, biotite, zircon and 
titanite in the erupted volcanic material. Such a long-lived, 
high-crystallinity hydrous magma body with similar mineral 
assemblage is common beneath andesitic to dacitic volca-
noes (e.g., Fish Canyon Tuff, Bachmann et al. 2002; Mt St 
Helens, Thornber et al. 2008; Lamington, Humphreys et al. 
2019; Savo, Smith 2014; Methana, Popa et al. 2020; Fig. 7). 
This magma reservoir beneath Ciomadul contains relatively 
cold (680–750 °C; constrained by zircon, titanite and amphi-
bole-plagioclase thermometry) and slightly oxidized (+ 0.5 
– + 1.5 ΔNNO, calculated from zircon and amphibole) 
crystal mush developed close to the wet solidus and this is 
consistent with the calculated present geothermic gradient 
(Rădulescu et al. 1981; Demetrescu and Andreescu 1994) 
and thermal modelling results (Laumonier et al. 2019). The 
interstitial melt was evolved, highly silicic, with an  SiO2 
content of 70–77 wt% (as shown by the calculated equilib-
rium melt from low-Al amphibole and glass data; Fig. 8). In 
the amphibole population of the Ee5/1–56 and the Ee5/2–32 
pumice, the high-Al, high-Mg and the transitional amphibole 
types dominate, which represent the recharge magma and 
the post-recharge overgrowth and microphenocrysts, respec-
tively. Only minor amount of crystal mush-derived low-Al, 
low-Mg amphibole is present in the samples, and these 
crystals often show resorption, involving vermicular glass 
embayments (Fig. 4a, d, e, f, h). The plagioclase macrocrysts 
with spongy cellular texture (Fig. 2b, c) can also derive from 
the felsic crystal mush along with zircon and titanite. The 
strong resorption of these crystal mush-derived phases was 
due to the mixing followed by the recharge of a hot mafic 
to intermediate magma. Based on the relative amount of 
crystal types with different origin in the pumice samples, the 
low temperature crystal mush reservoir was mobilized to a 
lesser extent compared to the former 160–90 ka lava dome 
building stage. In contrast, the Ee5/1–50 pumices contain 
larger contributions from the felsic crystal mush. Their low-
Al and low-Mg amphibole and An-poor plagioclase show 
large size, and they moreover occur in felsic crystal clots. 
Noteworthy, they do not show strong resorption and have 
comparable chemical compositions as those found in the 

older lava dome rocks (Fig. 7; Fig. S3; Kiss et al. 2014). In 
that case, the recharge magma was not as hot (> 900 °C) as 
in the other two explosive eruption events.

The high-Al and high-Mg amphibole population which 
represents the recharge magma in the studied Ee5/1–56 and 
Ee5/2–32 pumices is compositionally distinct (have lower 
 AlIV at the same Mg#) from the so-called pargasite group of 
the older lava dome rocks (Fig. 7; Kiss et al. 2014). Note-
worthy, the magnesian amphiboles have Mg# > 0.82 (Figs. 7, 
8a), which are even higher than those detected for amphibole 
of Mt Shasta (Grove et al. 2003, 2005), Shiveluch (Goltz 
et al. 2020; Gorbach et al. 2020) and Philippines and Baja 
California (Ribeiro et al. 2016) andesites. They are akin to 
the experimentally produced amphibole crystallized from 
ultrahydrous  (H2O > 10 wt%) magmas (Krawczynski et al. 
2012). The Mg# of amphibole is controlled by the Fe/Mg 
ratio of the parental melt (Grove et al. 2003; Alonso-Perez 
et al. 2009) and Ribeiro et al. (2016, 2017) formulated an 
empirical equation for this relationship. Applying this equa-
tion, the high-Mg amphibole of Ciomadul may have crystal-
lized from water-saturated primitive mantle melt, similarly 
to the amphiboles found in adakites (Hidalgo and Rooney 
2010; Rooney et al. 2011; Ribeiro et al. 2016). Remark-
ably, this type of amphibole does not exist in the Ee5/1–50 
pumice. Instead, a unique low-Al and high-Mg amphibole 
(Figs. 7, 8a) constitutes the core of the phenocrysts. Perform-
ing a thorough comparison with amphibole compositional 
data worldwide (GEOROC database, DIGIS Team 2022), 
no comparable amphibole composition in calc-alkaline 
volcanic rocks was found (Fig. 7). Instead, such amphibole 
occurs mostly in subarc metasomatized peridotites, such 
as in Avacha, Kamchatka (Ishimaru and Arai 2008; Ionov 
2010; Benard et al. 2017; Siegrist et al. 2018) and Honshu 
arc, Japan (Endo et al. 2015). The only volcanic rocks that 
contain similar amphibole are adakites from Baja Califor-
nia (Ribeiro et al. 2016). Textural features of this type of 
amphibole (e.g., slight oscillatory zoning, continuous zon-
ing boundary; Fig. 4f) in the Ciomadul pumice suggest their 
magmatic origin. The high  Cr2O3 of this amphibole type can 
be explained by near-liquidus crystallization from a primary 
or near-primary hydrous melt from metasomatized, refrac-
tory peridotite.

The condition of the magmatic system just prior to erup-
tion is constrained by the amphibole rim and microphe-
nocryst population having a typical transitional composi-
tion (Fig. 5a), the relatively homogeneous plagioclase rim 
composition and the Ti-magnetite-ilmenite pairs because 
of their rapid equilibration. The crystal rims of amphibole 
in the studied pumices are 10–40 μm in width and consid-
ering various growth rate values (Zhang et al. 2019), they 
were formed within weeks to months before the explosive 
eruption. Noteworthy, the amphibole macrocryts do not 
have decompression-driven reaction rim, which is in turn 
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ubiquitous in the older lava dome rocks (Kiss et al. 2014). 
This, along with the relatively small amounts of micro-
lites (≤ 13 vol%) suggests fast magma ascent. Line profiles 
across the Fe-Ti oxides indicate homogeneous composition 
(ESM 2), suggesting that they underwent a complete re-
equilibration with the surrounding melt prior to eruption 
and it was preserved due to the rapid magma ascent. Fe-Ti 
oxide oxybarometry and thermometry imply that the magma 
was relatively oxidized at an average pre-eruptive tempera-
ture of 780–820 °C (Fig. 9). This estimate is confirmed by 
amphibole-plagioclase equilibrium pairs with the calculated 
average crystallization temperatures of 790–830 °C. Heating 
of the resident crystal mush by ~ 50–100 °C prior to eruption 
is explained by mixing with hot (> 900 °C) recharge magma, 
which transported magnesian amphibole crystal cargo, but 
no or minor plagioclase. Some portion of the felsic crystal 
mush incorporated into the recharge magma as shown by the 
reversely zoned amphibole crystals (Figs. 2e, 4a, h) and also 
by the positive correlation between An and FeO (Fig. 3) in 
the plagioclase composition (Ruprecht and Wörner 2007), 
particularly in the Ee5/1–56 and Ee5/2–32 units. However, 
these features cannot be seen in the Ee5/1–50 pumice, where 
plagioclase composition is restricted (20–35 mol% An; 
Fig. 3). We hypothesize that this can be due to the lower 
temperature of the recharge magma and the rapid reactiva-
tion process as shown by the very thin (< 20 μm) rim on the 
magnesian amphibole macrocrysts (Fig. 4f). In this case, 
only the Fe-Ti oxides indicate the heating effect along with 
an increase in the oxidation state.

Reasons of dominantly explosive eruptions

The eruption style strongly determines the associated vol-
canic hazard; therefore, it is crucial to understand better the 
controlling factors (Cassidy et al. 2018; Popa et al. 2021a, b). 
Whether a volcano erupts effusively or explosively strongly 
depends on conduit processes, i.e., whether gases can escape 
or remain trapped in the ascending magma (Gonnermann 
and Manga 2007; Wadsworth et al. 2020). Popa et al. (2021a, 
b) showed that crystallinity and the amount of dissolved  H2O 
in the melt have a major control, while Mangler et al. (2022) 
pointed out that the priming period, i.e., the timescale of 
recharge events prior to eruption may affect the style of erup-
tion (e.g., in the case of Popocatépetl). The volcanic history 
of Ciomadul (YCEP stage; Molnár et al 2019) is subdivided 
into a lava dome building phase from 160 to 90 ka (Fig. 10a) 
and, following ca. 40 ka of quiescence, a dominantly explo-
sive eruption phase from 56 to 30 ka (Fig. 10b). Textural and 
compositional features of the main mineral phases, particu-
larly the amphibole imply that hot magma recharge triggered 
the eruptions, and a long-lived felsic crystal mush was vari-
ously involved in the reactivation processes.

The main differences between the effusive and explo-
sive events of Ciomadul are the crystallinity of the erupted 
magma, the involvement of the felsic crystal mush and the 
nature of the recharge magma. In the case of the explosive 
eruptions, particularly in case of the Ee5/1–56 and the 
Ee5/2–32 phases, the erupted magma contained much lower 
proportions of crystals (< 40 vol% on vesicle-free basis), 
fewer antecrysts from the crystal mush (< 5 vol%) and the 
recharge magma was highly hydrous. Subtle differences 
can be recognized also within the pumices from the three 
studied eruption units, most notable is the extent of crystal 
mush involvement in the recharge magmas. After a 40 ka 
quiescence, the volcanic activity of Ciomadul reawakened 
by a massive explosive eruption series at 56 ka. At 50 ka, a 
presumably sub-Plinian explosive eruption resulted in thick 
pumice tephra, now exposed at Tuşnad. This event was trig-
gered by a distinct recharge magma as shown by the strongly 
different amphibole composition (Fig. 5a) and involved more 
crystal mush material. The products of this eruption event 
were more silicic and only very narrow crystal rim growth 
are observed. This indicates that there was less time for 
hybridization and the eruption happened faster, than in the 
case of the 56 ka and 32 ka eruptions. Remarkably, during 
one of the latest explosive eruption phase at 32 ka, the pum-
ices contained amphibole with strikingly similar composi-
tional fingerprint as those in the 56 ka pumices, implying 
the return of a similar recharge magma as it was at 56 ka.

Each recharge magma was strongly hydrous from which 
near-liquidus, high-Mg amphibole crystallized. In gen-
eral, such high-Mg amphibole occurs mostly in magne-
sian andesites and adakites (e.g., Mt. Shasta, Grove et al. 
2003; Baja California, Ribeiro et al. 2016). Indeed, trace 
element composition of Ciomadul bulk rocks is consistent 
with adakitic features (Seghedi et al. 2004, 2023; Vinkler 
et al. 2007; Molnár et al. 2019). Noteworthy, these recharge 
magmas are different from those that initiated the older lava 
dome-forming effusive eruption events (Kiss et al. 2014). 
The strongly hydrous character of the magmas could lead to 
significant decrease of magma density and caused vesicula-
tion (Grove et al. 2005), both contributing to the rapid ascent 
and to the explosive eruption style. The hydrous magmas 
interacted with the upper crustal felsic crystal mush to dif-
ferent degrees. In case of the 56 ka and 32 ka eruptions, the 
erupted magma was dominated by the recharge magma and 
only limited interaction occurred with the crystal mush, in a 
similar way as postulated by Popa et al. (2020) for the explo-
sive events at Methana, Greece. These magma properties 
along with low crystallinity (< 40 vol% crystals on vesicle-
free basis) favored rapid magma ascent and the explosive 
style eruption as predicted from the conditions determined 
by Popa et al. (2021a, b).

The unique magnesian amphibole compositions suggest 
that ultrahydrous primitive mantle-derived magmas could 
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play a major role in the 56–30 ka, mostly explosive volcan-
ism of Ciomadul. In fact, such strongly hydrous magmas 
could have led to the transition from the mostly effusive to 
mostly explosive eruptions of the volcano. They contributed 
to keep the pre-eruption dissolved  H2O content of the melt 
at relatively high value (around 5.5 wt%) putting this condi-
tion at the upper limit of dominantly explosive eruptions 
(Popa et al. 2021a, b) at this eruptive epoch. Occurrence of 
strongly hydrous primitive magmas at this stage of the vol-
canism requires an increase of  H2O flux in the mantle dur-
ing this period that remains to be further explored, although 

such specific condition is not unique as shown in case of 
the origin of the adakitic dacites at Nevado de Longaví 
volcano, Andes, Chile (Rodríguez et al. 2007). A possible 
explanation for the increased magmatic  H2O content/flux 
beneath Ciomadul could be the intensification of dehydra-
tion reactions in the Vrancea slab either reaching a depth 
of 100 km (Fig. 10), where various hydrous minerals break 
down during slab metamorphism and/or due to toroidal man-
tle flow around the narrow descending oceanic lithosphere 
body (Mason et al. 1998; Seghedi et al. 2011; Ferrand and 
Manea 2021). This could have induced even slab melting 

Fig. 10  Model for the magma reservoir architecture beneath Cio-
madul constructed for the a dominantly effusive volcanic activities 
between 160 and 90 ka (following Kiss et al. 2014) and b dominantly 

explosive volcanic activity from 56 to 30  ka based on the physico-
chemical constraints obtained by this study
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and hydrous melt-peridotite reaction in the mantle wedge 
leading to primary magmas with adakitic compositional 
signature (Seghedi et al. 2023). Ferrand and Manea (2021) 
proposed that the deep earthquakes, which occur relatively 
frequently beneath the Vrancea zone could be induced by 
dehydration within an oceanic slab. If this model works, an 
important issue to be resolved is the timescales of dehydra-
tion intensification, sub-arc mantle melting, magma ascent 
and eruption triggering.

The outlined pre-eruption magma evolution model 
involving distinct recharge magma compared to the former 
160–90 ka volcanism implies that each explosive eruption 
event was preceded by accumulation of mantle-derived 
magmas at the upper mantle-lower crustal region followed 
by ascent into the upper crustal reservoir. This would cer-
tainly cause seismic swarms from upper mantle to lower 
crustal hypocentres. Interaction within the upper crustal 
crystal mush reservoir, reheating and mixing of magmas 
can cause a change in the hypocentres, while volatile trans-
fer and magma mixing result in overpressure and surface 
deformation. These sets of events are expected to commence 
only weeks to months prior to eruption, but they may remain 
undetected for non-monitored volcanic centers. Immediately 
prior to eruption, seismic events, degassing and surface 
deformation will increase significantly in magnitude and 
are likely detectable without specific instrumentation, but 
such warning may come too late. The sudden, unanticipated 
eruption of Chaitén in 2008 (Castro and Dingwell 2009) has 
provided a case example for non-monitored, long-dormant 
volcanoes, where warning signs at the surface appeared only 
hours before the explosive eruption.

Conclusions

(1) To reveal physicochemical conditions in subvolcanic 
magma reservoirs, a careful evaluation of applicable 
thermometers, barometers, oxybarometers, chemome-
ters and hygrometers is necessary in addition to a com-
parison with relevant experimental data. While condi-
tions for shallow, low temperature (< 800 °C), oxidized 
magma storage can be well constrained, conditions of 
the deep magma storage remain difficult to reconstruct.

(2) The crystal cargo of the studied Ciomadul dacitic pum-
ices allows us to characterize the magma storage con-
ditions for the pre-recharge, long-lived crystal mush 
body (low-Al amphibole, low-Ca plagioclase, zircon, 
titanite), the recharge magma (high-Mg amphibole) and 
also the post-recharge magma condition (Ti-magnetite, 
ilmenite, amphibole and plagioclase rims) just prior to 
eruption.

(3) The magma reservoir system beneath Ciomadul during 
the youngest, 56–30 ka eruption stage can be subdi-

vided into an upper crustal felsic crystal mush body 
at 8–12 km depth with a slightly oxidized (0.5–1.6 
∆NNO), low-temperature (680–750 °C) highly crys-
talline magma and a deep magma storage with less 
evolved, hot (> 850 °C) magmas that partially crystal-
lized at 16–40 km depth, at the crust–mantle boundary 
zone.

(4) The dominantly explosive volcanism following the 
entirely effusive eruptions in the previous volcanic 
epoch of Ciomadul can be explained by the ascent of 
distinct batches of highly hydrous recharge magmas. 
They contained high-Mg amphibole, which are inferred 
to have crystallized at near-liquidus conditions from 
ultrahydrous  (H2O > 10 wt%) magma. Such  H2O-rich 
primitive magma could have been generated due to the 
increase  H2O flux, probably as a result of intensifica-
tion of dehydration reactions in the descending oce-
anic slab beneath the nearby Vrancea area. As a result, 
primary magmas with adakitic compositional features 
could have been generated by slab melting and/or 
hydrous melt-peridotite reaction in the mantle wedge.

(5) A detailed mineral-scale characterization of the com-
plex magma storage system at various stages can help 
to better understand the behaviour of long-dormant vol-
canoes. In addition to the crystallinity and melt  H2O 
content of the pre-eruption magma, the nature of the 
recharge magma also plays an important role in the 
eruption style. These results can help in eruption fore-
casting and raise awareness of hazards of long-dormant 
volcanoes, where rapid rejuvenation can lead to vol-
canic eruption even after long quiescence.
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