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Abstract
The Acoculco Caldera Complex (ACC), located in eastern Mexico, began its activity during the Pleistocene ~ 2.7 Ma. One 
of the most relevant and largest rhyolitic eruption in the complex, the Piedras Encimadas Ignimbrite (PEI), occurred during 
the late post-caldera phase at ~ 1.2 Ma. This ignimbrite is unique with respect to the other caldera products and other contem-
poraneous ignimbrites in the Trans-Mexican Volcanic Belt (TMVB) because of its ultra-high crystallinity and the absence 
of pumice fragments. The PEI is made almost entirely of crystals where the main constituents are k-feldspars and silica 
polymorphs that range from ≤ 5 µm to tens of centimeters in size. XRD on bulk rock, geochemical modeling, FTIR, Raman, 
and EPMA analyses were carried out in all mineral phases to assess the origin and the causes of high crystallinity within the 
PEI. We interpret the high crystallinity on the basis of magmatic crystallization of a magma body that was remobilized and 
altered by post-depositional hydrothermal alteration processes. We suggest that ACC rhyolites are geochemically influenced 
by at least one crystal mush established during the Pleistocene. We suggest that the PEI could be the result of an erupted 
crystal mush (melt + crystals), or a cumulate, or an ancient and crystallized reservoir generated after the first ACC collapse 
due to intrusion or underplating of mafic hot magmas. Extensional episodes within the ACC facilitated the ascent of mafic 
magmas. This interaction increased the liquid fraction of the mush through partial melting/crystal dissolution, generating a 
drop in density and viscosity in the mush, thus triggering eruption. The PEI provides evidences for an association between 
the geochemically-diverse ACC rhyolites with the complex interaction between mafic transitional alkaline magmas and a 
crustal mush system, promoted by continuous changes in the stress field during the Pleistocene.

Keywords Crystal-Mush · Acoculco Caldera Complex · Piedras Encimadas Ignimbrite · Trydimite · Cristobalite · 
Hydrothermal Alteration · Geothermal Exploration

Introduction

The origin and evolution of rhyolitic magmas have been 
studied for decades (e.g. Whitney et al. 1989; Anderson 
et al. 2000; Bindeman and Valley 2003; Hildreth and Wil-
son 2007; Bindeman 2008; Scaillet et al. 2016; Jolles and 
Lange 2021; Clemens et al. 2022; Troch et al. 2022). Some 
of the largest (VEI > 6) ignimbrites are typically associ-
ated with rhyolitic magmas, but generation of its evolved 
magmas (regardless of the process, fractional crystalli-
zation or partial melting) involves segregation of melt-
rich, crystal-poor magma from a crystal-rich source—the 
so-called crystal mush (Bachmann and Bergantz 2003, 
2008a, b; Bachmann and Bergantz 2004a; Cashman 
et al. 2017). However, the depths of magma production, 

Communicated by Gordon Moore.

 * Mario E. Boijseauneau-López 
 cswasa@gmail.com

1 Posgrado en Ciencias de la Tierra, Escuela Nacional 
de Estudios Superiores, UNAM, Campus Morelia, 
58190 Morelia Michoacán, México

2 Institute of Geophysics, UNAM, Campus Morelia, IGUM, 
58190 Morelia Michoacán, Mexico

3 National Museum of Natural History, Smithsonian 
Institution, Washington D.C., USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00410-023-02043-7&domain=pdf
http://orcid.org/0000-0003-2800-0814
https://orcid.org/0000-0001-5204-7044


 Contributions to Mineralogy and Petrology (2023) 178:63

1 3

63 Page 2 of 24

extraction, final storage, and trigger mechanism of these 
eruptions remain controversial (Bachmann et al. 2002; 
Gottsmann et al. 2009; Malfait et al. 2014). It is widely 
accepted that the segregation of melt-rich forms aphyric 
rhyolitic magmas, crystal-poor magma from a crystal-rich 
source (Gualda et al. 2019). However, previous studies 
rarely have investigated if crystal-rich rhyolitic ignimbrites 
could be associated with the remobilization and reactiva-
tion of melt-dominant bodies that had cooled and crystal-
lized close to the point of critical crystallinity or rheo-
logical lock-up at >  ~ 50 vol.% of crystals (Marsh 1981; 
Brophy 1991; Vigneresse et al. 1996; Huber et al. 2010; 
Petford 2003); that is, the mobilization of a crystal mush 
including melt + crystals. Only, crystal-rich monotonous 
intermediates and aphyric rhyolitic ignimbrites have been 
stated as result of the activity of a crystal mushes (e.g., 
Hildreth 1981; Bachmann and Bergantz 2004a and 2008b; 
Hildreth and Wilson 2007; Blundy and Cashman 2008; 
Cashman and Giordano 2014; Zhang et al. 2018; Giordano 
and Caricchi 2022). Even more difficult to interpret are 
the cases of volcanic complexes with different ignimbrite 
types (crystal rich and crystal poor) and a series of rhy-
olitic lavas with no clear relationship to a crystal mush 
nor to a classical ignimbrite generation model. Crystal-
rich, pumice-free ignimbrites with > 70 vol% crystals are 
sparsely described in the literature. This type of rhyolitic 
ignimbrites already has been interpreted as part of cal-
dera eruptions related with a crystal mush; however, their 
origins are not fully understood (e.g., Sohn et al. 2009; 
Zhang et al. 2018).

The Acoculco Caldera Complex (ACC) in eastern Mex-
ico (Fig. 1a) is an excellent case study because it hosts 
a great variety of rhyolites, comprising a syn-collapse 
ignimbrite, a series of annular rhyolitic domes (located 
in the rim of the caldera), and two post-collapse ignim-
brites related to large eruptions triggered by local tecton-
ics (Avellán et al. 2019, 2020). Furthermore, the ACC 
has pervasive hydrothermal alteration features distributed 
inside and outside the caldera, fumaroles, and hot spring 
waters. It is well documented how hydrothermalism gener-
ates alteration of the rocks in which the fluid circulation 
modifies the natural paragenesis and crystallinity through 
mineral chemical and structural modifications, as well as 
the precipitation of new mineral phases or the replacement 
of others (i.e., Schwartz 1959; Browne 1978; Giggen-
bach 1984; Kimball 1990; Mathieu 2018). The Piedras 
Encimadas Ignimbrite (PEI), the biggest felsic eruption 
reported in the ACC, is the first crystal-rich rhyolitic vol-
canic deposit described in Mexico. Due to its high crystal 
contents, we will examine if the hydrothermal alteration 
reported in the ACC changes the crystallinity or if the min-
erals are product of magmatic crystallization. Moreover, 
this study has broader applications for the understanding 

of how crystal-rich deposits are produced and may help to 
determine the conditions in which a crystal mush model 
is applicable.

Here we characterize the geochemical, mineralogical, and 
trace element record of the PEI post-collapse ignimbrite and 
other felsic products of the ACC (Fig. 1b). We also propose 
a new model to understand the evolution of the ACC plumb-
ing system and magmatism. This model links the different 
erupted compositions to a coherent differentiation scheme 
and is compatible with a process of crystal mush remobili-
zation that controls the compositional variation within the 
ACC.

Geologic setting

The ACC is located on the eastern part of the Trans-Mexican 
Volcanic Belt (TMBV) (Fig. 1a). This volcanic arc is the 
product of the subduction of the Cocos and Rivera oceanic 
plates underneath the North American continental plate 
(Pardo and Suarez 1995; Gómez-Tuena et al. 2018). The 
local basement beneath the ACC region is formed by Cre-
taceous limestones (Avellán et al. 2019; López-Hernández 
et al. 2009), metamorphosed by a series of granitic intru-
sions of unknown age. Our knowledge of the local base-
ment is the result of two exploratory wells performed by 
the Comisión Federal de Electricidad (CFE, the National 
Electricity Company). In addition to the metamorphic and 
sedimentary rocks, there are a series of aplitic dikes-sills 
(183 ± 36 ka, Avellán et al. 2019) and lava flows with basaltic 
andesitic and andesitic compositions (García-Palomo et al. 
2018). Regional changes in stress orientations during the 
Miocene created a normal fault system with a NW–SE trend 
(García-Palomo et al. 2018; Gómez-Alvarez et al. 2021). 
This deformation in the southernmost part of the ACC zone 
developed to form the Tlaxco NW–SE fault system (Gómez-
Alvarez et al. 2021). During the Pliocene–Pleistocene, the 
local stress changed, generating new normal fault systems in 
the Apan-Acoculco area with NW–SE orientations (García-
Palomo et  al. 2018). This structural system dominated 
until the late Pleistocene when the fault system orientation 
changed to NE–SW, producing graben-horst structures such 
as the Apan, Tlaxco-Chignauapan grabens, and the Rosario-
Acoculco horst (García-Palomo et al. 2002, 2018).

Volcanic activity at the ACC started at 2.7 Ma and has 
been continuous until 0.016 Ma (Avellán et al. 2020). The 
volcanic evolution of the ACC was characterized by Avel-
lán et al. (2019) into the categories syn-caldera, early post-
caldera, late post-caldera, and extra-caldera units. The pre-
caldera volcanism of the ACC comprises andesitic-dacitic 
domes; the syn-caldera stage generated the Acoculco 
andesitic ignimbrite (~ 2.7 Ma) and the first collapse of the 
region (Avellán et al. 2019). The collapse modified the local 
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stress field and promoted the ascent of peralkaline rhyolites 
mixed with calc-alkaline magmas (Sosa-Ceballos et al. 2018; 
Avellán et al. 2019). The post-caldera stage is characterized 
by bimodal volcanism: first with voluminous mafic rocks of 
the early post-caldera volcanism (2.6–2.2 Ma) followed by 
the late post-caldera volcanism (2–1 Ma), which comprised 
a series of rhyolitic domes, the PEI (Fig. 1b), Tecoloquillo 
ignimbrite (Avellán et al. 2020), and, finally, with a series of 
minor Quaternary monogenetic eruptions of mafic composi-
tion. The most voluminous episodes of rhyolitic volcanism 

within the ACC area are represented by the PEI (Fig. 1b) 
and the Tecoloquillo ignimbrite. PEI is a welded ignimbrite 
with several flow units that appear as massive, light-gray to 
white, beds (Avellán et al. 2019, 2020). Each bed consists 
of microcrystalline matrix-supported particles with feldspar 
and quartz phenocrysts. It has an approximated volume of 26 
 km3 (Avellán et al. 2020). The PEI represents caldera reacti-
vation at 1.2 Ma, and its volcanic center was probably at the 
eastern portion of the ACC ring structure (López-Hernández 
et al. 2009; Avellán et al. 2020). The Later, another explosive 

Fig. 1  a Location of the Acoculco Caldera Complex (ACC) within 
the Trans-Mexican Volcanic Belt (TMVB). b Simplified geologi-
cal map of the ACC, after Sosa-Ceballos et  al. (2018) and Avellán 
et al. (2019). The map contains the distribution of the basement rocks 
as limestones (Ksl), Peñuela and Quexnol (Mv), and the volcanic 
units; pre-caldera volcanism (Pc), syn-caldera volcanism (Sc), early 

post-caldera volcanism (Epc), late post-caldera volcanism (Lpc), and 
Extra-caldera volcanism (ATVF). The red lines represent the faults 
in the area after Calcagno et al. (2019) that form normal faults (NE–
SW) and graben–horst structures. The localization of PEI samples is 
showed by a black mark on the map (modified from Pérez-Orózco 
et al. 2021)
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eruption occurred at ∼ 0.8 Ma at the south part of the caldera 
producing the Tecoloquillo rhyolitic ignimbrite and its sum-
mit dome (Avellán et al. 2019). Pérez-Orozco et al. (2021) 
reveal that Tecoloquillo products show evidence of magma 
mixing between calc-alkaline and peralkaline melts. Fur-
thermore, melt inclusions suggest that two magma bodies, 
located approximately 6–10 km in-depth and, isolated from 
one another, sourced the eruption (Pérez-Orozco et al. 2021). 
Older felsic products in the region are represented by the 
Peñuela Dacitic Dome Complex (~ 13–10 Ma) and Terreril-
los Domes (~ 3 Ma) (García-Palomo et al. 2002; Avellán 
et al. 2019, 2020). It is not clear if magmatism is continu-
ous between the Peñuelas and Terrerillos Dome complexes; 
however, felsic products are present in the late post-caldera 
units (~ 2–0.016 Ma) forming lava flows and domes with 
predominant rhyolitic compositions (Avellán et al. 2019, 
2020). In addition, during the formation of the ACC, mafic 
volcanism (2.4–0.19 Ma) related to the Apan-Tezontepec 
Volcanic Field (ATVF) is interbedded with the products of 
the ACC and correspond to the extra-caldera stage (García-
Palomo et al. 2002, 2018; López-Hernández et al. 2009; 
Avellán et al. 2019).

The interest in exploring the ACC region arose in the 
1980s with prospective works carried out by the Mexican 
Federal Electricity Commission (CFE, for its acronym in 
Spanish) to determine its geothermal potential. Despite the 
hydrothermal alteration being the most outstanding feature 
of most ACC deposits (Canet et al. 2015), there are few spots 
of superficial geothermal manifestations such as springs and 
fumaroles (Lopez-Hernandez and Castillo-Hernandez 1997). 
The alteration features are reported for an area of several 
square km in the center of the caldera complex, and outside, 
in the eastern border, affecting pyroclastic deposits, and, to 
a lesser degree, lavas (Canet et al. 2015; Sánchez-Córdova 
et al. 2020; Pandarinath et al. 2020). Inside the caldera, the 
most common hydrothermal alteration is the silicic type. 
There are some regions where acid-sulfate alteration types 
can be found (vuggy silica and advanced argillic alterations); 
however, outside of the caldera, the hydrothermal alteration 
has no studies.

Methods

We collected bulk rock samples (comprising crystals and 
matrix) from the bottom, middle, and top portions. We study 
four sections of the PEI in proximal and distant deposits in 
gullies of the western caldera borders (Fig. 1b). The field 
strategy consisted of sampling the deposit based on vertical 
variations. Samples were crushed and hand-picked to obtain 
lithic-free fragments for analysis. Whole-rock analysis of 
major and trace element concentrations were determined by 
fusion inductively coupled plasma emission spectroscopy 

(ICP-ES) and inductively coupled plasma mass spectrometry 
(ICP-MS) at the Activation Laboratories, Ancaster, Canada 
(https:// actla bs. com/). Fifteen rock samples were cut and 
processed into thin polished sections for petrographic and 
electron microprobe analysis (EPMA).

To investigate how hydrothermal alteration could modify 
the crystallinity of the PEI deposits, Fourier-transform infra-
red spectroscopy (FTIR), Raman spectroscopy, and X-ray 
diffraction (XRD) were carried out on mineral samples and 
on the matrix of different samples. On each sample (bottom, 
middle top), we realize 1 XRD analysis, more than 35 FTIR 
analysis and more than 30 Raman analysis per each thin sec-
tion. FTIR analyses were performed with a Thermo Scien-
tific apparatus at the Laboratorio de Microanálisis, CEMIE-
Geo UNAM. Micro-FTIR analyses were measured with 512 
scans at a resolution of 4  cm−1 and were collected using a 
KBr beam splitter. The sample was placed on a water-free 
KBr base for support, and the background scan and sample 
analyses were taken through the KBr base under the same 
analytical conditions. Micro-FTIR analyses were obtained 
over a wavelength range of 5000–600  cm−1, with a liquid-
nitrogen cooled HgCdTe2 (MCT) detector and an aperture 
set at 10 μm square. This provided a strong intensity and 
detector response for the mid-IR water absorbance bands. 
Raman analyses were performed with a Thermo Scientific 
DXR apparatus at the Laboratorio de Microanálisis, CEMIE-
Geo UNAM. Raman measurements were carried out in the 
matrix and minerals of all the PEI deposits. Raman analyses 
were measured with a 532 nm laser over a wavelength range 
of 3568–20  cm−1, at a resolution of 1.7–2.7  cm−1, with a 
50 µm aperture and 8.8 mV of laser power.

Mineral compositions were determined for a representa-
tive subset of the PEI samples. Major-element compositions 
of plagioclase and Fe-Ti oxides were acquired using a JEOL 
JXA-8230 electron microprobe housed at the Laboratorio 
de Microanálisis, CEMIE-Geo UNAM. Analytical condi-
tions were 15 keV accelerating voltage and 10 nA current 
for major elements and 15 keV and 20 nA for selected trace 
elements; a focused beam was used in both cases. A defo-
cused electron beam of 10 µm was used to analyze glass 
groundmass to avoid Na migration. Analytic uncertainties 
in EPMA were determined with secondary standards with 
a variety of minerals and glasses. Standards were analyzed 
throughout each analytical session to monitor instrument 
drift and correct compositional offsets.

Mineral phase identification was achieved using powder 
X-ray diffraction (XRD) on a Rigaku D/MAX-Rapid micro-
X-ray diffractometer at the Smithsonian National Museum of 
Natural History Department of Mineral Sciences, EUA. The 
instrument uses Mo Kα radiation (λ = 0.71069 Å) and col-
lects data on a 2D imaging plate detector with Debye–Scher-
rer geometry. Sample powders were gently re-ground in an 
agate mortar and pestle and were mounted in 1 µm-wide 

https://actlabs.com/
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Kapton capillaries. The samples were run for 10 min each 
with omega fixed at 0° and phi rotating at 1°/second. Three 
sample replicates were collected for each sample by focusing 
the X-ray beam on three different regions of the powder-
filled capillary. XRD image files were background-corrected 
(manual setting = 4) and integrated into intensity vs 2θ pat-
terns from 4.0 to 45.0 2θ degrees and 81.6337–430.00 β 
using 2DP software.

Mineral phases in our samples were initially identified 
using the search/match function of Jade (2021) (Materials 
Data, Inc.) with the PDF-4 2021 ICDD database. Contri-
butions of mineral phases in each of the different samples 
(represented as phase percentages and weight percent-
ages) were estimated via whole pattern Rietveld refinement 
analyses using GSASII software (Toby and Von Dreele 
2013; Post and Bish 1989). The background was mod-
eled using a Chebyschev polynomial. Anorthoclase [(Al, 
 Si3)  (Na0.667K0.333)  O8; Harlow 1982], quartz (Antao et al. 
2008), cristobalite (Downs and Palmer 1994), tridymite with 
a monoclinic structure (Hirose et al. 2005), and tridymite 
with an orthorhombic structure (Lee and Xu 2019) were 
used as model structures. Although there are likely other 
feldspar phases present, our focus was to identify and quan-
tify the tridymite and cristobalite phases in these samples. 
We selected anorthoclase as a single representative feldspar 
in this system to minimize the number of phases in the Riet-
veld refinement. Errors in phase estimates represent standard 
deviations in measurements between the three replicates.

Given the mush-like nature of the PEI deposits, we tested 
with a geochemical model (Fig. 13) if rhyolites have a rela-
tionship with melt extracts produced in a crystal mush, prob-
ably peralkaline in composition, or if these rocks are not 
affected by the crystal mush. We chose to perform partial 
melt models because most authors, regardless of the tectonic 
context in which volcanism occurs, show that partial melt 
episodes can occur in the cumulate part of crystal mushes 
(Foley et al. 2020 and cites therein). This can be promoted 
by the flow of volatiles and heat coming, in general, from 
some mafic-intrusive melts in the base of the cumulate por-
tion of the mush (Bachmann et al. 2002; Deering et al. 2011; 
Foley et al. 2020; Lubbers et al. 2020; Pamukcu et al. 2013; 
Sliwinski et al. 2017; Szymanowski et al. 2017; Tavazzani 
et al. 2020). The process above described eventually triggers 
the mobilization of the crystal mush.

For the model, we assume the following: (i) the mush 
extracts behave like a partial melt, (ii) PEI deposits rep-
resent the eruption of a portion of a crystal mush (partial 
melts + crystals), (iii) we use different granitic rock com-
positions for the model because a crystal mush can spawn 
from the crystallization of a magma body or by the par-
tial melting of a pre-existing crystallized body in any tec-
tonic setting. However, we choose the chemical composi-
tion of a xenolith of an intrusive granitic rock reported by 

Sosa-Ceballos et al. (2018) and PEI as a proxy of the par-
tial melting source that produce the melt extracts; (iv) the 
injection of hot mafic magma promotes the partial melting 
but lead to produce a minimal chemical interaction with the 
mush and unevenly distributed thermal flux (Foley et al. 
2020); (v) we consider the multiple crystal mush scenario, 
hosted in different portions of the upper crust. Due to the 
geochemical modeling complexity, we decided to explore 
partial melting as a process that could occur in one crystal 
mush. To run the model, we consider the partial melting 
of the granitic proxy in a range of F = 0.05–0.45 (5–45%) 
for the xenolith sample, F = 0.1–1(0.1,0.15,0.2, …,1) for 
the PEI sample; we used a paragenesis of 0.45 K-Fls + 0.35 
Plg + 0.10 Qz + 0.05Opx + 0.05Cpx for the xenolith sample 
and 0.45 K-Fls + 0.35 Qz + 0.10 Plg + 0.05Opx + 0.05Cpx 
for the PEI model. We used distribution coefficients of some 
REE, Rb and Zr in mineral phases published by Rollinson 
(2014) with the equation Cl = C0/ (F + (D(1-F)).

Results

The PEI deposits, like most of the ACC rhyolitic depos-
its, are dispersed in the outer zone of the caldera (Fig. 1b). 
The PEI is massive, gray white, and crystal rich (Fig. 2). 
The maximum observed thickness is ~ 100 m, and deposits 
are generally welded at the bottom and more friable toward 
the top (Fig. 2b, c). The contact between the local base-
ment and the base of the deposit, or the lag breccia, does 
not crop out around the ACC, although Avellán et al. (2019) 
and López-Hernández et al. (2009) suggest that the eastern 
border of the caldera was the emission point of the PEI. The 
deposits are composed almost entirely of microphenocrysts 
and phenocrysts (~ 1% vol of crystal with sizes > 15 cm) of 
alkali feldspar, quartz, plagioclase, and Fe-Ti oxides (Fig. 3 
a, b, c, d) with a crystal content up to ~ 90 wt. % in welded 
portions and ~ 60 wt. % in friable deposits (Fig. 3). Neither 
pumice, glass chips, nor lithic fragments are found within 
the deposits. Portions of the deposit appear to contain an 
ashy matrix (Fig. 2 d), but the matrix comprises aggregates 
of quartz and feldspar with sizes > 5 µm, as observed in the 
welded portion (Fig. 3). The friable portion of the PEI has 
portions with argillic hydrothermal alteration (Fig. 2a). This 
alteration was reported by Canet et al. (2015) in the inner 
part of the caldera.

The PEI is rhyolitic in bulk rock composition and has 
slight internal vertical chemical variations (Fig. 4, Table 1) 
The compositions of the PEI sample become more silicic 
and exhibit a decrease in  Fe2O3 and MgO toward the top 
of the deposit. We analyzed unaltered samples with LOI 
values below 1 wt. %. Trace element concentrations normal-
ized to the primitive mantle (Sun and McDonough 1989) 
show negative anomalies of Ba, Nb, Ta, U, Th, K, and Zr, 
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and a positive anomaly of Pb, Sr, Eu, P, and Ti. Further-
more, heavy rare earth elements (HREE) present a hori-
zontal trend and light rare earth elements (LREE) are more 
enriched than HREE (Fig. 5). These anomalies and trace 
element concentrations are also present in the other felsic 
members of ACC such as Tecoloquillo ignimbrite (TQ) and 
xenolith fragments of granitic composition reported by Sosa-
Ceballos et al. (2018). The xenolith fragment may come 
from felsic intrusions associated with the ACC magmatic 
system. Felsic intrusions are reported by CFE exploratory 
drilling in the region, where they are described as aplitic 
dikes. ACC's pyroclastic and lava felsic products show low 
Eu/Eu* ≤ 0.3 and low Ba < 500 ppm (Fig. 6b, e). Moreover, 
these rocks show a positive trend in Ba/Rb vs Rb, Rb vs 
La, low #MgO (1–16), and a wide range in the La/Sm vs 
La diagrams (Fig. 6d). The composition of rhyolites in the 
ACC is diverse but can be distinguished between A-type and 
calc-alkaline I-Type rhyolites as a result of the analysis of 
Zr + Nb + Y + Ce and trace elements (Fig. 6a). Calc-alkaline 
rhyolites tend to have higher Ba/Sr and lower La/Yb ratios 
and higher abundances of HFSE and HREE than A-type 
rhyolites (Fig. 6a).

The larger phenocrysts of feldspar are average 1 cm in 
size (but can exceed 15 cm in length; Fig. 2d) and have 

subhedral broken shapes (Fig. 3a). Microphenocrysts and 
phenocrysts show disequilibrium features such as exsolu-
tion textures, rounded borders, and resorbed rims (Fig. 3c, 
d). Furthermore, all the PEI deposits show relics of mafic 
minerals. Feldspar phenocrysts have anorthoclase and san-
idine compositions with 2–8 mol% An and 20–78 mol% 
Or, whereas the matrix is formed by orthoclase and micro-
cline (Fig. 9). XRD and Raman analyses, however, show 
that phenocrysts in the samples have an anorthoclase 
structure (Figs. 10, 11). Oxides in the PEI deposits are 
ferropseudobrookite–ilmenite and ulvospinel–wustite. 
Furthermore, oxides display variations of FeO,  Fe2O3, and 
 TiO2 from the center to the rim of the phenocrysts (Sup-
plementary material). Core to rim transects in oxides show 
Fe enrichment with Ti depletion (Fig. 8).

The composition of the PEI matrix samples exhibits 
a mixture of quartz and felspar (Fig. 10a). EPMA imag-
ing and compositional analysis of the PEI samples reveals 
that the matrix is composed of microcrystalline texture 
(< 5  µm) of quartz and feldspar with, 6–13 wt. % of 
 Na2O +  K2O (Fig. 7, 8, 9). FTIR spectroscopy shows pri-
marily anorthoclase and quartz crystals with no hydroxy 
or water structural defects in the 3000–3800  cm−1 bands.

Fig. 2  Photographs showing the 
PEI field features of the deposit: 
a The non-welded top of the 
deposit, b The welded middle 
part of the deposit, c welded 
bottom part of the deposit, and 
d a cm-scale feldspar phe-
nocryst
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Rietveld refinements of X-ray diffraction patterns 
(Fig. 10a) estimate the relative contribution of different 
mineral phases outlined in Table 2. Anorthoclase and 
quartz dominate, as expected, with smaller contributions 
of cristobalite and tridymite as monoclinic and orthorhom-
bic phases. Cristobalite is not present in PE1904. 
Orthorhombic tridymite is present in sample AC100. Due 
to the absence of clay minerals and glass in the XRD pat-
terns, we use the results of Rietveld refinements as a proxy 
of %vol for each sample (Table 2).

Discussion

Matrix‑free deposits: a hydrothermal fingerprint

The PEI deposits contain microcrysts of quartz, cristo-
balite, and tridymite as confirmed in FTIR and Raman 
analysis (Fig. 11a, b). Likewise, XRD measurements show 
crystal structures of polymorphs of silica (Fig. 10). These 
mineral phases are related to hydrothermal alteration and 

Fig. 3  Photomicrographs of four PEI samples in cross-polarized 
light. a The mineral assemblage formed by phenocrysts of feldspar 
and quartz and a groundmass formed by tridymite and cristobalite 
crystals; b The few plagioclase phenocrysts often have disequilib-

rium textures, such as rounded borders and sieve texture; c a feldspar 
phenocryst with exsolution texture and rounded borders; d a feldspar 
phenocryst with rounded borders and twining
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are reported in other deposits in the inner portion of the 
ACC (Canet et al. 2015; Sánchez-Córdova et al. 2020). 
In the less crystalline portions of the PEI, the content of 
quartz, cristobalite, and tridymite aggregates can reach 
40–50 vol% in the welded portions at the bottom part of 
the deposit. Additionally, to the top of the deposit, crys-
tals are supported by a cryptocrystalline matrix formed 
by silica polymorphs (Fig. 2a). Thus, we suggest that late 
hydrothermal alteration affected the deposits even in the 
external parts of the caldera. Syn- and post-depositional 
alteration of primary volcanic deposits with the formation 
of clay minerals have been observed in pyroclastic surge 
deposits, e.g., at Vulcano, Italy (Capaccioni and Coniglio 
1995) and El Chichón, México (Macías et al. 1997). How-
ever, we do not have clay minerals. This evidence could 
suggest that the matrix-free nature of the welded portion 
of the PEI deposits could be produced by hydrothermal 
alteration.

One of the pending questions to be resolved is how the 
 SiO2 polymorphs of the PEI were formed and in which 
pressure and temperature conditions. Cristobalite and 
tridymite crystals commonly precipitate at low pres-
sures up to ∼0.4 GPa and temperatures between 870 °C 
and 1470 °C, but these minerals also exist as metastable 
phases at lower temperature conditions (Kihara et al. 1986; 
Heaney et al. 1994); Deer et al. 2004). Tridymite crystals 
tend to exhibit a hexagonal structure above ~ 380 °C with 
slight distortions of the Si–O–Si bond angles and Si–O 
bond length (Kihara et al. 1986). Between 380 °C and 
110 °C, tridymite recrystallizes to form an orthorhombic 
structure, and below 110 °C, monoclinic tridymite is ubiq-
uitous (Heaney et al. 1994). All the PEI deposits contain 
sharp, well-defined XRD peaks of monoclinic (Fig. 10) 
tridymite and cristobalite. However, orthorhombic 

tridymite is only clearly present in samples AC100 and 
PE-1902 (Fig. 11). AC100 is located in the SW border of 
ACC near the topographic rim described by Sosa-Ceballos 
et al. (2018). Therefore, orthorhombic tridymite found in 
the PEI deposits could suggest that hydrothermal fluids 
circulated and reached temperatures up to 110 °C and 
that these fluids promoted the devitrification process of 
the deposits. Furthermore, the wüstite composition of the 
Fe-Ti oxides (Fig. 8) suggest hydrothermal alteration pro-
cess. Wüstite minerals are reported in hydrothermal veins 
formed in low fugacity conditions or during the exsolu-
tion of pre-existing oxides (Nadoll and Mauk 2011), as 
observed in S-type granites where the exsolution of oxides 
should occur during the partial melting of metapelitic 
rocks (Seifert et al. 2010).

The devitrification of rhyolitic pyroclastic rocks is a 
relatively common process, resulting in the production of 
microcrystalline silica and feldspars from the fast emplaced 
and slow cooling deposits (Rowe et al. 2012) and by post-
depositional hydrothermal circulation. These chemical alter-
ation processes lead to mass fluxes of elements, both from 
the altered glass into solution and vice versa, as it has been 
also reported in mafic rocks from the ocean floor (Furnes 
1978); Zhou and Fyfe 1989; Crovisier et al. 1992; Stron-
cik and Schmincke 2001; Walton et al. 2003; Pauly et al. 
2011). In ACC, this process was studied and quantified by 
Sánchez-Córdova et al. (2020). As a result of the hydrother-
mal alteration process, the supersaturation of fluids causes 
the precipitation of neoformation minerals (Hay and Iijima 
1968; Ibrahim and Hall 1996; Stroncik and Schmincke 2001; 
Kousehlar et al. 2012) such as the tridymite and cristobalite 
observed in the PEI samples (Fig. 7a). Furthermore, the 
silicification was well-studied in the central ACC (Sánchez-
Córdova et al. 2020). The alteration processes are, thus, 
pervasive and likely affect the matrix to a greater degree 
because of the devitrification process after emplacement of 
the pyroclastic density currents. Feldspars do not show signs 
of alteration such as albitization (despite of low %Or), a 
distinct reddening, relicts of its ancient feldspar/plagioclase 
compositions and/or the absence of micrometric/nanometric 
pores containing white mica (Engvik et al. 2008), altera-
tion to sericite, zeolites, or other typical alteration minerals 
(Figs. 10, 11). Thus, the pre-existing ash matrix of the PEI 
could be transformed to tridymite + cristobalite + K-feldspars 
(Rowe et al. 2012), as it was observed in the XRD, Raman, 
FTIR, and EPMA maps (Fig. 7, 10, 11). If this is true, the 
hypothetical glass (pumice fragments) or matrix (formed by 
fine ash particles) content could reach less than 40% vol of 
deposits, as is observed in petrography and quantified by 
Rietveld refinement of XRD patterns (Table 2). Thus, given 
the pervasive hydrothermal alteration described in the ACC, 
we propose the matrix was replaced by secondary minerals. 
Such replacement processes have been described in other 

Fig. 4  Total alkali vs silica diagram of the Acoculco Caldera Com-
plex (ACC, red field) rocks, PE = Piedras Encimadas Ignimbrite sim-
ples, Tc = Tecoloquillo ignimbrite, Xen = xenolith, blue cross sym-
bols represent G1, and diamond symbols represents G2 rhyolite ACC 
lavas of the early and late post-caldera events
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volcanic systems to have occurred during or after the depo-
sitional process.

Origin of the deposits

The PEI deposits were originally described as ignim-
brites (López-Hernández et al. 2009; Avellán et al. 2019, 
2020). Nonetheless, its high crystallinity (almost totally 
formed by crystals) and absence of pumice, ash, and low 
lithic contents have not been described in the literature. 
Given its high crystal content, we first investigate if these 

deposits represent explosive, volcanic eruptions. One 
hypothesis that simplifies the origin of high crystallinity 
is that the PEI formed as part of an intrusive body that was 
exhumed and exposed by erosion. We think this hypoth-
esis is unlikely because the deposits are welded at the bot-
tom, but not the top, the deposit has a tabular shape, and 
there is a systematic thinning of the deposits that fill the 
valleys toward the east (Fig. 1b). Field evidence suggests 
these rocks are ignimbrites that erupted from the eastern 
border of the caldera, where the deposits are thicker and 
thin toward the northeast (López-Hernández et al. 2009; 

Fig. 5  Trace elements, including rare earth elements (REE), normal-
ized to the chondrite (right) and the primitive mantle (left; Sun and 
McDonough 1989). Symbols as in Fig. 4. The relative enrichment of 
LILE (large-ion lithophile elements) when compared to the HFSE 

(high-field-strength elements) and the Nb–Ta–Pb anomalies reveal 
the calc-alkaline nature of the felsic ACC. The xenolith sample corre-
sponds to a sample reported by Sosa-Ceballos et al. (2018). Tc com-
positions were obtained from Pérez-Orozco et al. (2021)
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Avellán et al. 2019). Due to hydrothermal alteration and 
the massive structure of the deposits (Fig. 2a, b, c), it 
is hard to tell if PEI was formed by the aggradation of 
one eruption or by multi-PDC. However, Avellán et al. 
(2019, 2020) describe several flow units that suggest a 
multi-PDC origin for the PEI. The PEI deposits are highly 
crystalline: the top of the deposit contains more than 70% 
phenocrysts with sizes ≥ 2 mm, whereas the middle and 
bottom portions contain up to 40–60% of phenocrysts 

(Fig. 3a). Moreover, the phenocrysts are embedded in a 
groundmass formed exclusively by microcrysts of pol-
ymorphs of silica and K-feldspar, devoid of glass. The 
presence of K-feldspar megacrysts suggests that the PEI 
magmas crystallized near its rheologic lock-up threshold, 
as K-feldspar phenocrystals do not precipitate signifi-
cantly while they are mobile (e.g., Glazner and Johnson 
(2013). Arzilli et al. (2020) suggest that changes in crystal 
fraction of alkali feldspar can range from hours to several 

Fig. 6  a Zr + Nb + Y + Ce vs  SiO2 diagram of the ACC rhyolites, a 
dotted line separates A- from I-type rhyolites based on Whalen et al. 
(1987). b Rb/Ba vs Rb diagram displays the relation between crys-

tallization vs partial melting of the ACC. c #Mg vs  SiO2 of the PEI 
rhyolites shows the low #Mg contents of the most of samples. d La/
Sm vs La diagram, e Eu/Eu* vs  SiO2 diagram. Symbols as in Fig. 4
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days as a function of undercooling and  H2O content in 
the melt generating the alkali feldspar nucleation delay 
and growth. Therefore, we suggest that the low changes 
in Or content in the PEI phenocrysts of anorthoclases 
suggest large periods of storage and growth under same 

P–T conditions. Thus, the size and abundance of crystals 
(some of them with exsolution textures) and the absence 
of pumice strongly suggest that the PEI deposits represent 
a crystal mush (crystals + melt) mobilized to the surface.

Fig. 7  Matrix composition shown as a X-ray maps of the matrix and 
feldspar. Semiquantitative X-ray maps show the homogeneous com-
position of the anorthoclase phenocryst and the composition of the 
matrix that is formed entirely of quartz polymorphs and k-feldspars. 

The lateral scale shows the relative concentrations of Si, K, and Na in 
relative intensities [arbitrary units]. b Total alkali vs silica diagram of 
the matrix made with quantitative EPMA analysis to have a composi-
tional reference
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Fig. 8  a and b Micrographs 
of ferropseudobrookite and 
ulvospinel crystal whit a–a´ and 
b–b´ transects. c and d  FeOtotal 
(blue line and rectangles) and 
 TiO2 (green line and rectan-
gles) concentrations vs distance 
(µm). e and f Oxides in rutile–
wustite–hematite classification 
diagrams. Ferropseudobrookite 
has a relatively consistent 
composition across the transect 
a—a’. Disequilibrium in a and 
b is evidenced by the rounded 
form and bay rims of the crys-
tals. The compositional changes 
in ulvospinel tend to be more 
extreme than those observed in 
ferropseudobrookite. g and h 
Oxide exsolution
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Fig. 9  Feldspar compositional transect, a secondary electron image of 
an anorthoclase crystal, b compositional transect (A–A’) of anortho-
clase. Note the slight compositional variation from center to rim 

where the center tends to be more potassic. c) Felspar classification 
diagram showing low felspar compositional variations

Fig. 10  Representative X-ray 
diffraction patterns of volcanic 
ash samples (black) with Riet-
veld refinement fits (grey) and 
background fits (red-dashed) 
averaged across three sample 
replicates. Peak positions of 
reference mineral phases are 
displayed above with the most 
dominant peaks outlined in 
black (Harlow 1982; Levien 
et al. 1980; Downs and Palmer 
1994; Hirose et al. 2005; Lee 
and Xu 2019)



 Contributions to Mineralogy and Petrology (2023) 178:63

1 3

63 Page 16 of 24

Storage before eruption

Recent geological, geophysical, and petrological stud-
ies proposed a series of magma storage zones below the 
ACC (Sosa-Ceballos et al. 2018; Avellán et al. 2020; Pérez-
Orozco et al. 2021). These storage zones match well with 
the depths proposed by Townsend and Huber (2020) for 
magma reservoirs (150–250 MPa, approximately 6–10 km) 
and transitory-shallow magma accumulations (< 150 MPa), 
although they are slightly shallower than those proposed by 
Gualda and Ghiorso (2013) for rhyolites with the observed 
silica content. Petrologic evidence including exsolution 
textures and phenocryst sizes (assuming that phenocryst 
growth occurs at depth) found in the PEI deposits support 
a long, protracted interval of crystallization in a plutonic 
body. Furthermore, ambient noise seismic tomography of 
the anisotropic shear wave velocities reveals mafic intru-
sion below the E caldera border and NW outer zone (Per-
ton et al. 2022). Geothermal exportation wells in Acoculco 
reach 1900 m below the surface and intersected an intrusive 
body at ~ 1600 m (Yáñez-García 1980; López-Hernández 
et al. 2009). Aeromagnetic studies found a series of mag-
matic intrusive bodies hosted by calcareous rocks at depths 
of 1000–2500 m below the ACC (López-Hernández et al. 
2009; Avellán et al. 2020). Given their location, depth, and 
magnetic susceptibility, these intrusions were considered to 
be mafic.

We suggest a series of mafic magmas intruded the local 
basement, creating skarns and marbles, and underplated vast 
zones of the ACC surrounding areas; evidence for this is 
the magnetic anomaly interpreted for the NE border of the 
ACC (Fig. 13), below the PEI deposits, and the occurrence 
of monogenetic-mafic volcanism along the SE–NE vicinity 
of the ACC.

We propose that these mafic magmas underplated the 
crystal-rich mush at depths of 100–250 MPa, progressively 
contributing to its partial melting (e.g., Sas et al. 2021; 
Eichelberger 2020). This eventually mobilized the mush 
sufficiently for the magma to erupt. Feldspar crystals in 
the PEI deposits contain rounded borders (Fig. 3) but are 
characterized by almost constant core–rim compositions 
(Figs. 7, 9). We propose that rim disequilibrium is produced 
by temperature changes during the ultimate processes that 
led to the eruption. Constant core–rim compositions could 
be produced by crystallization over a narrow range in P–T 
(e.g., such as might happen near the eutectic which is where 
we would expect to get such a high vol. fraction of crystals 
at constant composition), which drive melt-crystal evolution, 
buffered by volatile flux (e.g., Blundy et al. 2006). This pro-
cess would maintain essentially constant crystal composi-
tion. Volatiles could be fluxed by magmas underplating the 
intrusive bodies (e.g., Huber et al. 2010; Sas et al. 2021).

The interaction of the mush with new mafic pulses and its 
volatiles (Fig. 12), such as that occurs across other caldera 
systems (i.e., Sohn et al. 2009; Watts et al. 2016; Repstock 
et al. 2018), could initiate mush mobilization prior to erup-
tion; Pérez-Orozco et al. (2021) and Peiffer et al. (2014) 
reported anomalous high fluxing of CO2 within the caldera 
perhaps as the result of mafic magmas degassing at depth. 
Thus, the mass transfer of volatiles from the new intrusion 
brings heat to the system. In consequence, this process can 
enhance “defrosting” and possibly could generate the sub-
sequent remobilization of the mush to the surface (Huber 
et al. 2010).

Mobilization to the surface

Despite the processes of extraction and pre-eruptive storage 
are often treated in tandem (Bachmann and Bergantz 2004a, 
2008b), it is important to separate the two processes (Gualda 
et al. 2019). We discuss the mobilization of PEI as a crystal-
rich magma in the context of ACC and its potential trans-
portation to the surface. The transport of crystal-rich magma 
from the upper crust to the surface represents a rheological 
and structural problem as the high magma viscosity and 
yield strength hinders easy transport. To address this issue, 
we suggest that the PEI mush had a critical melt fraction 
prior to eruption and, most importantly, it was in an erupt-
ible state. The melt fraction promoted a continuum transi-
tion from a partially molten solid to a mushy liquid at about 

Table 2  Mineral phases determined by XRD on PEI samples

Sample Phase Phase % s.d Wt % s.d

ACC100 Anorthoclase 51.6 0.8 63.1 1
Quartz 16.2 3.4 4.9 0.6
Cristobalite 9.6 2.6 2.6 0.4
Tridymite–Monoclinic 6.2 0.5 20.3 0.9
Tridymite–Orthorhombic 16.4 1.6 9 0.6
Total 100 100

PE1902 Anorthoclase 51.1 7.5 78.4 0.3
Quartz 34.2 5.5 13 0.5
Cristobalite 13.8 0.2 4.7 0.3
Tridymite–Monoclinic 0.9 0.3 3.8 0.4
Total 100 100

PE1904 Anorthoclase 42.2 1.6 70.3 0.4
Quartz 52 2.9 21.5 1
Cristobalite 4.3 5.7 1.6 0.9
Tridymite–Monoclinic 1.5 0.5 6.6 0.8
Total 100 100

PE1908 Anorthoclase 76 1.1 88.5 1.7
Quartz 18.4 3.4 5.3 0.8
Cristobalite 4 4.5 1.1 0.9
Tridymite–Monoclinic 1.6 0.5 5.1 1.1
Total 100 100
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50–55 vol% crystals (e.g., (Marsh 2000). Furthermore, the 
bulk viscosity could change orders of magnitude between 40 
and 60% crystallization (Lejeune and Richet 1995). Above 
the critical crystallinity of ~ 50 vol%, the crystals form 
a strong interlocking network that restricts flow, whereas 
viscosity and yield strength drop rapidly as crystallinity 
declines (Marsh 2000). Moreover, the transient state from 
Newtonian to non-Newtonian conduct occurs between 30 
and 50% of crystals (Petford 2003), and the drop in the vis-
cosity could be promoted by the recharge of hotter mafic 
magmas. For that reason, these critical rheological shifts 
arise close to the critical crystallinity for the very large 
volume of rhyolites described here. The lower viscosities 

produced through the hot magma recharges allows felsic 
magmas reach the surface in form of dikes, with width less 
than 20 m (Petford et al. 1994). These dikes are probably 
located both inside and outside the caldera (Fig. 1), follow-
ing post-collapse faults generated during the lithospheric 
extensional episodes in the region (García-Palomo et al. 
2002, 2018) let the magmas to infill the faults through 
the dike propagation (Petford et al. 1994; Weinberg 1996; 
Karlstrom et al. 2012; Cruden and Weinberg 2018). Dike 
propagation can experience a rheological transition when the 
eruption starts (Karlstrom et al. 2012) In the case of the PEI, 
we propose that extension could generate structural condi-
tions that facilitate mafic recharge. Recharge events would 

Fig. 11  a Raman spectra of micro-crystals surrounding phenocrysts 
from different stratigraphic positions, as well as, a characteristic feld-
spar spectrum (Fritz et  al. 2005). b FTIR spectra of tridymite and 
anorthoclase crystals from the bottom of the PEI. Note that the OH–

H2O bands (3000–3800  cm−1) show no structural dislocation/defects 
of water or hydroxyl. This could suggest the diffusion of OH–H2O 
due to hydrothermal alteration
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in turn decrease the PEI viscosity and yield strength, at least 
temporarily, and enhance the likelihood of eruption. Conse-
quently, the PEI eruption occurred in the eastern part of the 

ACC, where the displacement or reactivation of a regional 
fault, likely the ancient caldera rim, led to the eruption. This 
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fault is associated with negative magnetic anomalies and 
lineaments as described by Avellán et al. (2020).

Geochemistry of the rhyolites and their relationship 
with the crystal mush

The relationship between crystal mushes, melts that gener-
ate crystal-rich ignimbrites, and their impact on subsequent 
effusive volcanism has not been studied in detail. Because 
of the compositional diversity of its felsic eruptive prod-
ucts, the ACC (Fig. 1a) is an ideal location for studying 
how highly silicic, viscous magmas impact upper crustal 
evolution (Fig. 4). Rhyolite lavas are the most common rock 
in the ACC (Fig. 1b). Overall, these rocks can be classified 
into two groups: 1) I-type, classic hydrous calc-alkaline arc 
rocks, and 2) A-type ‘dry’ rocks (Fig. 6a) that have classical 
subduction-related trace element anomalies such as negative 
anomalies of Nb and Ta, also positive Pb anomalies (Fig. 5). 
This classification cannot determine if a rhyolite was formed 
by a mush. Hence, we classified the rhyolitic lavas into two 
groups as a function of their trace elements: the first group 
(G1) shows variable Eu/Eu*, low Ba contents, and variable 
#Mg, and the second group (G2) shows low Eu/Eu*, variable 
Ba contents, and low #Mg (Fig. 6). In addition, G1 lavas 
have variable concentrations of Sr, P, Zr, and REE, whereas 
G2 lavas are less variable, although the negative anomalies 
shown in Ba, P, Sr, and Ti are more pronounced (Fig. 5).

G1 trace elements can be explained by events of fractional 
crystallization of plagioclase and ferromagnesian minerals. 
Whereas trace elements in G2 rocks are relatively constant 
and mimic the patterns and anomalies found in the PEI rocks 
(anomalies in Ba, Sr, P and Ti are characteristic in peralkaline 
rhyolites). However, we cannot neglect that some fractional 
crystallization occurred to form G2 rocks. Thus, rocks related 
to crystal mush extracts probably show features of partial melt-
ing caused by the distributed dissolution of crystals. Crystal 
dissolution is a process described in crystal mush systems 
(Bachmann et al. 2002; Deering et al. 2011; Pamukcu et al. 
2013; Sliwinski et al. 2017; Szymanowski et al. 2017; Foley 
et al. 2020; Lubbers et al. 2020; Tavazzani et al. 2020) pro-
moted, in general, by the injection of hot mafic magma that can 
lead to minimal chemical interaction and unevenly distributed 

thermal flux (Foley et al. 2020). Consequently, the rocks pro-
duced by the partial melting of crystal mush will inherit certain 
geochemical patterns sensitive to modeling.

Fig. 12  a) Magnetic field reduced to the pole (MFRP) map of the 
ACC region modified from Avellan et  al. (2020); EAC1 and EAC2 
represent the CFE boreholes. We propose that the anomalies char-
acterized by -25 to 25 [nT] (center and NE of the caldera) repre-
sent mafic intrusions that contributed to form the crystal mush and 
expulsed it to the surface; the mafic magmas not only stalled at depth, 
but they also formed the monogenetic volcanos on the eastern side 
of the caldera. b Simplified cross-section profile (A–A’) showing 
the location of shallow intrusions and leftovers interpreted from the 
MFRP map. Given the crystal-rich nature of the PEI, we suggest that 
the crystal mush was very shallow and previously deformed by nor-
mal faults that facilitated the extraction to the surface

◂

Fig. 13  Geochemical models consider diverse degrees of partial melt-
ing (0.5–40% of partial melting) of a granitic xenolith (orange lines), 
lower (red line), middle (light red), and upper crust (pink line) show-
ing the behavior of ACC rhyolitic samples in a La/Eu vs Rb, b La/Zr, 
c REE concentrations
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As observed in G1 and G2, some rocks fit the partial melt 
models; G2 rocks fit better the model performed with the xeno-
lith as end member, > 40% of partial melting (Fig. 13), whereas 
G1, as seen in the model using PEI as end member, could rep-
resent relatively high degrees of PEI partial melting (Fig. 13). 
Although G1 and G2 overall fit the models, we cannot exclude 
the possibility that multiple crystal mushes serve as magma 
sources; idealizing such models suffer well-recognized limi-
tations: lack of samples, uncertainty about the composition 
abundance of comprising phases and subsurface alteration. 
Hence, given the differences shown by G1 and G2 rocks, our 
best approximation is to suggest that rhyolites in the ACC were 
produced by at least two different sources, one of which could 
be related to the partial melting of the rocks remobilized to be 
deposited as the PEI.

Rhyolite formation model

We propose a model for rhyolite formation in the ACC 
(Fig. 14). Primary melts are formed in a subduction zone for 
the TMVB (e.g., Gómez-Tuena et al. (2018); Parolari et al. 
(2021). The G1 rhyolites were formed by fractional crys-
tallization of intermediate magmas, probably of tholeiitic-
transitional compositions that arrived at the upper crust and 
assimilated some country rock (e.g., Sosa-Ceballos et al. 
2021). Given the distance from the trench ~ 450 km, the crus-
tal thickness ~ 40 km, and the depth of the slab below the 
ACC ~ 300 km (Pérez-Campos et al. 2008; Ferrari et al. 2012; 
Castellanos et al. 2018), some melts formed A-type peralkaline 
intrusive bodies in a back-arc type environment (e.g., Karsli 
et al. 2012; Jiang et al. 2006). Perhaps, the influence of the 
mantle flow in this region, produced by the rollback and slab 
tear of the Cocos plate (Castellanos et al. 2018), generated 
the tectonic extension that promoted the ascent of the melts 

in this part of the TMVB. Thus, mafic magmas that erupted 
through monogenetic vents around the ACC, but these features 
are equally or even more common in western TMVB, served 
as the heating element melting the intrusive body, forming the 
crystal mush and the G2 rhyolites. Melting and extracting the 
crystal mush dispersed the pyroclastic density currents that 
emplaced the PEI deposits at the surface.

Conclusion

The ultra-crystalline rhyolitic PEI was erupted ~ 1.2 Ma 
ago through the eastern portion of the ACC. The PEI is 
composed primarily of compositionally homogeneous 
K-felspar and quartz polymorphs. The high crystallinity 
(close to ~ 100%) in the PEI is the result of two independent 
main processes: magmatic crystallization and hydrothermal 
recrystallization of the matrix. Protracted crystallization at 
shallow depths produced up to the 50% of crystals and post-
depositional hydrothermal alteration causes devitrification 
of the remaining matrix to produce cristobalite + tridymite 
crystals. The presence of this ultra-crystal-rich rhyolitic ign-
imbrites in ACC suggests that some felsic eruptions are the 
product of the remobilization of a crystalline mush. Injec-
tion or recharge of hot magma resulted in the transport of 
the mush and its extracts from the crust to the surface. We 
suggest that the mafic magmas that erupted through mono-
genetic vents around the ACC served as the heating ele-
ment that promoted the partial melting and mobilization of 
underplate intrusive bodies. Thus, the geochemical diver-
sity of the ACC rhyolites reflects a complex combination 
of different magmatic processes. The ACC rhyolites can be 
divided into G1 (“I-type”) calkaline and G2 (“A-type”) per-
alkaline. We suggest that most of the G1 and G2 rhyolites 

Fig. 14  Schematic model of rhyolite petrogenesis at the ACC. The 
generation of multiple melt compositions at the ACC is driven by 
fractional crystallization of subduction-related intermediate magmas 
and the mush extracts from A-type peralkaline intrusive bodies. The 
PEI represent mush (melt + crystals) mobilized to the surface, other 

ACC rhyolites seem to be pure melts extracted from the crystal mush 
and other I-type magmas. The underplating of mafic magmas drives 
some parts of the hot plutonic body to a crystal mush state. The ther-
mal and volatile input also reduces density and viscosity through par-
tial melting of mushed parts of the pluton increasing its buoyancy
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could represent relatively high degrees of partial melting 
and were produced by at least two different sources, one of 
which could be related to melt extracts of the crystal mush 
in which PEI magma were formed.
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